# Mathematical foundations - linear algebra 

Andrea Passerini<br>passerini@disi.unitn.it

Machine Learning

## Vector space

## Definition (over reals)

A set $\mathcal{X}$ is called a vector space over $\mathbb{R}$ if addition and scalar multiplication are defined and satisfy for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$ and
$\lambda, \mu \in \mathbb{R}$ :

- Addition:
associative $\mathbf{x}+(\mathbf{y}+\mathbf{z})=(\mathbf{x}+\mathbf{y})+\mathbf{z}$
commutative $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$
identity element $\exists \mathbf{0} \in \mathcal{X}: \mathbf{x}+\mathbf{0}=\mathbf{x}$
inverse element $\forall \mathbf{x} \in \mathcal{X} \exists \mathbf{x}^{\prime} \in \mathcal{X}: \mathbf{x}+\mathbf{x}^{\prime}=\mathbf{0}$
- Scalar multiplication:
distributive over elements $\lambda(\mathbf{x}+\mathbf{y})=\lambda \mathbf{x}+\lambda \mathbf{y}$
distributive over scalars $(\lambda+\mu) \mathbf{x}=\lambda \mathbf{x}+\mu \mathbf{x}$
associative over scalars $\lambda(\mu \mathbf{x})=(\lambda \mu) \mathbf{x}$ identity element $\exists 1 \in \mathbb{R}: 1 \mathbf{x}=\mathbf{x}$


## Properties and operations in vector spaces

subspace Any non-empty subset of $\mathcal{X}$ being itself a vector space (E.g. projection)
linear combination given $\lambda_{i} \in \mathbb{R}, \mathbf{x}_{i} \in \mathcal{X}$

$$
\sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i}
$$

span The span of vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ is defined as the set of their linear combinations

$$
\left\{\sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i}, \lambda_{i} \in \mathbb{R}\right\}
$$

## Basis in vector space

## Linear independency

A set of vectors $\mathbf{x}_{i}$ is linearly independent if none of them can be written as a linear combination of the others

## Basis

- A set of vectors $\mathbf{x}_{i}$ is a basis for $\mathcal{X}$ if any element in $\mathcal{X}$ can be uniquely written as a linear combination of vectors $\mathbf{x}_{i}$.
- Necessary condition is that vectors $\mathbf{x}_{i}$ are linearly independent
- All bases of $\mathcal{X}$ have the same number of elements, called the dimension of the vector space.


## Linear maps

## Definition

Given two vector spaces $\mathcal{X}, \mathcal{Z}$, a function $f: \mathcal{X} \rightarrow \mathcal{Z}$ is a linear map if for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}, \lambda \in \mathbb{R}$ :

- $f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y})$
- $f(\lambda \mathbf{x})=\lambda f(\mathbf{x})$


## Linear maps as matrices

A linear map between two finite-dimensional spaces $\mathcal{X}, \mathcal{Z}$ of dimensions $n, m$ can always be written as a matrix:

- Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ and $\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right\}$ be some bases for $\mathcal{X}$ and $\mathcal{Z}$ respectively.
- For any $\mathbf{x} \in \mathcal{X}$ we have:

$$
\begin{aligned}
f(\mathbf{x}) & =f\left(\sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i}\right)=\sum_{i=1}^{n} \lambda_{i} f\left(\mathbf{x}_{i}\right) \\
f\left(\mathbf{x}_{i}\right) & =\sum_{j=1}^{m} a_{j i} \mathbf{z}_{j} \\
f(\mathbf{x}) & =\sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_{i} a_{j} \mathbf{z}_{j}=\sum_{j=1}^{m}\left(\sum_{i=1}^{n} \lambda_{i} a_{j i}\right) \mathbf{z}_{j}=\sum_{j=1}^{m} \mu_{j} \mathbf{z}_{j}
\end{aligned}
$$

## Linear maps as matrices

- Matrix of basis transformation

$$
M \in \mathbb{R}^{m \times n}=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]
$$

- Mapping from basis coefficients to basis coefficients

$$
M \lambda=\mu
$$

## Change of Coordinate Matrix

## 2D example

- let $B=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ be the standard basis in $\mathbb{R}^{2}$
- let $B^{\prime}=\left\{\left[\begin{array}{l}3 \\ 1\end{array}\right],\left[\begin{array}{r}-2 \\ 1\end{array}\right]\right\}$ be an alternative basis
- The change of coordinate matrix from $B^{\prime}$ to $B$ is:

$$
P=\left[\begin{array}{rr}
3 & -2 \\
1 & 1
\end{array}\right]
$$

- So that:

$$
[\mathbf{v}]_{B}=P \cdot[\mathbf{v}]_{B^{\prime}} \quad \text { and } \quad[\mathbf{v}]_{B^{\prime}}=P^{-1} \cdot[\mathbf{v}]_{B}
$$

## Note

- For arbitrary $B$ and $B^{\prime}$, P's columns must be the $B^{\prime}$ vectors written in terms of the $B$ ones (straightforward here)


## Matrix properties

transpose Matrix obtained exchanging rows with columns (indicated with $M^{T}$ ). Properties:

$$
(M N)^{T}=N^{T} M^{T}
$$

trace Sum of diagonal elements of a matrix

$$
\operatorname{tr}(M)=\sum_{i=1}^{n} M_{i i}
$$

inverse The matrix which multiplied with the original matrix gives the identity

$$
M M^{-1}=I
$$

rank The rank of an $n \times m$ matrix is the dimension of the space spanned by its columns

## Matrix derivatives

$$
\begin{aligned}
\frac{\partial M \mathbf{x}}{\partial \mathbf{x}} & =M \\
\frac{\partial \mathbf{y}^{T} M \mathbf{x}}{\partial \mathbf{x}} & =M^{T} \mathbf{y} \\
\frac{\partial \mathbf{x}^{T} M \mathbf{x}}{\partial \mathbf{x}} & =\left(M^{T}+M\right) \mathbf{x} \\
\frac{\partial \mathbf{x}^{T} M \mathbf{x}}{\partial \mathbf{x}} & =2 M \mathbf{x} \quad \text { if } M \text { is symmetric } \\
\frac{\partial \mathbf{x}^{T} \mathbf{x}}{\partial \mathbf{x}} & =2 \mathbf{x}
\end{aligned}
$$

## Note

Results are column vectors. Transpose them if row vectors are needed instead.

## Metric structure

## Norm

A function $\|\cdot\|: \mathcal{X} \rightarrow \mathbb{R}_{0}^{+}$is a norm if for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}, \lambda \in \mathbb{R}$ :

- $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$
- $\|\lambda \mathbf{x}\|=|\lambda|\|\mathbf{x}\|$
- $\|\mathbf{x}\|>0$ if $\mathbf{x} \neq 0$


## Metric

A norm defines a metric $d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{0}^{+}$:

$$
d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|
$$

## Note

The concept of norm is stronger than that of metric: not any metric gives rise to a norm

## Dot product

## Bilinear form

A function $Q: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a bilinear form if for all
$\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}, \lambda, \mu \in \mathbb{R}$ :

- $Q(\lambda \mathbf{x}+\mu \mathbf{y}, \mathbf{z})=\lambda Q(\mathbf{x}, \mathbf{z})+\mu Q(\mathbf{y}, \mathbf{z})$
- $Q(\mathbf{x}, \lambda \mathbf{y}+\mu \mathbf{z})=\lambda Q(\mathbf{x}, \mathbf{y})+\mu Q(\mathbf{x}, \mathbf{z})$

A bilinear form is symmetric if for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ :

- $Q(\mathbf{x}, \mathbf{y})=Q(\mathbf{y}, \mathbf{x})$


## Dot product

Dot product
A dot product $\langle\cdot, \cdot\rangle: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a symmetric bilinear form which is positive semi-definite:

$$
\langle\mathbf{x}, \mathbf{x}\rangle \geq 0 \forall \mathbf{x} \in \mathcal{X}
$$

A positive definite dot product satisfies

$$
\langle\mathbf{x}, \mathbf{x}\rangle=0 \text { iff } \mathbf{x}=\mathbf{0}
$$

## Norm

Any dot product defines a corresponding norm via:

$$
\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}
$$

## Properties of dot product

angle The angle $\theta$ between two vectors is defined as:

$$
\cos \theta=\frac{\langle\mathbf{x}, \mathbf{z}\rangle}{\|\mathbf{x}\|\|\mathbf{z}\|}
$$

orthogonal Two vectors are orthogonal if $\langle\mathbf{x}, \mathbf{y}\rangle=0$
orthonormal A set of vectors $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is orthonormal if

$$
\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle=\delta_{i j}
$$

where $\delta_{i j}=1$ if $i=j, 0$ otherwise.

## Note

If $\mathbf{x}$ and $\mathbf{y}$ are $n$-dimensional column vectors, their dot product is computed as:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

## Eigenvalues and eigenvectors

## Definition

Given an $n \times n$ matrix $M$, the real value $\lambda$ and (non-zero) vector $\mathbf{x}$ are an eigenvalue and corresponding eigenvector of $M$ if

$$
M \mathbf{x}=\lambda \mathbf{x}
$$

## Cardinality

- An $n \times n$ matrix has $n$ eigenvalues (roots of characteristic polynomial)
- An $n \times n$ matrix can have less than $n$ distinct eigenvalues
- An $n \times n$ matrix can have less than $n$ linear independent eigenvectors (also fewer then the number of distinct eigenvalues)


## Eigenvalues and eigenvectors

## Singular matrices

- A matrix is singular if it has a zero eigenvalue

$$
M \mathbf{x}=0 \mathbf{x}=\mathbf{0}
$$

- A singular matrix has linearly dependent columns:

$$
\left[\begin{array}{llll}
M_{1} & \ldots & M_{n-1} & M_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=0
$$

## Eigenvalues and eigenvectors

## Singular matrices

- A matrix is singular if it has a zero eigenvalue

$$
M x=0 x=0
$$

- A singular matrix has linearly dependent columns:

$$
M_{1} x_{1}+\cdots+M_{n-1} x_{n-1}+M_{n} x_{n}=0
$$

## Eigenvalues and eigenvectors

## Singular matrices

- A matrix is singular if it has a zero eigenvalue

$$
M \mathbf{x}=0 \mathbf{x}=\mathbf{0}
$$

- A singular matrix has linearly dependent columns:

$$
M_{n}=M_{1} \frac{-x_{1}}{x_{n}}+\cdots+M_{n-1} \frac{-x_{n-1}}{x_{n}}
$$

## Eigenvalues and eigenvectors

## Singular matrices

- A matrix is singular if it has a zero eigenvalue

$$
M x=0 x=0
$$

- A singular matrix has linearly dependent columns:

$$
M_{n}=M_{1} \frac{-x_{1}}{x_{n}}+\cdots+M_{n-1} \frac{-x_{n-1}}{x_{n}}
$$

## Determinant

- The determinant $|M|$ of a $n \times n$ matrix $M$ is the product of its eigenvalues
- A matrix is invertible if its determinant is not zero (i.e. it is not singular)


## Eigenvalues and eigenvectors

## Symmetric matrices

Eigenvectors corresponding to distinct eigenvalues are orthogonal:

$$
\begin{aligned}
\lambda\langle\mathbf{x}, \mathbf{z}\rangle & =\langle A \mathbf{x}, \mathbf{z}\rangle \\
& =(A \mathbf{x})^{T} \mathbf{z} \\
& =\mathbf{x}^{T} A^{T} \mathbf{z} \\
& =\mathbf{x}^{T} A \mathbf{z} \\
& =\langle\mathbf{x}, A \mathbf{z}\rangle \\
& =\mu\langle\mathbf{x}, \mathbf{z}\rangle
\end{aligned}
$$

## Eigen-decomposition

Raleigh quotient

$$
\begin{aligned}
A \mathbf{x} & =\lambda \mathbf{x} \\
\frac{\mathbf{x}^{T} \boldsymbol{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} & =\lambda \frac{\mathbf{x}^{T} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\lambda
\end{aligned}
$$

Finding eigenvector
(1) Maximize eigenvalue:

$$
\mathbf{x}=\max _{\mathbf{v}} \frac{\mathbf{v}^{T} A \mathbf{v}}{\mathbf{v}^{T} \mathbf{v}}
$$

(2) Normalize eigenvector (solution is invariant to rescaling)

$$
\mathbf{x} \leftarrow \frac{\mathbf{x}}{\|\mathbf{x}\|}
$$

## Eigen-decomposition

Deflating matrix

$$
\tilde{A}=A-\lambda \mathbf{x} \mathbf{x}^{T}
$$

- Deflation turns $\mathbf{x}$ into a zero-eigenvalue eigenvector:

$$
\begin{aligned}
\tilde{A} \mathbf{x} & =A \mathbf{x}-\lambda \mathbf{x} \mathbf{x}^{T} \mathbf{x} \quad(\mathbf{x} \text { is normalized }) \\
& =A \mathbf{x}-\lambda \mathbf{x}=0
\end{aligned}
$$

- Other eigenvalues are unchanged as eigenvectors with distinct eigenvalues are orthogonal (symmetric matrix):

$$
\begin{aligned}
& \tilde{A} \mathbf{z}=A \mathbf{z}-\lambda \mathbf{x} \mathbf{x}^{\top} \mathbf{z} \quad(\mathbf{x} \text { and } \mathbf{z} \text { orthonormal }) \\
& \tilde{A} \mathbf{z}=A \mathbf{z}
\end{aligned}
$$

## Eigen-decomposition

## Iterating

- The maximization procedure is repeated on the deflated matrix (until solution is zero)
- Minimization is iterated to get eigenvectors with negative eigevalues
- Eigenvectors with zero eigenvalues are obtained extending the obtained set to an orthonormal basis


## Eigen-decomposition

## Eigen-decomposition

- Let $V=\left[\mathbf{v}_{1} \ldots \mathbf{v}_{n}\right]$ be a matrix with orthonormal eigenvectors as columns
- Let $\wedge$ be the diagonal matrix of corresponding eigenvalues
- A square simmetric matrix can be diagonalized as:

$$
V^{\top} A V=\Lambda
$$

proof follows..

## Note

- A diagonalized matrix is much simpler to manage and has the same properties as the original one (e.g. same eigen-decomposition)
- E.g. change of coordinate system


## Eigen-decomposition

## Proof

$$
\begin{aligned}
A\left[\mathbf{v}_{1} \ldots \mathbf{v}_{n}\right] & =\left[\mathbf{v}_{1} \ldots \mathbf{v}_{n}\right]\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right] \\
A V & =V \Lambda \\
V^{-1} A V & =V^{-1} V \Lambda \\
V^{T} A V & =\Lambda
\end{aligned}
$$

## Note

V is a unitary matrix (orthonormal columns), for which:

$$
V^{-1}=V^{T}
$$

## Positive semi-definite matrix

## Definition

An $n \times n$ symmetrix matrix $M$ is positive semi-definite if all its eigenvalues are non-negative.

Alternative sufficient and necessary conditions

- for all $\mathbf{x} \in \mathbb{R}^{n}$

$$
\mathbf{x}^{\top} M \mathbf{x} \geq 0
$$

- there exists a real matrix $B$ s.t.

$$
M=B^{T} B
$$

## Understanding eigendecomposition



Scaling transformation in standard basis

- let $\mathbf{x}_{1}=[1,0], \mathbf{x}_{2}=[0,1]$ be the standard orthonormal basis in $\mathbb{R}^{2}$
- let $\mathbf{x}=\left[x_{1}, x_{2}\right]$ be an arbitrary vector in $\mathbb{R}^{2}$
- A linear transformation is a scaling transformation if it only stretches $\mathbf{x}$ along its directions


## Understanding eigendecomposition



$$
\begin{aligned}
\mathbf{v}_{1} & =\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\mathbf{v}_{2} & =\left[\begin{array}{r}
-2 \\
1
\end{array}\right] \\
A \mathbf{v}_{1} & =\left[\begin{array}{r}
13-8 \\
-4+14
\end{array}\right]=\left[\begin{array}{r}
5 \\
10
\end{array}\right]=5 \mathbf{v}_{1} \\
A \mathbf{v}_{2} & =\left[\begin{array}{r}
-26-4 \\
8+7
\end{array}\right]=\left[\begin{array}{r}
-30 \\
15
\end{array}\right]=15 \mathbf{v}_{2}
\end{aligned}
$$

## Scaling transformation in eigenbasis

- let $A$ be a non-scaling linear transformation in $\mathbb{R}^{2}$.
- let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be an eigenbasis for $A$.
- By representing vectors in $\mathbb{R}^{2}$ in terms of the $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ basis (instead of the standard $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ ), $A$ becomes a scaling transformation


## Principal Component Analysis (PCA)



## Description

- Let $X$ be a data matrix with correlated coordinates.
- PCA is a linear transformation mapping data to a system of uncorrelated coordinates.
- It corresponds to fitting an ellipsoid to the data, whose axes are the coordinates of the new space.


## Principal Component Analysis (PCA)

## Procedure (1)

Given a dataset $X \in \mathbb{R}^{n \times d}$ in $d$ dimensions.
1 Compute the mean of the data ( $X_{i}$ is $\mathrm{i}^{\text {th }}$ row vector of $X$ ):

$$
\overline{\mathbf{x}}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

2 Center the data into the origin:

$$
X-\left[\begin{array}{c}
\overline{\mathbf{x}} \\
\vdots \\
\overline{\mathbf{x}}
\end{array}\right]
$$

3 Compute the data covariance: $C=\frac{1}{n} X^{\top} X$

## Principal Component Analysis (PCA)

## Procedure (2)

4 Compute the (orthonormal) eigendecomposition of $C$ :

$$
V^{T} C V=\Lambda
$$

5 Use it as the new coordinate system:

$$
\mathbf{x}^{\prime}=V^{-1} \mathbf{x}=V^{\top} \mathbf{x}
$$

$$
\left(V^{-1}=V^{T} \text { as } V\right. \text { is unitary) }
$$

## Warning

- It assumes linear correlations (and Gaussian distributions)


## Principal Component Analysis (PCA)

## Dimensionality reduction

- Each eigenvalue corresponds to the amount of variance in that direction
- Select only the $k$ eigenvectors with largest eigenvalues for dimensionality reduction (e.g. visualization)

Procedure
$1 W=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]$
$2 \mathbf{x}^{\prime}=W^{\top} \mathbf{x}$

