
Interactive Learning

Stefano Teso

Advanced Topics in Machine Learning & Optimization − 2023-24

Strategies

Extensions

Conclusion and Further Reading

1

“Imagine that you are the leader of a colonial expedition from Earth to an extrasolar planet. Luckily, this planet

is habitable and has a fair amount of vegetation suitable for feeding your group. Impor- tantly, the most

abundant source of food comes from a plant whose fruits are sometimes smooth and round, but sometimes

bumpy and irregular.”

“The physicians assure you that the shape of a fruit is the only feature that seems related to its safety. The

problem, though, is that a wide variety of fruit shapes from these plants exist: almost a continuous range from

round to irregular. Since the colony has essential uses for both safe and noxious fruits, you want to be able to

classify them as accurately as possible. ” Credits: (Settles, 2012).

2

■ We know that smoother fruits are (monotonically) safer, but we don’t know where to set the threshold.

■ In other words, we want to learn a threshold function:

fθ(x) =

{
1 if x3 < θ

−1 otherwise

where x are measurements of fruit features and x3 captures its shape “irregularity”.

3

■ We know that smoother fruits are (monotonically) safer, but we don’t know where to set the threshold.

■ In other words, we want to learn a threshold function:

fθ(x) =

{
1 if x3 < θ

−1 otherwise

where x are measurements of fruit features and x3 captures its shape “irregularity”.

3

Idea: use regular supervised learning

� Collect a large enough training set L = {(x, y)}, fit threshold classifier fθ on L

� If maximum % errors is ϵ ∈ (0, 1), enough to collect ≈ 1
ϵ
examples (Shalev-Shwartz and Ben-David, 2014).

For instance, if max error is 1%, then we need to collect 100 examples. Considering how simple this prob-

lem is, this is a lot!

■ We want to find θ as quickly and as economically as possible, by requiring fewer tests.

4

Idea: use regular supervised learning

� Collect a large enough training set L = {(x, y)}, fit threshold classifier fθ on L

� If maximum % errors is ϵ ∈ (0, 1), enough to collect ≈ 1
ϵ
examples (Shalev-Shwartz and Ben-David, 2014).

For instance, if max error is 1%, then we need to collect 100 examples. Considering how simple this prob-

lem is, this is a lot!

■ We want to find θ as quickly and as economically as possible, by requiring fewer tests.

4

■ Can we do better?

Key features:

� Fruits x are plentiful and easy to harvest and measure

� Obtaining y incurs a cost: person that eats the fruit may get sick

So we definitely want to minimize the number of needed labels.

5

Idea: gather large set of unlabeled fruits U = {xi} and arrange them by roughness.

Use binary search to find the threshold θ only takes ≈ log2
1
ϵ
tests! For ϵ = 1%, this amounts to ≈ 7.

6

Idea: gather large set of unlabeled fruits U = {xi} and arrange them by roughness, then use binary search:

ϵ 1
ϵ

log2
1
ϵ

0.1 10 3.321

0.001 1000 9.966

0.00001 100000 16.610

■ In this (cleverly designed illustrative) scenario, there is an exponential improvement in sample complexity

7

Active vs Passive

“The key hypothesis is that if the learner is allowed to choose the data from which it learns — to be active,

curious, or exploratory, if you will — it can perform better with less training.” (Settles, 2012)

8

Preconditions:

� Collecting unlabelled instances x is cheap

� Obtaining their labels y is expensive

Example: Citizen Science

There are tons of images of celestial bodies (think sky surveys). However, in order to undestand what’s in an

image (is it a spiral galaxy? is it a gravitational lensing effect?) you have to ask a human expert.

Example: Recommendation

There are millions of products on online catalogues (think Amazon), but in order to discover what are the

tastes of a user, you have to actually convince them to score the items. This information is personalized, so

this is the only way to obtain supervision.

9

Preconditions:

� Collecting unlabelled instances x is cheap

� Obtaining their labels y is expensive

Example: Citizen Science

There are tons of images of celestial bodies (think sky surveys). However, in order to undestand what’s in an

image (is it a spiral galaxy? is it a gravitational lensing effect?) you have to ask a human expert.

Example: Recommendation

There are millions of products on online catalogues (think Amazon), but in order to discover what are the

tastes of a user, you have to actually convince them to score the items. This information is personalized, so

this is the only way to obtain supervision.

9

Preconditions:

� Collecting unlabelled instances x is cheap

� Obtaining their labels y is expensive

Example: Citizen Science

There are tons of images of celestial bodies (think sky surveys). However, in order to undestand what’s in an

image (is it a spiral galaxy? is it a gravitational lensing effect?) you have to ask a human expert.

Example: Recommendation

There are millions of products on online catalogues (think Amazon), but in order to discover what are the

tastes of a user, you have to actually convince them to score the items. This information is personalized, so

this is the only way to obtain supervision.

9

Example: Scientific Discovery

■ Adam, the “robot scientist” (King et al., 2009)

■ The learner obtains labels by operating an automated testing machine.

10

Example: Scientific Discovery

■ Similar strategies used in chemical engineering, material engineering, etc.

11

Notation

A summary of frequently used terms:

� Instances x ∈ Rd are unlabelled d-dimensional vectors of observations

� Examples z = (x, y) are instances annotated by a label y ∈ {0, 1} or y ∈ {1, . . . , c}

� A classifier f : Rd → {0, 1} maps instances to labels (e.g., a neural networks, . . .)

� F = {fθ} is a family of classifiers parameterized by θ (e.g., all neural networks with a specified architec-

ture)

■ The meaning of θ depends on the model class, e.g., for neural nets with a fixed architecture, θ represents

their weights; for random forests, θ represents the structure and leaves of all trees.

12

Assumptions

■ We assume the data to be distributed according to a ground-truth

distribution p∗(Y ,X), which combines a distribution over inputs (“how

rare is this document/image?” and a distribution over labels given the

input (“how likely is this document to be labeled as funny?”)

p∗(Y ,X) ≡ p∗(Y | X) · p∗(X) (1)

■ We focus on learning a probabilistic classifier, written as:

pθ(Y = y | X = x) (2)

We always predict the most likely label, that is:

fθ(x) = argmax
y=1,...,c

pθ(Y = y | X = x) (3)

Possible models are anything from logistic regression to neural nets

with a softmax activation (illustrated on the right).

Structure of your average feed-forward neural network. Notice

how the output consists of per-class probabilities. Here we

write the vector p this using the notation pθ (Y | x).

13

Assumptions

■ We assume the data to be distributed according to a ground-truth

distribution p∗(Y ,X), which combines a distribution over inputs (“how

rare is this document/image?” and a distribution over labels given the

input (“how likely is this document to be labeled as funny?”)

p∗(Y ,X) ≡ p∗(Y | X) · p∗(X) (1)

■ We focus on learning a probabilistic classifier, written as:

pθ(Y = y | X = x) (2)

We always predict the most likely label, that is:

fθ(x) = argmax
y=1,...,c

pθ(Y = y | X = x) (3)

Possible models are anything from logistic regression to neural nets

with a softmax activation (illustrated on the right).

Structure of your average feed-forward neural network. Notice

how the output consists of per-class probabilities. Here we

write the vector p this using the notation pθ (Y | x).

13

Modeling the Annotator

■ Annotator modelled as an “oracle” that returns the correct label:

annot(x) := argmax
y∈{0,1}

p∗(Y = y | X = x) (4)

where p∗ is the true (but unobserved) label distribution. In other words, we assume the annotator always

answers correctly, i.e., they are knowledgeable and collaborative.

■ Invoking the oracle comes at a cost, which is unknown, but usually non-negligible, instance- and

class-dependent.

For simplicity, we assume the cost to be unitary: all questions cost the same.

14

Active Learning (Pool-based). Given:

� a family of classifiers F ,

� a set of unlabelled instances U = {x1, . . . , xm} ⊆ Rd sampled i.i.d. from p∗(X),

� a (costly) labeling oracle label : Rd → {0, 1},

Find a classifier f̂ ∈ F that achieves low risk on p∗(X,Y) while keeping annot. cost low

15

Active Learning (Query Synthesis). Given:

� a family of classifiers F ,

� a generator of instances synthesize(region) 7→ x,

� a (costly) labeling oracle label : Rd → {0, 1},

Find a classifier f̂ ∈ F that achieves low risk on p∗(X,Y) while keeping annot. cost low

16

Active Learning (Selective Sampling). Given:

� a family of classifiers F ,

� a sequence of unlabelled instances x1, x2, x3, . . . ,

� a (costly) labeling oracle label : Rd → {0, 1}

Find a classifier f̂t ∈ F that achieves low risk on future data xt+1, xt+2, . . . while keeping annot. cost low

17

Query Sampling vs. Query Synthesis

■ Left to right:

� Pool-based: moderate control over queries, requires memory to store U

� Query synthesis: maximum control over queries, can generate uninterpretable queries (Baum and Lang,

1992), although deep generative models can help somehow (Nguyen et al., 2016).

� Selective sampling: little control over the distribution of queries, often solved under tight memory con-

straints (online learning)

■ We will focus on pool-based AL.

18

Strategies

Quiz Time!

■ Out of the many unlabeled points (in gray), which ones would you pick for a human annotator to label?

19

Template

Input: models F , examples L, pool U , query budget T ≥ 1

Output: selected model f ∈ F
1: f ← fit(F ,L) ▷ initialize the model

2: for t = 1, 2, . . . ,T do ▷ until the budget is exhausted

3: x← argmaxx∈U acq(f , x) ▷ select a query instance

4: obtain label y of x from annotator

5: U ← U \ {x} ▷ remove unlabeled instance from pool

6: L ← L ∪ {(x, y)} ▷ update training set

7: f ← fit(F ,L) ▷ update the model
return f

■ fit performs training (e.g., trains for a fixed # of epochs)

■ acq scores instances based on their “informativeness”

■ What instance x ∈ U should be selected so to convey as much information as possible to f ?

20

Uncertainty Sampling

What’s the point of asking the label of instances on which the classifier is already certain?1

■ Left: two Gaussians (40 points each)

■ Middle: picking points completely at random (ignoring the class label!)

■ Right: picking points based on uncertainty

1There is a point to doing so, as we will see later.

21

Uncertainty Sampling

■ Idea: pick x ∈ U on which the classifier is most uncertain.

■ How should uncertainty be defined?

22

Uncertainty Sampling

■ Idea: pick x ∈ U on which the classifier is most uncertain.

■ How should uncertainty be defined?

22

Uncertainty Sampling

■ Idea: pick x ∈ U on which the classifier is most uncertain.

■ How should uncertainty be defined?

22

Uncertainty Sampling

■ Define uncertainty using the confidence, i.e., distance from certainty:

acq(θ, x) := 1− pθ(ŷ | x) (5)

where ŷ is the predicted label:

ŷ := fθ(x) = argmax
y

pθ(y | x) (6)

23

Uncertainty Sampling

■ Define uncertainty using the margin, i.e., difference in (conditional) likelihood:

acq(θ, x) := pθ(ŷ
′ | x)− pθ(ŷ | x) (7)

where ŷ is the predicted label and ŷ ′ is the 2nd best label:

ŷ = argmax
y

pθ(y | x) (8)

ŷ ′ := argmax
y ̸=ŷ

pθ(y | x) (9)

24

Uncertainty Sampling

■ Define uncertainty using the Shannon entropy of the label:

acq(θ, x) := Hθ(Y | X = x) (10)

where Hθ is defined as:

Hθ(Y | X = x) := −
∑
y∈[c]

pθ(y | x) log2 pθ(y | x) (11)

Remark: conventionally, 0× log2 0 = 0.

� It achieves a minimum on dead certain distributions:

pθ(Y | x) = (0, 1, 0, . . . , 0)

� and a maximum on the uniform distribution:

pθ(Y | x) = (
1

c
, · · · ,

1

c
)

25

Confidence vs. Margin vs. Entropy

■ Left: confidence considers prob. of top class only

■ Middle: margin considers prob. of top & runner up classes

■ Right: entropy considers prob. of all classes

If c = 2, they are equivalent. If c > 2, no obvious best

choice, it really depends on the task and loss (e.g., cross-

entropy vs.accuracy)

Example: for classifiers with a sigmoid

top layer:

uncertainty depends on distance from

separating hyperplane of predicted vs.

top two vs. all classes

26

Confidence vs. Margin vs. Entropy

■ Left: confidence considers prob. of top class only

■ Middle: margin considers prob. of top & runner up classes

■ Right: entropy considers prob. of all classes

If c = 2, they are equivalent. If c > 2, no obvious best

choice, it really depends on the task and loss (e.g., cross-

entropy vs.accuracy)

Example: for classifiers with a sigmoid

top layer:

uncertainty depends on distance from

separating hyperplane of predicted vs.

top two vs. all classes
26

Example: Uncertainty Sampling

In a binary classification task (red vs. blue), when paired with a sigmoid-based classifier, uncertainty is inversely

proportional to the distance from the separator between classes:

■ Left: gray points indicate unlabelled points, and their distance from the separation surface is indicated by an

arrow. Uncertainty sampling picks the closest unlabelled point.

■ Right: that label of that point happens to be red, and the classifier is updated accordingly. Naturally, the

distance of all other points from the separator (and hence their uncertainty) changes too.

27

Uncertainty Sampling

■ Uncertainty sampling is very easy to implement.

■ Margin & Confidence can be defined even in terms of unnormalized scores.

■ Usually performs reasonably well (though not optimally) in practice: a useful baseline/starting point.

28

Example: Structured Output

Consider an LSTM that takes a sequence of MNIST images X = [x1, . . . , xn] that composes a word and

outputs the word itself y = (y1, . . . , yn).

� Computing the most likely output ŷ can be done efficiently.

� Computing the entropy amounts to:

Hθ(Y | X = x) := −
∑

y∈{1,...,26}n
pθ(y | X) log2 pθ(y | X) (12)

This involves summing over 26n possible outputs, which takes time exponential in n.

■ Computing the most likely output can be NP-hard. For instance, if y is molecular structure that mast satisfy

specific hard constraints (chemical validity), then finding the best structure amounts to solving a hard

combinatorial problem.

Hence, the confidence and margin can also be very hard.

29

Uncertainty in Regression

■ When considering regression models with Y ∈ R, uncertainty at x can be implemented as differential entropy:

Hθ(Y | X = x) := E[− log2 pθ(y | x) | x] (13)

= −
∫
R
pθ(y | x) log2 pθ(y | x) (14)

■ As an alternative heuristic, use the variance:

Varθ(Y | x) := E[(Y − E[Y | x]︸ ︷︷ ︸
µθ(Y |x):=

)2 | x] (15)

=

∫
R
(y − µθ(Y | x))2pθ(y | x)dy (16)

µθ(Y | x) =
∫
R
y pθ(y | x)dy (17)

■ How to compute them?

30

Uncertainty in Regression

■ When considering regression models with Y ∈ R, uncertainty at x can be implemented as differential entropy:

Hθ(Y | X = x) := E[− log2 pθ(y | x) | x] (13)

= −
∫
R
pθ(y | x) log2 pθ(y | x) (14)

■ As an alternative heuristic, use the variance:

Varθ(Y | x) := E[(Y − E[Y | x]︸ ︷︷ ︸
µθ(Y |x):=

)2 | x] (15)

=

∫
R
(y − µθ(Y | x))2pθ(y | x)dy (16)

µθ(Y | x) =
∫
R
y pθ(y | x)dy (17)

■ How to compute them?

30

Uncertainty in Regression

■ When considering regression models with Y ∈ R, uncertainty at x can be implemented as differential entropy:

Hθ(Y | X = x) := E[− log2 pθ(y | x) | x] (13)

= −
∫
R
pθ(y | x) log2 pθ(y | x) (14)

■ As an alternative heuristic, use the variance:

Varθ(Y | x) := E[(Y − E[Y | x]︸ ︷︷ ︸
µθ(Y |x):=

)2 | x] (15)

=

∫
R
(y − µθ(Y | x))2pθ(y | x)dy (16)

µθ(Y | x) =
∫
R
y pθ(y | x)dy (17)

■ How to compute them?

30

Uncertainty in Regression

■ Differential entropy and variance:

Hθ(Y | X = x) = −
∫
R
pθ(y | x) log2 pθ(y | x) Varθ(Y | x) =

∫
R
(pθ(y | x)− µθ(Y | x))dy (18)

■ Both expensive to compute for general models, can approximate via quadrature or sampling, but closed-form

solutions exist for some models (e.g., Gaussian Processes and NNs with a Gaussian output)

Example: 1-dimensional Gaussian Output

Consider one-dimensional output y ∈ R and a neural net:

nn : x 7→ (µ, σ), y ∼ N (µ, σ) (19)

In this case, it is well known2 that:

Varθ(Y | x) = σ2, Hθ(Y | x) =
1

2
log(2πσ2) +

1

2
(20)

Notice that Varθ(Y | x) ∝ expHθ(Y | x), so they change monotonically.

2See https://en.wikipedia.org/wiki/Normal_distribution.

31

https://en.wikipedia.org/wiki/Normal_distribution

Uncertainty in Regression

■ Differential entropy and variance:

Hθ(Y | X = x) = −
∫
R
pθ(y | x) log2 pθ(y | x) Varθ(Y | x) =

∫
R
(pθ(y | x)− µθ(Y | x))dy (18)

■ Both expensive to compute for general models, can approximate via quadrature or sampling, but closed-form

solutions exist for some models (e.g., Gaussian Processes and NNs with a Gaussian output)

Example: 1-dimensional Gaussian Output

Consider one-dimensional output y ∈ R and a neural net:

nn : x 7→ (µ, σ), y ∼ N (µ, σ) (19)

In this case, it is well known2 that:

Varθ(Y | x) = σ2, Hθ(Y | x) =
1

2
log(2πσ2) +

1

2
(20)

Notice that Varθ(Y | x) ∝ expHθ(Y | x), so they change monotonically.

2See https://en.wikipedia.org/wiki/Normal_distribution.

31

https://en.wikipedia.org/wiki/Normal_distribution

Uncertainty in Regression

■ Differential entropy and variance:

Hθ(Y | X = x) = −
∫
R
pθ(y | x) log2 pθ(y | x) Varθ(Y | x) =

∫
R
(pθ(y | x)− µθ(Y | x))dy (18)

■ Both expensive to compute for general models, can approximate via quadrature or sampling, but closed-form

solutions exist for some models (e.g., Gaussian Processes and NNs with a Gaussian output)

Example: 1-dimensional Gaussian Output

Consider one-dimensional output y ∈ R and a neural net:

nn : x 7→ (µ, σ), y ∼ N (µ, σ) (19)

In this case, it is well known2 that:

Varθ(Y | x) = σ2, Hθ(Y | x) =
1

2
log(2πσ2) +

1

2
(20)

Notice that Varθ(Y | x) ∝ expHθ(Y | x), so they change monotonically.

2See https://en.wikipedia.org/wiki/Normal_distribution.

31

https://en.wikipedia.org/wiki/Normal_distribution

Uncertainty in Regression

■ Differential entropy and variance:

Hθ(Y | X = x) = −
∫
R
pθ(y | x) log2 pθ(y | x) Varθ(Y | x) =

∫
R
(pθ(y | x)− µθ(Y | x))dy (21)

■ Both expensive to compute for general models, can approximate via quadrature or sampling, but closed-form

solutions exist for some models (e.g., Gaussian Processes and NNs with a Gaussian output)

Example: k-dimensional Gaussian Output

Consider one-dimensional output y ∈ Rk and a neural net:

nn : x 7→ (µ, S), Σ← SST , y ∼ N (µ,Σ) (22)

with Σ PSD by construction. In this case, it is well known3 that:

Varθ(Y | x) ∝ trΣ Hθ(Y | x) ∝ log detΣ (23)

where the trace is cheap to compute but the determinant is more challenging.

3See https://en.wikipedia.org/wiki/Multivariate_normal_distribution.

32

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Illustration

33

■ Synthetic dataset: 25 clusters of red points arranged in a 5× 5 grid, surrounded by a sea of blue points

34

■ After 10 iterations of uncertainty sampling.

35

■ After 70 iterations of uncertainty sampling.

36

■ After 140 iterations of uncertainty sampling. Not nice!

37

Over-confidence

■ Discriminative models are over-confident:

Uncertainty does not decrease with distance from

the training set.

■ Bayesian generative models not so much:

Uncertainty does decrease with distance from the

training set.

38

Aleatoric vs Epistemic (Hüllermeier and Waegeman, 2021)

■ Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be

decreased. (left)

■ Epistemic uncertainty (“relating to knowledge”) captures how little we know about the world. This reflects

on uncertainty on the choice of θ. It decreases by acquiring more data. (right)

■ There isn’t much point in trying to reduce aleatoric uncertainty in AL (Sharma and Bilgic, 2017)

39

Aleatoric vs Epistemic (Hüllermeier and Waegeman, 2021)

■ Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be

decreased. (left)

■ Epistemic uncertainty (“relating to knowledge”) captures how little we know about the world. This reflects

on uncertainty on the choice of θ. It decreases by acquiring more data. (right)

■ There isn’t much point in trying to reduce aleatoric uncertainty in AL (Sharma and Bilgic, 2017)

39

Aleatoric vs Epistemic (Hüllermeier and Waegeman, 2021)

■ Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be

decreased. (left)

■ Epistemic uncertainty (“relating to knowledge”) captures how little we know about the world. This reflects

on uncertainty on the choice of θ. It decreases by acquiring more data. (right)

■ There isn’t much point in trying to reduce aleatoric uncertainty in AL (Sharma and Bilgic, 2017)

39

Aleatoric vs Epistemic (Hüllermeier and Waegeman, 2021)

■ Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be

decreased. (left)

■ Epistemic uncertainty (“relating to knowledge”) captures how little we know about the world. This reflects

on uncertainty on the choice of θ. It decreases by acquiring more data. (right)

■ There isn’t much point in trying to reduce aleatoric uncertainty in AL (Sharma and Bilgic, 2017)

39

Uncertainty Sampling for Streaming Data

Input: models F , bootstrap training set L, threshold τ

Output: selected model f ∈ F
1: f ← fit(F ,L) ▷ initialize the model

2: for t = 1, 2, 3, . . . , do

3: receive instance x

4: if unc(f , x) > τ then ▷ if f is uncertain about x

5: obtain label y of x from annotator

6: L ← L ∪ {(x, y)} ▷ update training set

7: f ← fit(F ,L) ▷ update the model
return f

■ The tricky bit is setting τ . Many algorithms update it dynamically by, e.g, starting from a large τ and

lowering it as new data is received and the model improves

40

■ For some problems, US converges to the right thing – because it is uncertain enough

41

■ If you are unluckly, US becomes over-confident: in this example, the model becomes confident that the

regions inside the black blob cannot be white, so it does not sample them and converges to the wrong shape.

42

The Story So Far

■ In active learning the machine is allowed to ask questions to an

oracle – and it should do so intelligently, so as to minimize the #

of questions for obtaining a good model.

■ The most common query selection strategy is uncertainty sam-

pling: the machine asks the oracle to label those (unlabelled) in-

stances on which it is most unsure.

■ Issues:

1. If the machine doesn’t know that it doesn’t know – i.e., its

self-assessed uncertainty is poorly calibrated – then uncer-

tainty sampling can ignore informative instances altogether.

2. Common uncertainty measures (e.g., entropy) mix together

epistemic and aleatoric uncertainty, only the former of which

we can reduce by acquiring more labels.

Input: models F , examples L, pool U , query budget T ≥ 1

Output: selected model f ∈ F
1: f ← fit(F,L)
2: for t = 1, 2, . . . , T do

3: x ← argmaxx∈U acq(f , x)

4: obtain label y of x from annotator

5: U ← U \ {x}
6: L ← L ∪ {(x, y)}
7: f ← fit(F,L)

return f

43

■ Uncertainty sampling is quite heuristic. Are there more principled approaches?

44

Version Space

■ Consider a hypothesis space F = {fθ : x 7→ y} and a data set L = {(xi , yi)}

Consistency

A hypothesis f ∈ F is consistent with L, written f |= L, iff it makes zero

mistakes on it, that is:

(f |= L) ⇐⇒
(∑

(x,y)∈L 1(f (x) ̸= y)
)
= 0 (24)

Version Space

The version space VS(L) of F given L is the set of hypotheses f ∈ F that are

consistent with L, that is:

VS(L) = {f ∈ F : f |= L} (25)

VS(L) contains those classifiers that

are not ruled out by the examples L

(in orange). It does not include the

purple classifier though!

45

Version Space

■ Consider a hypothesis space F = {fθ : x 7→ y} and a data set L = {(xi , yi)}

Consistency

A hypothesis f ∈ F is consistent with L, written f |= L, iff it makes zero

mistakes on it, that is:

(f |= L) ⇐⇒
(∑

(x,y)∈L 1(f (x) ̸= y)
)
= 0 (24)

Version Space

The version space VS(L) of F given L is the set of hypotheses f ∈ F that are

consistent with L, that is:

VS(L) = {f ∈ F : f |= L} (25)

VS(L) contains those classifiers that

are not ruled out by the examples L

(in orange). It does not include the

purple classifier though!

45

■ If L is not separable w.r.t. F , i.e., if there is no hypothesis f ∈ F that is constent with it, then the version

space is empty.

This can happen in practice because:

� F is not expressive enough.

Example: neural networks in F have too few layers/neurons, none of them is expressive enough to cor-

rectly label all data.

� L is noisy.

Example: L contains the same instance twice but annotated with different labels – e.g., (x, 1) and (x, 3) –

so no f ∈ F can classify both correctly.

The Realizable Case

We assume the realizable case: ∃f ∗ ∈ F s.t. y = f ∗(x) for all x and no noise.

This implies that f ∗ ∈ VS(L) for all choices of labeled examples L, because the supervision (x, y) is always

consistent with f ∗. Hence, the version space is never empty, regardless of what data we see!

46

■ If L is not separable w.r.t. F , i.e., if there is no hypothesis f ∈ F that is constent with it, then the version

space is empty.

This can happen in practice because:

� F is not expressive enough.

Example: neural networks in F have too few layers/neurons, none of them is expressive enough to cor-

rectly label all data.

� L is noisy.

Example: L contains the same instance twice but annotated with different labels – e.g., (x, 1) and (x, 3) –

so no f ∈ F can classify both correctly.

The Realizable Case

We assume the realizable case: ∃f ∗ ∈ F s.t. y = f ∗(x) for all x and no noise.

This implies that f ∗ ∈ VS(L) for all choices of labeled examples L, because the supervision (x, y) is always

consistent with f ∗. Hence, the version space is never empty, regardless of what data we see!

46

■ If L is not separable w.r.t. F , i.e., if there is no hypothesis f ∈ F that is constent with it, then the version

space is empty.

This can happen in practice because:

� F is not expressive enough.

Example: neural networks in F have too few layers/neurons, none of them is expressive enough to cor-

rectly label all data.

� L is noisy.

Example: L contains the same instance twice but annotated with different labels – e.g., (x, 1) and (x, 3) –

so no f ∈ F can classify both correctly.

The Realizable Case

We assume the realizable case: ∃f ∗ ∈ F s.t. y = f ∗(x) for all x and no noise.

This implies that f ∗ ∈ VS(L) for all choices of labeled examples L, because the supervision (x, y) is always

consistent with f ∗. Hence, the version space is never empty, regardless of what data we see!

46

■ If L is not separable w.r.t. F , i.e., if there is no hypothesis f ∈ F that is constent with it, then the version

space is empty.

This can happen in practice because:

� F is not expressive enough.

Example: neural networks in F have too few layers/neurons, none of them is expressive enough to cor-

rectly label all data.

� L is noisy.

Example: L contains the same instance twice but annotated with different labels – e.g., (x, 1) and (x, 3) –

so no f ∈ F can classify both correctly.

The Realizable Case

We assume the realizable case: ∃f ∗ ∈ F s.t. y = f ∗(x) for all x and no noise.

This implies that f ∗ ∈ VS(L) for all choices of labeled examples L, because the supervision (x, y) is always

consistent with f ∗. Hence, the version space is never empty, regardless of what data we see!

46

Version Space ↔ Disagreement Region

Disagreement Region

Given F and L, the disagreement region is the set of points x ∈ Rd such that there exist two classifiers f , f ′

in the version space VS(L) that produce different predictions for them:

DIS(L) = {x ∈ Rd : ∃f , f ′ ∈ VS(L) . f (x) ̸= f ′(x)} (26)

■ If x ̸∈ DIS(L), then all candidate classifiers f in the version space classify it the same: acquiring its label is

pointless.

■ If x ∈ DIS(L), then at least one f in the version space classifies it differently: acquiring its label is useful.

47

Version Space ↔ Disagreement Region

Disagreement Region

Given F and L, the disagreement region is the set of points x ∈ Rd such that there exist two classifiers f , f ′

in the version space VS(L) that produce different predictions for them:

DIS(L) = {x ∈ Rd : ∃f , f ′ ∈ VS(L) . f (x) ̸= f ′(x)} (26)

■ If x ̸∈ DIS(L), then all candidate classifiers f in the version space classify it the same: acquiring its label is

pointless.

■ If x ∈ DIS(L), then at least one f in the version space classifies it differently: acquiring its label is useful.

47

Version Space ↔ Disagreement Region

Disagreement Region

Given F and L, the disagreement region is the set of points x ∈ Rd such that there exist two classifiers f , f ′

in the version space VS(L) that produce different predictions for them:

DIS(L) = {x ∈ Rd : ∃f , f ′ ∈ VS(L) . f (x) ̸= f ′(x)} (26)

■ If x ̸∈ DIS(L), then all candidate classifiers f in the version space classify it the same: acquiring its label is

pointless.

■ If x ∈ DIS(L), then at least one f in the version space classifies it differently: acquiring its label is useful.

47

Left: input space Rd , data set L of red crosses vs blue circles. Right: hypothesis space F , each f is a point;

the ground-truth f ∗ is in red.

F is the set of 2D rectangles. Rectangles in instance space (left) are points in hypothesis space (right), as

shown by the arrows.

The version space VS(L) contains all the rectangles (pale gray) between inner & outer rectangles (darker gray)

The disagreement region DIS(L) is the space enclosed between these two rectangles.

48

Left: input space Rd , data set L of red crosses vs blue circles. Right: hypothesis space F , each f is a point;

the ground-truth f ∗ is in red.

F is the set of 2D rectangles. Rectangles in instance space (left) are points in hypothesis space (right), as

shown by the arrows.

The version space VS(L) contains all the rectangles (pale gray) between inner & outer rectangles (darker gray)

The disagreement region DIS(L) is the space enclosed between these two rectangles.

48

Left: input space Rd , data set L of red crosses vs blue circles. Right: hypothesis space F , each f is a point;

the ground-truth f ∗ is in red.

F is the set of 2D rectangles. Rectangles in instance space (left) are points in hypothesis space (right), as

shown by the arrows.

The version space VS(L) contains all the rectangles (pale gray) between inner & outer rectangles (darker gray)

The disagreement region DIS(L) is the space enclosed between these two rectangles.

48

Left: input space Rd , data set L of red crosses vs blue circles. Right: hypothesis space F , each f is a point;

the ground-truth f ∗ is in red.

F is the set of 2D rectangles. Rectangles in instance space (left) are points in hypothesis space (right), as

shown by the arrows.

The version space VS(L) contains all the rectangles (pale gray) between inner & outer rectangles (darker gray)

The disagreement region DIS(L) is the space enclosed between these two rectangles.

48

Version Space for Streaming AL

Input: models F
Output: selected model f ∈ F
1: L ← ∅
2: V ← F ▷ implements the version space VS(L)
3: for t = 1, 2, 3, . . . , do

4: receive instance x

5: if x ∈ DIS(V) then ▷ if x falls in the disagreement region

6: obtain label y of x

7: update V ← {f ∈ V : f (x) = y} ▷ update version space

8: return any f ∈ V

■ If x ∈ DIS(L), then there are at least two classifiers f , f ′ ∈ VS(L) that disagree on how x should be labeled.

Getting its label allows us to get rid of at least one of them, so VS(L) and DIS(L) both shrink.

■ Recall that f ∗ is always compatible with examples (x, y), so it is always in VS(L) → algorithm zooms into it!

■ This algorithm makes no useless queries!

49

Version Space for Streaming AL

Input: models F
Output: selected model f ∈ F
1: L ← ∅
2: V ← F ▷ implements the version space VS(L)
3: for t = 1, 2, 3, . . . , do

4: receive instance x

5: if x ∈ DIS(V) then ▷ if x falls in the disagreement region

6: obtain label y of x

7: update V ← {f ∈ V : f (x) = y} ▷ update version space

8: return any f ∈ V

■ If x ∈ DIS(L), then there are at least two classifiers f , f ′ ∈ VS(L) that disagree on how x should be labeled.

Getting its label allows us to get rid of at least one of them, so VS(L) and DIS(L) both shrink.

■ Recall that f ∗ is always compatible with examples (x, y), so it is always in VS(L) → algorithm zooms into it!

■ This algorithm makes no useless queries!

49

Version Space for Streaming AL

Input: models F
Output: selected model f ∈ F
1: L ← ∅
2: V ← F ▷ implements the version space VS(L)
3: for t = 1, 2, 3, . . . , do

4: receive instance x

5: if x ∈ DIS(V) then ▷ if x falls in the disagreement region

6: obtain label y of x

7: update V ← {f ∈ V : f (x) = y} ▷ update version space

8: return any f ∈ V

■ If x ∈ DIS(L), then there are at least two classifiers f , f ′ ∈ VS(L) that disagree on how x should be labeled.

Getting its label allows us to get rid of at least one of them, so VS(L) and DIS(L) both shrink.

■ Recall that f ∗ is always compatible with examples (x, y), so it is always in VS(L) → algorithm zooms into it!

■ This algorithm makes no useless queries!

49

Version Space for Streaming AL

Input: models F
Output: selected model f ∈ F
1: L ← ∅
2: V ← F ▷ implements the version space VS(L)
3: for t = 1, 2, 3, . . . , do

4: receive instance x

5: if x ∈ DIS(V) then ▷ if x falls in the disagreement region

6: obtain label y of x

7: update V ← {f ∈ V : f (x) = y} ▷ update version space

8: return any f ∈ V

■ If x ∈ DIS(L), then there are at least two classifiers f , f ′ ∈ VS(L) that disagree on how x should be labeled.

Getting its label allows us to get rid of at least one of them, so VS(L) and DIS(L) both shrink.

■ Recall that f ∗ is always compatible with examples (x, y), so it is always in VS(L) → algorithm zooms into it!

■ This algorithm makes no useless queries!

49

Question

■ Does our streaming VS strategy fix this issue (assuming that the class of possible classifiers F includes also

the target shape)?

Yes! Incoming points x in the center region belong to the disagreement region (some

classifiers in F might believe they should be black, while f ∗ knows that they are white), so they are accepted

and allow us to retrieve f ∗.

■ Can we do better if we can choose x?

50

Question

■ Does our streaming VS strategy fix this issue (assuming that the class of possible classifiers F includes also

the target shape)? Yes! Incoming points x in the center region belong to the disagreement region (some

classifiers in F might believe they should be black, while f ∗ knows that they are white), so they are accepted

and allow us to retrieve f ∗.

■ Can we do better if we can choose x?

50

Question

■ Does our streaming VS strategy fix this issue (assuming that the class of possible classifiers F includes also

the target shape)? Yes! Incoming points x in the center region belong to the disagreement region (some

classifiers in F might believe they should be black, while f ∗ knows that they are white), so they are accepted

and allow us to retrieve f ∗.

■ Can we do better if we can choose x?

50

Version Space for Pool-based AL

Input: models F
Output: selected model f ∈ F
1: L ← ∅
2: V ← F ▷ implements the version space VS(L)
3: for t = 1, 2, . . . ,T do

4: x← argmaxx∈U acqVS (V,F , x)
5: obtain label y of x

6: update V ← {f ∈ V : f (x) = y} ▷ update version space

7: return any f ∈ V

■ We can always ensure that there is a point on which the classifiers in the version space disagree, unless the

version space is empty or includes a single classifier. In this case we can simply terminate.

Problem: how do we define the acquisition function?

51

Consider the linear classifiers, i.e., F is:{
fθ(x) = 1

(
θ⊤x > 0

)
: θ ∈ Rd , ∥θ∥2︸ ︷︷ ︸

length

= 1
}

(27)

The version space of L is essentially the set of direction vectors θ that classify all points correctly.

52

■ Classifiers are hyperplanes in instance space and instances are hyperplanes in hypothesis space. In some

sense, the two spaces are “dual” of one another.

53

■ Idea: pick the point x ∈ U that (greedily) restricts the version space as much as possible. In this special case,

x passes close to the center of VS(L).

54

Idea: pick x ∈ U that reduces the volume of the version space VS(L) as much as possible.

■ The volume of a region A ⊆ F is:

Vol (A) =

∫
A
dθ =

∫
θ∈R|θ|

δ{θ ∈ A}dθ (28)

So computing a volume in general requires integration.

■ Pick instance x that minimizes the volume of the version space once it is added to the training set. Formally,

the volume to be minimize is: Vol (VS(L ∪ {(x, y)})). However, we don’t know the label y of x.

■ The best we can do is to compute the average volume based on the probability of the predicted labels given

by the model:

argmin
x∈U

1

c

c∑
y=1

pθ(y | x) ·Vol (VS(L ∪ {(x, y)})) (29)

This tells us what the volume of the VS would be if we were to add x – with an unknown label y – to the data.

55

Idea: pick x ∈ U that reduces the volume of the version space VS(L) as much as possible.

■ The volume of a region A ⊆ F is:

Vol (A) =

∫
A
dθ

=

∫
θ∈R|θ|

δ{θ ∈ A}dθ (28)

So computing a volume in general requires integration.

■ Pick instance x that minimizes the volume of the version space once it is added to the training set. Formally,

the volume to be minimize is: Vol (VS(L ∪ {(x, y)})). However, we don’t know the label y of x.

■ The best we can do is to compute the average volume based on the probability of the predicted labels given

by the model:

argmin
x∈U

1

c

c∑
y=1

pθ(y | x) ·Vol (VS(L ∪ {(x, y)})) (29)

This tells us what the volume of the VS would be if we were to add x – with an unknown label y – to the data.

55

Idea: pick x ∈ U that reduces the volume of the version space VS(L) as much as possible.

■ The volume of a region A ⊆ F is:

Vol (A) =

∫
A
dθ =

∫
θ∈R|θ|

δ{θ ∈ A}dθ (28)

So computing a volume in general requires integration.

■ Pick instance x that minimizes the volume of the version space once it is added to the training set. Formally,

the volume to be minimize is: Vol (VS(L ∪ {(x, y)})). However, we don’t know the label y of x.

■ The best we can do is to compute the average volume based on the probability of the predicted labels given

by the model:

argmin
x∈U

1

c

c∑
y=1

pθ(y | x) ·Vol (VS(L ∪ {(x, y)})) (29)

This tells us what the volume of the VS would be if we were to add x – with an unknown label y – to the data.

55

Idea: pick x ∈ U that reduces the volume of the version space VS(L) as much as possible.

■ The volume of a region A ⊆ F is:

Vol (A) =

∫
A
dθ =

∫
θ∈R|θ|

δ{θ ∈ A}dθ (28)

So computing a volume in general requires integration.

■ Pick instance x that minimizes the volume of the version space once it is added to the training set. Formally,

the volume to be minimize is: Vol (VS(L ∪ {(x, y)})).

However, we don’t know the label y of x.

■ The best we can do is to compute the average volume based on the probability of the predicted labels given

by the model:

argmin
x∈U

1

c

c∑
y=1

pθ(y | x) ·Vol (VS(L ∪ {(x, y)})) (29)

This tells us what the volume of the VS would be if we were to add x – with an unknown label y – to the data.

55

Idea: pick x ∈ U that reduces the volume of the version space VS(L) as much as possible.

■ The volume of a region A ⊆ F is:

Vol (A) =

∫
A
dθ =

∫
θ∈R|θ|

δ{θ ∈ A}dθ (28)

So computing a volume in general requires integration.

■ Pick instance x that minimizes the volume of the version space once it is added to the training set. Formally,

the volume to be minimize is: Vol (VS(L ∪ {(x, y)})). However, we don’t know the label y of x.

■ The best we can do is to compute the average volume based on the probability of the predicted labels given

by the model:

argmin
x∈U

1

c

c∑
y=1

pθ(y | x) ·Vol (VS(L ∪ {(x, y)})) (29)

This tells us what the volume of the VS would be if we were to add x – with an unknown label y – to the data.

55

Idea: pick x ∈ U that reduces the volume of the version space VS(L) as much as possible.

■ The volume of a region A ⊆ F is:

Vol (A) =

∫
A
dθ =

∫
θ∈R|θ|

δ{θ ∈ A}dθ (28)

So computing a volume in general requires integration.

■ Pick instance x that minimizes the volume of the version space once it is added to the training set. Formally,

the volume to be minimize is: Vol (VS(L ∪ {(x, y)})). However, we don’t know the label y of x.

■ The best we can do is to compute the average volume based on the probability of the predicted labels given

by the model:

argmin
x∈U

1

c

c∑
y=1

pθ(y | x) ·Vol (VS(L ∪ {(x, y)})) (29)

This tells us what the volume of the VS would be if we were to add x – with an unknown label y – to the data.

55

Question: how to encode the version space?

■ If F is finite, can explicitly store f |= L. Bonus: computing expected volume is doable (integral becomes

sum).

■ If F is infinite, cannot store explicitly. However, we only need to compute its volume:

1

c

∑
y∈[c]

pθ(y | x) ·Vol (VS(L ∪ {(x, y)}))︸ ︷︷ ︸
this is the difficult bit

(30)

� If F is “simple” and/or L is small, volume can be approximated cheaply using Monte Carlo techniques.

For instance with rejection sampling, let B ⊆ VS(L) of known volume:

{θ̃i ∼ Uniform(B) : i = 1, . . . , s}, Vol
(
VS(L′)

)
≈

1

Vol (B)
·
1

s

s∑
i=1

1

(
θ̃i ∈ VS(L′)

)
(31)

To check, 1(θi ∈ VS(L′)), check that fθ classifies all examples in L correctly.

� Otherwise (think CNN on ImageNet), can be extremely challenging – we cannot use VS!

56

Question: how to encode the version space?

■ If F is finite, can explicitly store f |= L. Bonus: computing expected volume is doable (integral becomes

sum).

■ If F is infinite, cannot store explicitly. However, we only need to compute its volume:

1

c

∑
y∈[c]

pθ(y | x) ·Vol (VS(L ∪ {(x, y)}))︸ ︷︷ ︸
this is the difficult bit

(30)

� If F is “simple” and/or L is small, volume can be approximated cheaply using Monte Carlo techniques.

For instance with rejection sampling, let B ⊆ VS(L) of known volume:

{θ̃i ∼ Uniform(B) : i = 1, . . . , s}, Vol
(
VS(L′)

)
≈

1

Vol (B)
·
1

s

s∑
i=1

1

(
θ̃i ∈ VS(L′)

)
(31)

To check, 1(θi ∈ VS(L′)), check that fθ classifies all examples in L correctly.

� Otherwise (think CNN on ImageNet), can be extremely challenging – we cannot use VS!

56

Question: how to encode the version space?

■ If F is finite, can explicitly store f |= L. Bonus: computing expected volume is doable (integral becomes

sum).

■ If F is infinite, cannot store explicitly. However, we only need to compute its volume:

1

c

∑
y∈[c]

pθ(y | x) ·Vol (VS(L ∪ {(x, y)}))︸ ︷︷ ︸
this is the difficult bit

(30)

� If F is “simple” and/or L is small, volume can be approximated cheaply using Monte Carlo techniques.

For instance with rejection sampling, let B ⊆ VS(L) of known volume:

{θ̃i ∼ Uniform(B) : i = 1, . . . , s}, Vol
(
VS(L′)

)
≈

1

Vol (B)
·
1

s

s∑
i=1

1

(
θ̃i ∈ VS(L′)

)
(31)

To check, 1(θi ∈ VS(L′)), check that fθ classifies all examples in L correctly.

� Otherwise (think CNN on ImageNet), can be extremely challenging – we cannot use VS!

56

Question: how to encode the version space?

■ If F is finite, can explicitly store f |= L. Bonus: computing expected volume is doable (integral becomes

sum).

■ If F is infinite, cannot store explicitly. However, we only need to compute its volume:

1

c

∑
y∈[c]

pθ(y | x) ·Vol (VS(L ∪ {(x, y)}))︸ ︷︷ ︸
this is the difficult bit

(30)

� If F is “simple” and/or L is small, volume can be approximated cheaply using Monte Carlo techniques.

For instance with rejection sampling, let B ⊆ VS(L) of known volume:

{θ̃i ∼ Uniform(B) : i = 1, . . . , s}, Vol
(
VS(L′)

)
≈

1

Vol (B)
·
1

s

s∑
i=1

1

(
θ̃i ∈ VS(L′)

)
(31)

To check, 1(θi ∈ VS(L′)), check that fθ classifies all examples in L correctly.

� Otherwise (think CNN on ImageNet), can be extremely challenging – we cannot use VS!

56

Question: how to encode the version space?

■ If F is finite, can explicitly store f |= L. Bonus: computing expected volume is doable (integral becomes

sum).

■ If F is infinite, cannot store explicitly. However, we only need to compute its volume:

1

c

∑
y∈[c]

pθ(y | x) ·Vol (VS(L ∪ {(x, y)}))︸ ︷︷ ︸
this is the difficult bit

(30)

� If F is “simple” and/or L is small, volume can be approximated cheaply using Monte Carlo techniques.

For instance with rejection sampling, let B ⊆ VS(L) of known volume:

{θ̃i ∼ Uniform(B) : i = 1, . . . , s}, Vol
(
VS(L′)

)
≈

1

Vol (B)
·
1

s

s∑
i=1

1

(
θ̃i ∈ VS(L′)

)
(31)

To check, 1(θi ∈ VS(L′)), check that fθ classifies all examples in L correctly.

� Otherwise (think CNN on ImageNet), can be extremely challenging – we cannot use VS!

56

Not All Classifiers in VS Think Exactly The Same

57

■ These approaches make two assumptions:

� Disagreement is measured using all hypotheses in the version space VS(L).

� Disagreement is binary: it is only 0 if all hypotheses fully agree on x ∈ U .

■ Let’s relax both of them → speed-up!

■ Moreover, version space is only non-empty in the realizable case. How do we deal with this?

58

■ These approaches make two assumptions:

� Disagreement is measured using all hypotheses in the version space VS(L).

� Disagreement is binary: it is only 0 if all hypotheses fully agree on x ∈ U .

■ Let’s relax both of them → speed-up!

■ Moreover, version space is only non-empty in the realizable case. How do we deal with this?

58

■ These approaches make two assumptions:

� Disagreement is measured using all hypotheses in the version space VS(L).

� Disagreement is binary: it is only 0 if all hypotheses fully agree on x ∈ U .

■ Let’s relax both of them → speed-up!

■ Moreover, version space is only non-empty in the realizable case. How do we deal with this?

58

■ These approaches make two assumptions:

� Disagreement is measured using all hypotheses in the version space VS(L).

� Disagreement is binary: it is only 0 if all hypotheses fully agree on x ∈ U .

■ Let’s relax both of them → speed-up!

■ Moreover, version space is only non-empty in the realizable case. How do we deal with this?

58

Query By Committee (QBC)

■ Idea: replace VS witha committee C:

� Select k representatives C = {c1, . . . , ck} from VS(L), with k > 100.

� Then (efficiently) aggregate disagreement between them: no volume/integral is needed!

■ How to generate the committee C? Some alternatives:

� Uniform: Pick each cj uniformly at random from VS(L). Very uninformed choice.

� Bagging: sample k subsets of L, train one classifier cj on each.

� Boosting: randomly reweight L, sequentially train k classifiers by repeatedly reweighting examples by mis-

takes made by previous classifier.

In all cases, we end up having a set of classifiers that fit the data – assuming their accuracy is 100% – so they

are all in the VS. In practice, less than perfect accuracy is allowed: members are “almost” in VS.

59

Query By Committee (QBC)

■ Idea: replace VS witha committee C:

� Select k representatives C = {c1, . . . , ck} from VS(L), with k > 100.

� Then (efficiently) aggregate disagreement between them: no volume/integral is needed!

■ How to generate the committee C? Some alternatives:

� Uniform: Pick each cj uniformly at random from VS(L). Very uninformed choice.

� Bagging: sample k subsets of L, train one classifier cj on each.

� Boosting: randomly reweight L, sequentially train k classifiers by repeatedly reweighting examples by mis-

takes made by previous classifier.

In all cases, we end up having a set of classifiers that fit the data – assuming their accuracy is 100% – so they

are all in the VS. In practice, less than perfect accuracy is allowed: members are “almost” in VS.

59

Query By Committee (QBC)

■ Idea: replace VS witha committee C:

� Select k representatives C = {c1, . . . , ck} from VS(L), with k > 100.

� Then (efficiently) aggregate disagreement between them: no volume/integral is needed!

■ How to generate the committee C? Some alternatives:

� Uniform: Pick each cj uniformly at random from VS(L). Very uninformed choice.

� Bagging: sample k subsets of L, train one classifier cj on each.

� Boosting: randomly reweight L, sequentially train k classifiers by repeatedly reweighting examples by mis-

takes made by previous classifier.

In all cases, we end up having a set of classifiers that fit the data – assuming their accuracy is 100% – so they

are all in the VS. In practice, less than perfect accuracy is allowed: members are “almost” in VS.

59

Query By Committee (QBC)

■ Idea: replace VS witha committee C:

� Select k representatives C = {c1, . . . , ck} from VS(L), with k > 100.

� Then (efficiently) aggregate disagreement between them: no volume/integral is needed!

■ How to generate the committee C? Some alternatives:

� Uniform: Pick each cj uniformly at random from VS(L). Very uninformed choice.

� Bagging: sample k subsets of L, train one classifier cj on each.

� Boosting: randomly reweight L, sequentially train k classifiers by repeatedly reweighting examples by mis-

takes made by previous classifier.

In all cases, we end up having a set of classifiers that fit the data – assuming their accuracy is 100% – so they

are all in the VS. In practice, less than perfect accuracy is allowed: members are “almost” in VS.

59

Query By Committee (QBC)

■ Idea: replace VS witha committee C:

� Select k representatives C = {c1, . . . , ck} from VS(L), with k > 100.

� Then (efficiently) aggregate disagreement between them: no volume/integral is needed!

■ How to generate the committee C? Some alternatives:

� Uniform: Pick each cj uniformly at random from VS(L). Very uninformed choice.

� Bagging: sample k subsets of L, train one classifier cj on each.

� Boosting: randomly reweight L, sequentially train k classifiers by repeatedly reweighting examples by mis-

takes made by previous classifier.

In all cases, we end up having a set of classifiers that fit the data – assuming their accuracy is 100% – so they

are all in the VS.

In practice, less than perfect accuracy is allowed: members are “almost” in VS.

59

Query By Committee (QBC)

■ Idea: replace VS witha committee C:

� Select k representatives C = {c1, . . . , ck} from VS(L), with k > 100.

� Then (efficiently) aggregate disagreement between them: no volume/integral is needed!

■ How to generate the committee C? Some alternatives:

� Uniform: Pick each cj uniformly at random from VS(L). Very uninformed choice.

� Bagging: sample k subsets of L, train one classifier cj on each.

� Boosting: randomly reweight L, sequentially train k classifiers by repeatedly reweighting examples by mis-

takes made by previous classifier.

In all cases, we end up having a set of classifiers that fit the data – assuming their accuracy is 100% – so they

are all in the VS. In practice, less than perfect accuracy is allowed: members are “almost” in VS.

59

Measuring Disagreement of C on x ∈ U

■ “Hard” Voting + Entropy:

argmax
x∈U

−
∑
y

n(y , x)

k
log

n(y , x)

k
, n(y , x) :=

∑
c∈C

1(c(x) = y) (32)

Each classifier votes either 0 or 1.

■ “Soft” Voting + Entropy:

argmax
x∈U

−
∑
y

pC(y | x) log pC(y | x), pC(y | x) :=
1

k

∑
c∈C

pc (y | x) (33)

Output probabilities of each c ∈ C taken into account.

■ Average Kullback-Liebler divergence:

argmax
x∈U

1

k

∑
c∈C

KL(pc (Y | x)∥pC(Y | x)) (34)

KL(p(Y | x)∥q(Y | x)) :=
∑
y

p(y | x) log
p(y | x)
q(y | x)

(35)

Very expressive, measures difference between whole distributions, i.e., prob. of all possible labels.

60

Measuring Disagreement of C on x ∈ U

■ “Hard” Voting + Entropy:

argmax
x∈U

−
∑
y

n(y , x)

k
log

n(y , x)

k
, n(y , x) :=

∑
c∈C

1(c(x) = y) (32)

Each classifier votes either 0 or 1.

■ “Soft” Voting + Entropy:

argmax
x∈U

−
∑
y

pC(y | x) log pC(y | x), pC(y | x) :=
1

k

∑
c∈C

pc (y | x) (33)

Output probabilities of each c ∈ C taken into account.

■ Average Kullback-Liebler divergence:

argmax
x∈U

1

k

∑
c∈C

KL(pc (Y | x)∥pC(Y | x)) (34)

KL(p(Y | x)∥q(Y | x)) :=
∑
y

p(y | x) log
p(y | x)
q(y | x)

(35)

Very expressive, measures difference between whole distributions, i.e., prob. of all possible labels.

60

Measuring Disagreement of C on x ∈ U

■ “Hard” Voting + Entropy:

argmax
x∈U

−
∑
y

n(y , x)

k
log

n(y , x)

k
, n(y , x) :=

∑
c∈C

1(c(x) = y) (32)

Each classifier votes either 0 or 1.

■ “Soft” Voting + Entropy:

argmax
x∈U

−
∑
y

pC(y | x) log pC(y | x), pC(y | x) :=
1

k

∑
c∈C

pc (y | x) (33)

Output probabilities of each c ∈ C taken into account.

■ Average Kullback-Liebler divergence:

argmax
x∈U

1

k

∑
c∈C

KL(pc (Y | x)∥pC(Y | x)) (34)

KL(p(Y | x)∥q(Y | x)) :=
∑
y

p(y | x) log
p(y | x)
q(y | x)

(35)

Very expressive, measures difference between whole distributions, i.e., prob. of all possible labels.

60

Model Improvement

Idea: pick the point that gives the maximal improvement in model quality

Useful Concepts

The loss of pθ on example z = (x, y) is denoted ℓ(θ, z). For instance, cross-entropy loss:

ℓ(θ, z) := −
∑

j 1(j = y) log pθ(j | x) = − log pθ(y | x) (36)

The true risk L∗ of θ w.r.t. the ground-truth distribution p∗(X,Y) is:

L∗(θ) := Ez∼p∗ [ℓ(θ, z)] (37)

It measures the true quality of the model, unobserved.

The empirical risk L̂S of θ w.r.t. data set S = {z1, . . . , zm} sampled i.i.d. from p∗ is:

L̂S (θ) :=
1

|S |
∑
z∈S

ℓ(θ, z) (38)

It estimates the quality of the model from a sample S , optimized during training.

61

Model Improvement

Idea: pick the point that gives the maximal improvement in model quality

Useful Concepts

The loss of pθ on example z = (x, y) is denoted ℓ(θ, z). For instance, cross-entropy loss:

ℓ(θ, z) := −
∑

j 1(j = y) log pθ(j | x) = − log pθ(y | x) (36)

The true risk L∗ of θ w.r.t. the ground-truth distribution p∗(X,Y) is:

L∗(θ) := Ez∼p∗ [ℓ(θ, z)] (37)

It measures the true quality of the model, unobserved.

The empirical risk L̂S of θ w.r.t. data set S = {z1, . . . , zm} sampled i.i.d. from p∗ is:

L̂S (θ) :=
1

|S |
∑
z∈S

ℓ(θ, z) (38)

It estimates the quality of the model from a sample S , optimized during training.

61

Model Improvement

Idea: pick the point that gives the maximal improvement in model quality

Useful Concepts

The loss of pθ on example z = (x, y) is denoted ℓ(θ, z). For instance, cross-entropy loss:

ℓ(θ, z) := −
∑

j 1(j = y) log pθ(j | x) = − log pθ(y | x) (36)

The true risk L∗ of θ w.r.t. the ground-truth distribution p∗(X,Y) is:

L∗(θ) := Ez∼p∗ [ℓ(θ, z)] (37)

It measures the true quality of the model, unobserved.

The empirical risk L̂S of θ w.r.t. data set S = {z1, . . . , zm} sampled i.i.d. from p∗ is:

L̂S (θ) :=
1

|S |
∑
z∈S

ℓ(θ, z) (38)

It estimates the quality of the model from a sample S , optimized during training.

61

Model Improvement

Idea: pick the point that gives the maximal improvement in model quality

Useful Concepts

The loss of pθ on example z = (x, y) is denoted ℓ(θ, z). For instance, cross-entropy loss:

ℓ(θ, z) := −
∑

j 1(j = y) log pθ(j | x) = − log pθ(y | x) (36)

The true risk L∗ of θ w.r.t. the ground-truth distribution p∗(X,Y) is:

L∗(θ) := Ez∼p∗ [ℓ(θ, z)] (37)

It measures the true quality of the model, unobserved.

The empirical risk L̂S of θ w.r.t. data set S = {z1, . . . , zm} sampled i.i.d. from p∗ is:

L̂S (θ) :=
1

|S |
∑
z∈S

ℓ(θ, z) (38)

It estimates the quality of the model from a sample S , optimized during training.

61

Model Improvement

Let θ̂ be the parameters obtained by training on S and θ̂+z those obtained by training on S ∪ {z}, i.e.,

θ̂ := argmin
θ

L̂S (θ) θ̂+z := argmin
θ

L̂S∪{z}(θ) (39)

where optimization is possibly approximate, e.g., based on SGD.

Model Improvement

The model improvement (MI) given by a new example z ̸∈ S is the decrease in true risk:

acq(x) := L∗(θ̂)− L∗(θ̂+z) (40)

The higher, the better −→ pick the x ∈ U that maximizes the improvement.

62

Model Improvement

Let θ̂ be the parameters obtained by training on S and θ̂+z those obtained by training on S ∪ {z}, i.e.,

θ̂ := argmin
θ

L̂S (θ) θ̂+z := argmin
θ

L̂S∪{z}(θ) (39)

where optimization is possibly approximate, e.g., based on SGD.

Model Improvement

The model improvement (MI) given by a new example z ̸∈ S is the decrease in true risk:

acq(x) := L∗(θ̂)− L∗(θ̂+z) (40)

The higher, the better −→ pick the x ∈ U that maximizes the improvement.

62

Model Improvement as Greedy Optimization

■ MI amounts to solving:

argmax
x∈U

L∗(θ̂)− L∗(θ̂+z) = argmin
x∈U

L∗(θ̂+z) (41)

It is guaranteed to find the best next candidate!

■ MI is essentially a greedy strategy for solving:4

argmin
S⊆U

L∗(θ̂) (42)

s.t. |S| ≤ query budget (43)

In this view, AL is a subset optimization problem, and MI solves it directly.

■ Compare this to uncertainty sampling, which is not as sound

4Note: MI is greedy, not optimal! Non-greedy alternatives are conceptually better, but they also computationally infeasible and for this reason they

are ignored in the AL literature.

63

Model Improvement as Greedy Optimization

■ MI amounts to solving:

argmax
x∈U

L∗(θ̂)− L∗(θ̂+z) = argmin
x∈U

L∗(θ̂+z) (41)

It is guaranteed to find the best next candidate!

■ MI is essentially a greedy strategy for solving:4

argmin
S⊆U

L∗(θ̂) (42)

s.t. |S| ≤ query budget (43)

In this view, AL is a subset optimization problem, and MI solves it directly.

■ Compare this to uncertainty sampling, which is not as sound

4Note: MI is greedy, not optimal! Non-greedy alternatives are conceptually better, but they also computationally infeasible and for this reason they

are ignored in the AL literature.

63

Model Improvement as Greedy Optimization

■ MI amounts to solving:

argmax
x∈U

L∗(θ̂)− L∗(θ̂+z) = argmin
x∈U

L∗(θ̂+z) (41)

It is guaranteed to find the best next candidate!

■ MI is essentially a greedy strategy for solving:4

argmin
S⊆U

L∗(θ̂) (42)

s.t. |S| ≤ query budget (43)

In this view, AL is a subset optimization problem, and MI solves it directly.

■ Compare this to uncertainty sampling, which is not as sound

4Note: MI is greedy, not optimal! Non-greedy alternatives are conceptually better, but they also computationally infeasible and for this reason they

are ignored in the AL literature.

63

■ We want to solve:

argmin
x∈U

L∗(θ̂+z) (44)

Problem: L∗(·) is an integral over x′ ∈ Rd :

L∗(θ̂+z) = Ez′∼p∗ [ℓ(θ̂
+z , z ′)] =

∫
Rd

ℓ(θ̂+z , (x′, y ′))dx′ (45)

which is intractable → approximate using empirical average over U :5

L∗(θ̂+z) ≈ L̂U (θ̂+z) =
1

|U|
∑
x′∈U

ℓ(θ̂+z , (x′, y ′)) (46)

Example: if ℓ is the 0–1 loss, then this amounts to:

1

|U|
∑
x′∈U

1
(
f
θ̂+z (x

′) ̸= y ′) (47)

5The unlabeled set U is ideally pretty large, so the approximation is reasonable.

64

■ We want to solve:

argmin
x∈U

L∗(θ̂+z) (44)

Problem: L∗(·) is an integral over x′ ∈ Rd :

L∗(θ̂+z) = Ez′∼p∗ [ℓ(θ̂
+z , z ′)] =

∫
Rd

ℓ(θ̂+z , (x′, y ′))dx′ (45)

which is intractable

→ approximate using empirical average over U :5

L∗(θ̂+z) ≈ L̂U (θ̂+z) =
1

|U|
∑
x′∈U

ℓ(θ̂+z , (x′, y ′)) (46)

Example: if ℓ is the 0–1 loss, then this amounts to:

1

|U|
∑
x′∈U

1
(
f
θ̂+z (x

′) ̸= y ′) (47)

5The unlabeled set U is ideally pretty large, so the approximation is reasonable.

64

■ We want to solve:

argmin
x∈U

L∗(θ̂+z) (44)

Problem: L∗(·) is an integral over x′ ∈ Rd :

L∗(θ̂+z) = Ez′∼p∗ [ℓ(θ̂
+z , z ′)] =

∫
Rd

ℓ(θ̂+z , (x′, y ′))dx′ (45)

which is intractable → approximate using empirical average over U :5

L∗(θ̂+z) ≈ L̂U (θ̂+z) =
1

|U|
∑
x′∈U

ℓ(θ̂+z , (x′, y ′)) (46)

Example: if ℓ is the 0–1 loss, then this amounts to:

1

|U|
∑
x′∈U

1
(
f
θ̂+z (x

′) ̸= y ′) (47)

5The unlabeled set U is ideally pretty large, so the approximation is reasonable.

64

■ We want to solve:

argmin
x∈U

L∗(θ̂+z) (44)

Problem: L∗(·) is an integral over x′ ∈ Rd :

L∗(θ̂+z) = Ez′∼p∗ [ℓ(θ̂
+z , z ′)] =

∫
Rd

ℓ(θ̂+z , (x′, y ′))dx′ (45)

which is intractable → approximate using empirical average over U :5

L∗(θ̂+z) ≈ L̂U (θ̂+z) =
1

|U|
∑
x′∈U

ℓ(θ̂+z , (x′, y ′)) (46)

Example: if ℓ is the 0–1 loss, then this amounts to:

1

|U|
∑
x′∈U

1
(
f
θ̂+z (x

′) ̸= y ′) (47)

5The unlabeled set U is ideally pretty large, so the approximation is reasonable.

64

■ We already decided on this approximation:

L∗(θ̂+z) −→ L̂U (θ̂+z) =
1

|U|
∑
x′∈U

ℓ(θ̂+z , (x′, y ′)) (48)

Problem: we don’t have access to the ground-truth label z = (x, y) → marginalize w.r.t. p∗:

Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

ℓ(θ̂+(x,y), (x′, y ′))

 (49)

This averages over alternative future models θ̂+(x,y) obtained after retraining on L ∪ (x, y).

Problem: we don’t have access to the ground-truth label y ′ either → marginalize w.r.t. p∗:

Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

Ey′∼p∗(Y |x′)

[
ℓ(θ̂+(x,y), (x′, y ′))

] (50)

This averages over the unknown labels y ′ of the instances in x′ ∈ U .

65

■ We already decided on this approximation:

L∗(θ̂+z) −→ L̂U (θ̂+z) =
1

|U|
∑
x′∈U

ℓ(θ̂+z , (x′, y ′)) (48)

Problem: we don’t have access to the ground-truth label z = (x, y)

→ marginalize w.r.t. p∗:

Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

ℓ(θ̂+(x,y), (x′, y ′))

 (49)

This averages over alternative future models θ̂+(x,y) obtained after retraining on L ∪ (x, y).

Problem: we don’t have access to the ground-truth label y ′ either → marginalize w.r.t. p∗:

Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

Ey′∼p∗(Y |x′)

[
ℓ(θ̂+(x,y), (x′, y ′))

] (50)

This averages over the unknown labels y ′ of the instances in x′ ∈ U .

65

■ We already decided on this approximation:

L∗(θ̂+z) −→ L̂U (θ̂+z) =
1

|U|
∑
x′∈U

ℓ(θ̂+z , (x′, y ′)) (48)

Problem: we don’t have access to the ground-truth label z = (x, y) → marginalize w.r.t. p∗:

Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

ℓ(θ̂+(x,y), (x′, y ′))

 (49)

This averages over alternative future models θ̂+(x,y) obtained after retraining on L ∪ (x, y).

Problem: we don’t have access to the ground-truth label y ′ either → marginalize w.r.t. p∗:

Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

Ey′∼p∗(Y |x′)

[
ℓ(θ̂+(x,y), (x′, y ′))

] (50)

This averages over the unknown labels y ′ of the instances in x′ ∈ U .

65

■ We already decided on this approximation:

L∗(θ̂+z) −→ L̂U (θ̂+z) =
1

|U|
∑
x′∈U

ℓ(θ̂+z , (x′, y ′)) (48)

Problem: we don’t have access to the ground-truth label z = (x, y) → marginalize w.r.t. p∗:

Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

ℓ(θ̂+(x,y), (x′, y ′))

 (49)

This averages over alternative future models θ̂+(x,y) obtained after retraining on L ∪ (x, y).

Problem: we don’t have access to the ground-truth label y ′ either

→ marginalize w.r.t. p∗:

Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

Ey′∼p∗(Y |x′)

[
ℓ(θ̂+(x,y), (x′, y ′))

] (50)

This averages over the unknown labels y ′ of the instances in x′ ∈ U .

65

■ We already decided on this approximation:

L∗(θ̂+z) −→ L̂U (θ̂+z) =
1

|U|
∑
x′∈U

ℓ(θ̂+z , (x′, y ′)) (48)

Problem: we don’t have access to the ground-truth label z = (x, y) → marginalize w.r.t. p∗:

Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

ℓ(θ̂+(x,y), (x′, y ′))

 (49)

This averages over alternative future models θ̂+(x,y) obtained after retraining on L ∪ (x, y).

Problem: we don’t have access to the ground-truth label y ′ either → marginalize w.r.t. p∗:

Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

Ey′∼p∗(Y |x′)

[
ℓ(θ̂+(x,y), (x′, y ′))

] (50)

This averages over the unknown labels y ′ of the instances in x′ ∈ U .

65

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

Ey′∼p∗(Y |x′)

[
ℓ(θ̂+(x,y), (x′, y ′))

] (51)

Problem: we don’t have access to p∗ at all → estimate using model’s distribution:

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]
︸ ︷︷ ︸

(a)︸ ︷︷ ︸
(b)

]

︸ ︷︷ ︸
(c)

(52)

where θ̂+ := θ̂+(x,y). If pθ is “good enough”, then the approximation is good.

(a) Is the expected loss of the updated model on x′ ∈ U ,

(b) Is the average expected oss of the updated model on all of U ,

(c) Is the above averaged over the possible updated models θ̂+(x,y).

66

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

Ey′∼p∗(Y |x′)

[
ℓ(θ̂+(x,y), (x′, y ′))

] (51)

Problem: we don’t have access to p∗ at all

→ estimate using model’s distribution:

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]
︸ ︷︷ ︸

(a)︸ ︷︷ ︸
(b)

]

︸ ︷︷ ︸
(c)

(52)

where θ̂+ := θ̂+(x,y). If pθ is “good enough”, then the approximation is good.

(a) Is the expected loss of the updated model on x′ ∈ U ,

(b) Is the average expected oss of the updated model on all of U ,

(c) Is the above averaged over the possible updated models θ̂+(x,y).

66

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

Ey′∼p∗(Y |x′)

[
ℓ(θ̂+(x,y), (x′, y ′))

] (51)

Problem: we don’t have access to p∗ at all → estimate using model’s distribution:

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]
︸ ︷︷ ︸

(a)︸ ︷︷ ︸
(b)

]

︸ ︷︷ ︸
(c)

(52)

where θ̂+ := θ̂+(x,y). If pθ is “good enough”, then the approximation is good.

(a) Is the expected loss of the updated model on x′ ∈ U ,

(b) Is the average expected oss of the updated model on all of U ,

(c) Is the above averaged over the possible updated models θ̂+(x,y).

66

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

Ey′∼p∗(Y |x′)

[
ℓ(θ̂+(x,y), (x′, y ′))

] (51)

Problem: we don’t have access to p∗ at all → estimate using model’s distribution:

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]
︸ ︷︷ ︸

(a)︸ ︷︷ ︸
(b)

]

︸ ︷︷ ︸
(c)

(52)

where θ̂+ := θ̂+(x,y). If pθ is “good enough”, then the approximation is good.

(a) Is the expected loss of the updated model on x′ ∈ U ,

(b) Is the average expected oss of the updated model on all of U ,

(c) Is the above averaged over the possible updated models θ̂+(x,y).

66

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

Ey′∼p∗(Y |x′)

[
ℓ(θ̂+(x,y), (x′, y ′))

] (51)

Problem: we don’t have access to p∗ at all → estimate using model’s distribution:

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]
︸ ︷︷ ︸

(a)︸ ︷︷ ︸
(b)

]

︸ ︷︷ ︸
(c)

(52)

where θ̂+ := θ̂+(x,y). If pθ is “good enough”, then the approximation is good.

(a) Is the expected loss of the updated model on x′ ∈ U ,

(b) Is the average expected oss of the updated model on all of U ,

(c) Is the above averaged over the possible updated models θ̂+(x,y).

66

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p∗(Y |x)

 1

|U|
∑
x′∈U

Ey′∼p∗(Y |x′)

[
ℓ(θ̂+(x,y), (x′, y ′))

] (51)

Problem: we don’t have access to p∗ at all → estimate using model’s distribution:

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]
︸ ︷︷ ︸

(a)︸ ︷︷ ︸
(b)

]

︸ ︷︷ ︸
(c)

(52)

where θ̂+ := θ̂+(x,y). If pθ is “good enough”, then the approximation is good.

(a) Is the expected loss of the updated model on x′ ∈ U ,

(b) Is the average expected oss of the updated model on all of U ,

(c) Is the above averaged over the possible updated models θ̂+(x,y).

66

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(53)

Example: consider the 0–1 loss ℓ(θ, (x, y)) = 1(fθ(x) ̸= y). Then:

Ey′∼p
θ̂+

(Y |x′)
[
1
(
f
θ̂+

(x′) ̸= y ′)] = p
θ̂+

(ŷ ′ ̸= y ′ | x′), ŷ ′ := f
θ̂+

(x′) (54)

= 1− p
θ̂+

(ŷ ′ | x′) (55)

Hence, the above can be rewritten as (1
|U| doesn’t matter because it is independent of x):

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

(
1− p

θ̂+
(ŷ ′ | x′)

)]
∝

∑
y∈[c]

p
θ̂
(y | x)

∑
x′∈U

(
1− p

θ̂+
(ŷ ′ | x′)

)
(56)

■ We pick x ∈ U that minimizes the above → minimizes expected future confidence on U

67

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(53)

Example: consider the 0–1 loss ℓ(θ, (x, y)) = 1(fθ(x) ̸= y).

Then:

Ey′∼p
θ̂+

(Y |x′)
[
1
(
f
θ̂+

(x′) ̸= y ′)] = p
θ̂+

(ŷ ′ ̸= y ′ | x′), ŷ ′ := f
θ̂+

(x′) (54)

= 1− p
θ̂+

(ŷ ′ | x′) (55)

Hence, the above can be rewritten as (1
|U| doesn’t matter because it is independent of x):

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

(
1− p

θ̂+
(ŷ ′ | x′)

)]
∝

∑
y∈[c]

p
θ̂
(y | x)

∑
x′∈U

(
1− p

θ̂+
(ŷ ′ | x′)

)
(56)

■ We pick x ∈ U that minimizes the above → minimizes expected future confidence on U

67

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(53)

Example: consider the 0–1 loss ℓ(θ, (x, y)) = 1(fθ(x) ̸= y). Then:

Ey′∼p
θ̂+

(Y |x′)
[
1
(
f
θ̂+

(x′) ̸= y ′)] = p
θ̂+

(ŷ ′ ̸= y ′ | x′), ŷ ′ := f
θ̂+

(x′) (54)

= 1− p
θ̂+

(ŷ ′ | x′) (55)

Hence, the above can be rewritten as (1
|U| doesn’t matter because it is independent of x):

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

(
1− p

θ̂+
(ŷ ′ | x′)

)]
∝

∑
y∈[c]

p
θ̂
(y | x)

∑
x′∈U

(
1− p

θ̂+
(ŷ ′ | x′)

)
(56)

■ We pick x ∈ U that minimizes the above → minimizes expected future confidence on U

67

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(53)

Example: consider the 0–1 loss ℓ(θ, (x, y)) = 1(fθ(x) ̸= y). Then:

Ey′∼p
θ̂+

(Y |x′)
[
1
(
f
θ̂+

(x′) ̸= y ′)] = p
θ̂+

(ŷ ′ ̸= y ′ | x′), ŷ ′ := f
θ̂+

(x′) (54)

= 1− p
θ̂+

(ŷ ′ | x′) (55)

Hence, the above can be rewritten as (1
|U| doesn’t matter because it is independent of x):

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

(
1− p

θ̂+
(ŷ ′ | x′)

)]
∝

∑
y∈[c]

p
θ̂
(y | x)

∑
x′∈U

(
1− p

θ̂+
(ŷ ′ | x′)

)
(56)

■ We pick x ∈ U that minimizes the above → minimizes expected future confidence on U

67

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(53)

Example: consider the 0–1 loss ℓ(θ, (x, y)) = 1(fθ(x) ̸= y). Then:

Ey′∼p
θ̂+

(Y |x′)
[
1
(
f
θ̂+

(x′) ̸= y ′)] = p
θ̂+

(ŷ ′ ̸= y ′ | x′), ŷ ′ := f
θ̂+

(x′) (54)

= 1− p
θ̂+

(ŷ ′ | x′) (55)

Hence, the above can be rewritten as (1
|U| doesn’t matter because it is independent of x):

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

(
1− p

θ̂+
(ŷ ′ | x′)

)]
∝

∑
y∈[c]

p
θ̂
(y | x)

∑
x′∈U

(
1− p

θ̂+
(ŷ ′ | x′)

)
(56)

■ We pick x ∈ U that minimizes the above → minimizes expected future confidence on U

67

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(57)

Example: consider the negative log-likelihood ℓ(θ, (x, y)) = − log pθ(y | x). Then:

Ey′∼p
θ̂+

(Y |x′)
[
− log p

θ̂+
(y ′ | x′)

]
= −

∑
y′∈[c] pθ̂+ (y

′ | x′) log p
θ̂+

(y ′ | x′) (58)

= H
θ̂+

(Y | x) (59)

Hence, the above can be rewritten as:

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

(
H

θ̂+
(Y | x)

)]
∝

∑
y∈[c]

p
θ̂
(y | x)

∑
x′∈U

(
H
θ̂+

(Y | x)
)

(60)

■ We pick x ∈ U that minimizes the above → minimizes expected future entropy on U

68

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(57)

Example: consider the negative log-likelihood ℓ(θ, (x, y)) = − log pθ(y | x).

Then:

Ey′∼p
θ̂+

(Y |x′)
[
− log p

θ̂+
(y ′ | x′)

]
= −

∑
y′∈[c] pθ̂+ (y

′ | x′) log p
θ̂+

(y ′ | x′) (58)

= H
θ̂+

(Y | x) (59)

Hence, the above can be rewritten as:

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

(
H

θ̂+
(Y | x)

)]
∝

∑
y∈[c]

p
θ̂
(y | x)

∑
x′∈U

(
H
θ̂+

(Y | x)
)

(60)

■ We pick x ∈ U that minimizes the above → minimizes expected future entropy on U

68

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(57)

Example: consider the negative log-likelihood ℓ(θ, (x, y)) = − log pθ(y | x). Then:

Ey′∼p
θ̂+

(Y |x′)
[
− log p

θ̂+
(y ′ | x′)

]
= −

∑
y′∈[c] pθ̂+ (y

′ | x′) log p
θ̂+

(y ′ | x′) (58)

= H
θ̂+

(Y | x) (59)

Hence, the above can be rewritten as:

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

(
H

θ̂+
(Y | x)

)]
∝

∑
y∈[c]

p
θ̂
(y | x)

∑
x′∈U

(
H
θ̂+

(Y | x)
)

(60)

■ We pick x ∈ U that minimizes the above → minimizes expected future entropy on U

68

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(57)

Example: consider the negative log-likelihood ℓ(θ, (x, y)) = − log pθ(y | x). Then:

Ey′∼p
θ̂+

(Y |x′)
[
− log p

θ̂+
(y ′ | x′)

]
= −

∑
y′∈[c] pθ̂+ (y

′ | x′) log p
θ̂+

(y ′ | x′) (58)

= H
θ̂+

(Y | x) (59)

Hence, the above can be rewritten as:

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

(
H
θ̂+

(Y | x)
)]

∝
∑
y∈[c]

p
θ̂
(y | x)

∑
x′∈U

(
H
θ̂+

(Y | x)
)

(60)

■ We pick x ∈ U that minimizes the above → minimizes expected future entropy on U

68

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(57)

Example: consider the negative log-likelihood ℓ(θ, (x, y)) = − log pθ(y | x). Then:

Ey′∼p
θ̂+

(Y |x′)
[
− log p

θ̂+
(y ′ | x′)

]
= −

∑
y′∈[c] pθ̂+ (y

′ | x′) log p
θ̂+

(y ′ | x′) (58)

= H
θ̂+

(Y | x) (59)

Hence, the above can be rewritten as:

Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

(
H
θ̂+

(Y | x)
)]

∝
∑
y∈[c]

p
θ̂
(y | x)

∑
x′∈U

(
H
θ̂+

(Y | x)
)

(60)

■ We pick x ∈ U that minimizes the above → minimizes expected future entropy on U

68

■ In uncertainty sampling, we pick x that minimizes model’s estimate of current uncertainty w.r.t. itself, this is

myopic

■ In expected model improvement, we pick x that minimizes model’s estimate of expected future uncertainty

w.r.t. unlabeled set, this is less myopic

69

70

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(61)

Problem: computing θ̂+ requires to fit model on L ∪ {(x, y)} (slow)

Problem: this has to be done |U| × [c] times.

Problem: this has to be done in each iteration of active learning.

■ Only practical for classes of models that support closed-form updates (e.g., Gaussian Processes) or stable

incremental learning (e.g., perceptron-like learning algorithms).

71

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(61)

Problem: computing θ̂+ requires to fit model on L ∪ {(x, y)} (slow)

Problem: this has to be done |U| × [c] times.

Problem: this has to be done in each iteration of active learning.

■ Only practical for classes of models that support closed-form updates (e.g., Gaussian Processes) or stable

incremental learning (e.g., perceptron-like learning algorithms).

71

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(61)

Problem: computing θ̂+ requires to fit model on L ∪ {(x, y)} (slow)

Problem: this has to be done |U| × [c] times.

Problem: this has to be done in each iteration of active learning.

■ Only practical for classes of models that support closed-form updates (e.g., Gaussian Processes) or stable

incremental learning (e.g., perceptron-like learning algorithms).

71

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(61)

Problem: computing θ̂+ requires to fit model on L ∪ {(x, y)} (slow)

Problem: this has to be done |U| × [c] times.

Problem: this has to be done in each iteration of active learning.

■ Only practical for classes of models that support closed-form updates (e.g., Gaussian Processes) or stable

incremental learning (e.g., perceptron-like learning algorithms).

71

■ We already decided on this approximation:

L∗(θ̂+z) −→ Ey∼p
θ̂
(Y |x)

[1

|U|
∑
x′∈U

Ey′∼p
θ̂+

(Y |x′)

[
ℓ(θ̂+, (x′, y ′))

]]
(61)

Problem: computing θ̂+ requires to fit model on L ∪ {(x, y)} (slow)

Problem: this has to be done |U| × [c] times.

Problem: this has to be done in each iteration of active learning.

■ Only practical for classes of models that support closed-form updates (e.g., Gaussian Processes) or stable

incremental learning (e.g., perceptron-like learning algorithms).

71

Expected Model Change

■ Unless a candidate (x, y) induces a large change in the model θ̂ upon retraining, then it cannot reduce the

model’s risk by much: change is a prerequisite for improvement.

Inituition:

ℓ(θ̂, z ′)− ℓ(θ̂+z , z ′) ≤ |ℓ(θ̂, z ′)− ℓ(θ̂+z , z ′)| ≤ c · ∥θ̂ − θ̂+z∥, c > 0 (62)

where ∥·∥ is, e.g., the Euclidean norm. This formally holds for all c-Lipshitz loss functions ℓ.

■ Large change also occurs when the loss increases – hence the absolute value in the second step of Eq. 62.

All in all, EMC looks for examples x ∈ U that “make a difference” one way or the other.

But once (x, y) is acquired it is added to the training set L on which θ̂ is fit, so loss is likely to go down rather

than up.

72

Expected Model Change

■ Unless a candidate (x, y) induces a large change in the model θ̂ upon retraining, then it cannot reduce the

model’s risk by much: change is a prerequisite for improvement.

Inituition:

ℓ(θ̂, z ′)− ℓ(θ̂+z , z ′) ≤ |ℓ(θ̂, z ′)− ℓ(θ̂+z , z ′)| ≤ c · ∥θ̂ − θ̂+z∥, c > 0 (62)

where ∥·∥ is, e.g., the Euclidean norm. This formally holds for all c-Lipshitz loss functions ℓ.

■ Large change also occurs when the loss increases – hence the absolute value in the second step of Eq. 62.

All in all, EMC looks for examples x ∈ U that “make a difference” one way or the other.

But once (x, y) is acquired it is added to the training set L on which θ̂ is fit, so loss is likely to go down rather

than up.

72

Expected Model Change

■ Unless a candidate (x, y) induces a large change in the model θ̂ upon retraining, then it cannot reduce the

model’s risk by much: change is a prerequisite for improvement.

Inituition:

ℓ(θ̂, z ′)− ℓ(θ̂+z , z ′) ≤ |ℓ(θ̂, z ′)− ℓ(θ̂+z , z ′)| ≤ c · ∥θ̂ − θ̂+z∥, c > 0 (62)

where ∥·∥ is, e.g., the Euclidean norm. This formally holds for all c-Lipshitz loss functions ℓ.

■ Large change also occurs when the loss increases – hence the absolute value in the second step of Eq. 62.

All in all, EMC looks for examples x ∈ U that “make a difference” one way or the other.

But once (x, y) is acquired it is added to the training set L on which θ̂ is fit, so loss is likely to go down rather

than up.

72

Expected Model Change

■ The trick is that if θ̂ is obtained via gradient descent, the difference θ̂ − θ̂+z is easy to compute:

θ̂ − θ̂+z = η · ∇θℓ(θ, z) (63)

where η is the learning rate. This gives expected gradient length:

acqEGL(x) := Ey∼pθ(Y |x)

[
∥∇θℓ(θ̂, (x, y))∥2

]
(64)

The square does not change ranking of examples & avoids computing a square root.

� Quite cheap to compute using automatic differentiation packages (using Jacobian to parallelize over U)

� Assuming η is constant across examples and GD, the computation is exact. For other optimizers, it is an

approximation

73

Are Uncertain Points Representative?

74

Diversity-based Selection

Idea: pick instances x ∈ U that are both locally informative and also similar to as many other unlabeled points

as possible:

argmax
x∈U

acq(f , x) ·

 1

|U|
∑
x′∈U

sim(x, x′)

β

(65)

where:

� acq(f , x) is a “standard” acquisition function based on, e.g., pointwise uncertainty.

� sim(x, x′) measures the similarity between x and x′, e.g., a Gaussian kernel, Pearson’s correlation coeffi-

cient, Spearman’s rank correlation. Application specific.

� β > 0 is a hyper-parameter

Intuitively, x’s label conveys information about the label on the other points in U

75

Example

76

■ We optimize:

argmax
x∈U

acq(f , x) ·

 1

|U|
∑
x′∈U

sim(x, x′)

β

(66)

Properties:

� Tends to work better than pure more “local” acquisition functions (Settles, 2012)

� Even when uncertainty sampling is worse than random, information density performs well

� Similarity computation can be sped-up using caching: “simply” store similarity matrix Sij = [sim(xi , xj)]

for all xi , xj ∈ U (only needs to be done once)

� Approximate using clustering: cluster U so that points within cluster are similar and points across clusters

are not → block-diagonal similarity matrix, lowers storage requirement from O(|U|2) to O(
∑

i |clusteri |2)

77

■ We optimize:

argmax
x∈U

acq(f , x) ·

 1

|U|
∑
x′∈U

sim(x, x′)

β

(66)

Properties:

� Tends to work better than pure more “local” acquisition functions (Settles, 2012)

� Even when uncertainty sampling is worse than random, information density performs well

� Similarity computation can be sped-up using caching: “simply” store similarity matrix Sij = [sim(xi , xj)]

for all xi , xj ∈ U (only needs to be done once)

� Approximate using clustering: cluster U so that points within cluster are similar and points across clusters

are not → block-diagonal similarity matrix, lowers storage requirement from O(|U|2) to O(
∑

i |clusteri |2)

77

■ We optimize:

argmax
x∈U

acq(f , x) ·

 1

|U|
∑
x′∈U

sim(x, x′)

β

(66)

Properties:

� Tends to work better than pure more “local” acquisition functions (Settles, 2012)

� Even when uncertainty sampling is worse than random, information density performs well

� Similarity computation can be sped-up using caching: “simply” store similarity matrix Sij = [sim(xi , xj)]

for all xi , xj ∈ U (only needs to be done once)

� Approximate using clustering: cluster U so that points within cluster are similar and points across clusters

are not → block-diagonal similarity matrix, lowers storage requirement from O(|U|2) to O(
∑

i |clusteri |2)

77

■ Do we gain anything by “summarizing” the data using clustering?

Idea:

� Cluster unlabeled data set U → {Ci ⊂ U : i ∈ [k]}

� Treat each Ci as a separate problem, e.g., query cluster centroids

Problems:

� U may not have a good clustering structure or sim(·, ·)
may not be able to capture it

� How many clusters and at what granularity?

� Clusters of x’s may not correlate well with label y .
Figure: the swiss roll dataset has no

obvious clustering structure.

78

■ Do we gain anything by “summarizing” the data using clustering?

Idea:

� Cluster unlabeled data set U → {Ci ⊂ U : i ∈ [k]}

� Treat each Ci as a separate problem, e.g., query cluster centroids

Problems:

� U may not have a good clustering structure or sim(·, ·)
may not be able to capture it

� How many clusters and at what granularity?

� Clusters of x’s may not correlate well with label y .
Figure: the swiss roll dataset has no

obvious clustering structure.

78

■ Do we gain anything by “summarizing” the data using clustering?

Idea:

� Cluster unlabeled data set U → {Ci ⊂ U : i ∈ [k]}

� Treat each Ci as a separate problem, e.g., query cluster centroids

Problems:

� U may not have a good clustering structure or sim(·, ·)
may not be able to capture it

� How many clusters and at what granularity?

� Clusters of x’s may not correlate well with label y .
Figure: the swiss roll dataset has no

obvious clustering structure.

78

Extensions

■ Consider a neural network fθ : Rd → [c]:

fθ(x) = argmax
y∈[c]

pθ(y | x)

pθ(y | x) = softmax(Wϕω(x))y

where:

� θ = {W , ω} are parameters

� ϕω : Rd → Rk is an embedding function (e.g., convolutions + pooling layers)

� W ∈ Rc×k are the parameters of the top dense layer

79

Deep Architectures

■ Deep NNs have a number of quirks:

� Very overconfident even away from the training set: their uncertainty cannot be trusted → strategies

based on confidence, margin, entropy will underperform (including uncertainty sampling, model improve-

ment, density-aware sampling, etc.)

� Expensive to fit on data: training a ResNet on a realistic data set can take minutes to days → hard to

ensure responsivity

� Quite insensitive to the addition of a single example → what’s the point of querying individual instances?

� Training is stochastic (i.e., not 100% stable) → changes in performance can depend on factors other than

new labeled examples, high variance

80

Deep Architectures

■ Deep NNs have a number of quirks:

� Very overconfident even away from the training set: their uncertainty cannot be trusted → strategies

based on confidence, margin, entropy will underperform (including uncertainty sampling, model improve-

ment, density-aware sampling, etc.)

� Expensive to fit on data: training a ResNet on a realistic data set can take minutes to days → hard to

ensure responsivity

� Quite insensitive to the addition of a single example → what’s the point of querying individual instances?

� Training is stochastic (i.e., not 100% stable) → changes in performance can depend on factors other than

new labeled examples, high variance

80

Deep Architectures

■ Deep NNs have a number of quirks:

� Very overconfident even away from the training set: their uncertainty cannot be trusted → strategies

based on confidence, margin, entropy will underperform (including uncertainty sampling, model improve-

ment, density-aware sampling, etc.)

� Expensive to fit on data: training a ResNet on a realistic data set can take minutes to days → hard to

ensure responsivity

� Quite insensitive to the addition of a single example → what’s the point of querying individual instances?

� Training is stochastic (i.e., not 100% stable) → changes in performance can depend on factors other than

new labeled examples, high variance

80

Deep Architectures

■ Deep NNs have a number of quirks:

� Very overconfident even away from the training set: their uncertainty cannot be trusted → strategies

based on confidence, margin, entropy will underperform (including uncertainty sampling, model improve-

ment, density-aware sampling, etc.)

� Expensive to fit on data: training a ResNet on a realistic data set can take minutes to days → hard to

ensure responsivity

� Quite insensitive to the addition of a single example → what’s the point of querying individual instances?

� Training is stochastic (i.e., not 100% stable) → changes in performance can depend on factors other than

new labeled examples, high variance

80

Deep Architectures

■ Deep NNs have a number of quirks:

� Very overconfident even away from the training set: their uncertainty cannot be trusted → strategies

based on confidence, margin, entropy will underperform (including uncertainty sampling, model improve-

ment, density-aware sampling, etc.)

� Expensive to fit on data: training a ResNet on a realistic data set can take minutes to days → hard to

ensure responsivity

� Quite insensitive to the addition of a single example → what’s the point of querying individual instances?

� Training is stochastic (i.e., not 100% stable) → changes in performance can depend on factors other than

new labeled examples, high variance

80

Overconfidence

Problem: Deep NNs tend to be very overconfident even away from the training set → their uncertainty cannot

be trusted

Credit: (Kristiadi et al., 2020).

81

Overconfidence

Problem: Deep NNs tend to be very overconfident even away from the training set → their uncertainty cannot

be trusted

Credit: (Kristiadi et al., 2020).

81

Aleatoric vs Epistemic (Hüllermeier and Waegeman, 2021)

■ Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be

decreased. (left)

■ Epistemic uncertainty (“relating to knowledge”) captures how little we know about the world. This reflects

on uncertainty on the choice of θ. It decreases by acquiring more data. (right)

■ There isn’t much point in trying to reduce aleatoric uncertainty in AL (Sharma and Bilgic, 2017)

82

Aleatoric vs Epistemic (Hüllermeier and Waegeman, 2021)

■ Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be

decreased. (left)

■ Epistemic uncertainty (“relating to knowledge”) captures how little we know about the world. This reflects

on uncertainty on the choice of θ. It decreases by acquiring more data. (right)

■ There isn’t much point in trying to reduce aleatoric uncertainty in AL (Sharma and Bilgic, 2017)

82

Aleatoric vs Epistemic (Hüllermeier and Waegeman, 2021)

■ Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be

decreased. (left)

■ Epistemic uncertainty (“relating to knowledge”) captures how little we know about the world. This reflects

on uncertainty on the choice of θ. It decreases by acquiring more data. (right)

■ There isn’t much point in trying to reduce aleatoric uncertainty in AL (Sharma and Bilgic, 2017)

82

Aleatoric vs Epistemic (Hüllermeier and Waegeman, 2021)

■ Aleatoric uncertainty (“random”) captures how much we can trust the supervision itself. It cannot be

decreased. (left)

■ Epistemic uncertainty (“relating to knowledge”) captures how little we know about the world. This reflects

on uncertainty on the choice of θ. It decreases by acquiring more data. (right)

■ There isn’t much point in trying to reduce aleatoric uncertainty in AL (Sharma and Bilgic, 2017)

82

Bayesian NNs

■ The problem with NNs is that uncertainty depends on a single model:

� This gives poor epistemic uncertainty

� Using ensambles of NNs is computationally challenging: training one NN is expensive, training k even

more so

� Using Bayesian techniques – i.e., maintaining a distribution over alternative NNs – is also challenging.

Idea of Bayesian NNs:

� Replace parameters θ with distribution over alternative parameters p(θ | L)

� Compute predictions by marginalizing over θ:

p(y | x) =
∫

p(y | x, θ)︸ ︷︷ ︸
NN with params θ

· p(θ | L)︸ ︷︷ ︸
posterior over params

dθ (67)

� Learn by updating distribution:

p(θ | L) → p(θ | L ∪ {(x, y)}) (68)

Not trivial! Is there an efficient approximation?

83

Bayesian NNs

■ The problem with NNs is that uncertainty depends on a single model:

� This gives poor epistemic uncertainty

� Using ensambles of NNs is computationally challenging: training one NN is expensive, training k even

more so

� Using Bayesian techniques – i.e., maintaining a distribution over alternative NNs – is also challenging.

Idea of Bayesian NNs:

� Replace parameters θ with distribution over alternative parameters p(θ | L)

� Compute predictions by marginalizing over θ:

p(y | x) =
∫

p(y | x, θ)︸ ︷︷ ︸
NN with params θ

· p(θ | L)︸ ︷︷ ︸
posterior over params

dθ (67)

� Learn by updating distribution:

p(θ | L) → p(θ | L ∪ {(x, y)}) (68)

Not trivial! Is there an efficient approximation?

83

Bayesian NNs

■ The problem with NNs is that uncertainty depends on a single model:

� This gives poor epistemic uncertainty

� Using ensambles of NNs is computationally challenging: training one NN is expensive, training k even

more so

� Using Bayesian techniques – i.e., maintaining a distribution over alternative NNs – is also challenging.

Idea of Bayesian NNs:

� Replace parameters θ with distribution over alternative parameters p(θ | L)

� Compute predictions by marginalizing over θ:

p(y | x) =
∫

p(y | x, θ)︸ ︷︷ ︸
NN with params θ

· p(θ | L)︸ ︷︷ ︸
posterior over params

dθ (67)

� Learn by updating distribution:

p(θ | L) → p(θ | L ∪ {(x, y)}) (68)

Not trivial! Is there an efficient approximation?

83

Bayesian NNs

■ The problem with NNs is that uncertainty depends on a single model:

� This gives poor epistemic uncertainty

� Using ensambles of NNs is computationally challenging: training one NN is expensive, training k even

more so

� Using Bayesian techniques – i.e., maintaining a distribution over alternative NNs – is also challenging.

Idea of Bayesian NNs:

� Replace parameters θ with distribution over alternative parameters p(θ | L)

� Compute predictions by marginalizing over θ:

p(y | x) =
∫

p(y | x, θ)︸ ︷︷ ︸
NN with params θ

· p(θ | L)︸ ︷︷ ︸
posterior over params

dθ (67)

� Learn by updating distribution:

p(θ | L) → p(θ | L ∪ {(x, y)}) (68)

Not trivial! Is there an efficient approximation?

83

Bayesian NNs

■ The problem with NNs is that uncertainty depends on a single model:

� This gives poor epistemic uncertainty

� Using ensambles of NNs is computationally challenging: training one NN is expensive, training k even

more so

� Using Bayesian techniques – i.e., maintaining a distribution over alternative NNs – is also challenging.

Idea of Bayesian NNs:

� Replace parameters θ with distribution over alternative parameters p(θ | L)

� Compute predictions by marginalizing over θ:

p(y | x) =
∫

p(y | x, θ)︸ ︷︷ ︸
NN with params θ

· p(θ | L)︸ ︷︷ ︸
posterior over params

dθ (67)

� Learn by updating distribution:

p(θ | L) → p(θ | L ∪ {(x, y)}) (68)

Not trivial! Is there an efficient approximation?

83

Bayesian NNs

■ The problem with NNs is that uncertainty depends on a single model:

� This gives poor epistemic uncertainty

� Using ensambles of NNs is computationally challenging: training one NN is expensive, training k even

more so

� Using Bayesian techniques – i.e., maintaining a distribution over alternative NNs – is also challenging.

Idea of Bayesian NNs:

� Replace parameters θ with distribution over alternative parameters p(θ | L)

� Compute predictions by marginalizing over θ:

p(y | x) =
∫

p(y | x, θ)︸ ︷︷ ︸
NN with params θ

· p(θ | L)︸ ︷︷ ︸
posterior over params

dθ (67)

� Learn by updating distribution:

p(θ | L) → p(θ | L ∪ {(x, y)}) (68)

Not trivial! Is there an efficient approximation?

83

Dropout

■ Randomly set nodes to 0 with a fixed probability.

■ Used as a regularization technique: by randomly removing neurons, prevents them from relying on each

other “too much”

84

Dropout as Bayesian Approximation

■ Computing class probabilities:

p(y | x,L) =
∫

p(y | x,θ)p(θ | L)dθ (69)

≈
∫

p(y | x,θ)pdropout(θ)dθ (70)

≈
1

R

R∑
r=1

p(y | x, θ̂r), θ̂r ∼ pdropout(θ) (71)

In other words, run NN R times with dropout enabled (during inference!) then average the R vectors of class

probabilities.

■ Dropout can be viewed as variational Bayesian approximation where the approximating distribution is a

mixture of two Gaussians (Gal and Ghahramani, 2016). The approximation is independent of L → no training

required.

■ Immediately leads to more calibrated output probabilities!

85

Dropout as Bayesian Approximation

■ Computing class probabilities:

p(y | x,L) =
∫

p(y | x,θ)p(θ | L)dθ (69)

≈
∫

p(y | x,θ)pdropout(θ)dθ (70)

≈
1

R

R∑
r=1

p(y | x, θ̂r), θ̂r ∼ pdropout(θ) (71)

In other words, run NN R times with dropout enabled (during inference!) then average the R vectors of class

probabilities.

■ Dropout can be viewed as variational Bayesian approximation where the approximating distribution is a

mixture of two Gaussians (Gal and Ghahramani, 2016).

The approximation is independent of L → no training

required.

■ Immediately leads to more calibrated output probabilities!

85

Dropout as Bayesian Approximation

■ Computing class probabilities:

p(y | x,L) =
∫

p(y | x,θ)p(θ | L)dθ (69)

≈
∫

p(y | x,θ)pdropout(θ)dθ (70)

≈
1

R

R∑
r=1

p(y | x, θ̂r), θ̂r ∼ pdropout(θ) (71)

In other words, run NN R times with dropout enabled (during inference!) then average the R vectors of class

probabilities.

■ Dropout can be viewed as variational Bayesian approximation where the approximating distribution is a

mixture of two Gaussians (Gal and Ghahramani, 2016). The approximation is independent of L → no training

required.

■ Immediately leads to more calibrated output probabilities!

85

Dropout as Bayesian Approximation

■ Computing class probabilities:

p(y | x,L) =
∫

p(y | x,θ)p(θ | L)dθ (69)

≈
∫

p(y | x,θ)pdropout(θ)dθ (70)

≈
1

R

R∑
r=1

p(y | x, θ̂r), θ̂r ∼ pdropout(θ) (71)

In other words, run NN R times with dropout enabled (during inference!) then average the R vectors of class

probabilities.

■ Dropout can be viewed as variational Bayesian approximation where the approximating distribution is a

mixture of two Gaussians (Gal and Ghahramani, 2016). The approximation is independent of L → no training

required.

■ Immediately leads to more calibrated output probabilities!

85

BALD (Gal et al., 2017)

Question: does dropout help with query selection too?

Yes.

■ Uncertainty sampling:

acqUNC (x) = −
∑
y∈[c]

p(Y = y | x,L) log p(Y = y | x,L) (72)

Simply run the NN multiple times on your input x with different (random) dropout masks, then average the

resulting probabilities.

86

BALD (Gal et al., 2017)

Question: does dropout help with query selection too? Yes.

■ Uncertainty sampling:

acqUNC (x) = −
∑
y∈[c]

p(Y = y | x,L) log p(Y = y | x,L) (72)

Simply run the NN multiple times on your input x with different (random) dropout masks, then average the

resulting probabilities.

86

Illustration

■ For all choices of acquisition function, the dropout-based uncertainty helps!

87

■ Let us look at batch-based active learning.

Batch Selection

Given L, U and a classifier f ∈ F trained on L, find a batch B ⊆ U of b ≫ 1 unlabeled instances that brings

maximal information to the model:

argmax
B⊆U

acqBALD(f ,B) (73)

s.t. |B| = b (74)

Advantages:

� Only retrain the model after ever b examples, meaning that supervision has an effect.

� Retraining is less frequent, leading to faster overall execution (at the expense of possibly instance selec-

tion, because b examples depend on a fixed f).

� Supports parallel annotation for, e.g., crowd-sourcing scenarios.

Question: can regular acquisition function (like BALD) be extended to this setting?

88

■ Let us look at batch-based active learning.

Batch Selection

Given L, U and a classifier f ∈ F trained on L, find a batch B ⊆ U of b ≫ 1 unlabeled instances that brings

maximal information to the model:

argmax
B⊆U

acqBALD(f ,B) (73)

s.t. |B| = b (74)

Advantages:

� Only retrain the model after ever b examples, meaning that supervision has an effect.

� Retraining is less frequent, leading to faster overall execution (at the expense of possibly instance selec-

tion, because b examples depend on a fixed f).

� Supports parallel annotation for, e.g., crowd-sourcing scenarios.

Question: can regular acquisition function (like BALD) be extended to this setting?

88

■ Natural generalization of instance-level strategies:

acq(f ,B) =
∑
x∈B

acq(f , x) (75)

How well does this work?

■ This ignores correlation between instances in x:

� Even if all of them are informative, they may carry the same information

� We want B to be informative as a whole!

89

■ Natural generalization of instance-level strategies:

acq(f ,B) =
∑
x∈B

acq(f , x) (75)

How well does this work?

■ This ignores correlation between instances in x:

� Even if all of them are informative, they may carry the same information

� We want B to be informative as a whole!

89

Illustration

(Credit: (Kirsch et al., 2019).)

90

BatchBALD

■ The problem with the “natural generalization”:

acq(f ,B) =
∑
x∈B

acq(f , x) (76)

is that the sum doesn’t consider the overlap between the information carried by different x ∈ b.

Idea: don’t break the acquisition function into a sum! For BALD, this means replacing:∑
x∈B

{
H(Y | x,L)− Eθ∼p(θ|L)[H(Y |x,θ)]︸ ︷︷ ︸

MI (Y ,Θ|x,L)

}
(77)

with

MI ({Y1, . . . ,Yb},Θ | {x1, . . . , xb},L) (78)

■ In other words, don’t assume independence between the elements of B!

91

BatchBALD

■ The problem with the “natural generalization”:

acq(f ,B) =
∑
x∈B

acq(f , x) (76)

is that the sum doesn’t consider the overlap between the information carried by different x ∈ b.

Idea: don’t break the acquisition function into a sum! For BALD, this means replacing:∑
x∈B

{
H(Y | x,L)− Eθ∼p(θ|L)[H(Y |x,θ)]︸ ︷︷ ︸

MI (Y ,Θ|x,L)

}
(77)

with

MI ({Y1, . . . ,Yb},Θ | {x1, . . . , xb},L) (78)

■ In other words, don’t assume independence between the elements of B!

91

BatchBALD

■ The problem with the “natural generalization”:

acq(f ,B) =
∑
x∈B

acq(f , x) (76)

is that the sum doesn’t consider the overlap between the information carried by different x ∈ b.

Idea: don’t break the acquisition function into a sum! For BALD, this means replacing:∑
x∈B

{
H(Y | x,L)− Eθ∼p(θ|L)[H(Y |x,θ)]︸ ︷︷ ︸

MI (Y ,Θ|x,L)

}
(77)

with

MI ({Y1, . . . ,Yb},Θ | {x1, . . . , xb},L) (78)

■ In other words, don’t assume independence between the elements of B!

91

Illustration

(Credit: (Kirsch et al., 2019).)

92

(Credit: (Kirsch et al., 2019).)

93

(Credit: (Kirsch et al., 2019).)

94

Conclusion and Further Reading

Take-away

■ AL useful when supervision is expensive high → choose it wisely

■ Many variants: pool-based, streaming, and query synthesis

■ Many practical approaches: uncertainty-based (uncertainty sampling, QBC, expected gradient length),

diversity-based (information density).

Some can be derived from version spaces and model improvement.

■ Deep variants select entire batches and often rely on Bayesian techniques

■ Critique & realistic annotators, costs, etc.: (Herde et al., 2021) (Settles, 2011)

■ Plenty of room for new research ;-)

95

96

References

Baum, E. B. and Lang, K. (1992). Query learning can work poorly when a human oracle is used. In

International joint conference on neural networks, volume 8, page 8.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model uncertainty in

deep learning. In international conference on machine learning, pages 1050–1059. PMLR.

Gal, Y., Islam, R., and Ghahramani, Z. (2017). Deep bayesian active learning with image data. In International

Conference on Machine Learning, pages 1183–1192. PMLR.

Herde, M., Huseljic, D., Sick, B., and Calma, A. (2021). A survey on cost types, interaction schemes, and

annotator performance models in selection algorithms for active learning in classification. arXiv preprint

arXiv:2109.11301.

Hüllermeier, E. and Waegeman, W. (2021). Aleatoric and epistemic uncertainty in machine learning: An

introduction to concepts and methods. Machine Learning, 110(3):457–506.

King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P.,

Soldatova, L. N., et al. (2009). The automation of science. Science, 324(5923):85–89.

Kirsch, A., Van Amersfoort, J., and Gal, Y. (2019). Batchbald: Efficient and diverse batch acquisition for deep

bayesian active learning. Advances in neural information processing systems, 32:7026–7037.

Kristiadi, A., Hein, M., and Hennig, P. (2020). Being bayesian, even just a bit, fixes overconfidence in relu

networks. In International Conference on Machine Learning, pages 5436–5446. PMLR.

Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., and Clune, J. (2016). Synthesizing the preferred inputs for

neurons in neural networks via deep generator networks. Advances in neural information processing systems,

29:3387–3395.

96

Settles, B. (2011). From theories to queries: Active learning in practice. In Active Learning and Experimental

Design workshop In conjunction with AISTATS 2010, pages 1–18. JMLR Workshop and Conference

Proceedings.

Settles, B. (2012). Active learning.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to algorithms.

Cambridge university press.

Sharma, M. and Bilgic, M. (2017). Evidence-based uncertainty sampling for active learning. Data Mining and

Knowledge Discovery, 31(1):164–202.

96

	Strategies
	Extensions
	Conclusion and Further Reading
	References

