
Debugging Models using Explanations

Stefano Teso

Advanced Topics in Machine Learning & Optimization − 2023-24

Outline

� Interacting via Input Attributions
� Model-agnostic

� End-to-end Differentiable

� Interacting via Example-based Explanations
� Adapting the example’s influence

� Changing the example’s label(s)

� Interacting via Concept-based Explanations
� Concept-based Models

� Neuro-symbolic Models

� Take-away

1

Input Attributions

■ Given a predictor f and a target decision (x, y), input attributions identify what input variables are “most

relevant” for the decision

Examples: LIME, SHAP, Integrated Gradients, GradCAM, . . .

■ Typically:

� Ignore architectural details (e.g., rely on decision surface only)

� Local: variables relevant for (x, y) may be irrelevant for a different, even similar, decision (x′, y ′)

2

Input Attributions

■ Given a predictor f and a target decision (x, y), input attributions identify what input variables are “most

relevant” for the decision

Examples: LIME, SHAP, Integrated Gradients, GradCAM, . . .

■ Typically:

� Ignore architectural details (e.g., rely on decision surface only)

� Local: variables relevant for (x, y) may be irrelevant for a different, even similar, decision (x′, y ′)

2

Input Attributions

■ Given a predictor f and a target decision (x, y), input attributions identify what input variables are “most

relevant” for the decision

Examples: LIME, SHAP, Integrated Gradients, GradCAM, . . .

■ Typically:

� Ignore architectural details (e.g., rely on decision surface only)

� Local: variables relevant for (x, y) may be irrelevant for a different, even similar, decision (x′, y ′)

2

You need to be checked for COVID-19. The doctor takes a scan of your lungs and uses a state-of-the-art deep

neural network to automatically compute a diagnosis. The model thinks that you are not infected.

Question: Would you trust the model’s prediction?

3

Clever Hans behavior & Explanations

� Training data is not representative of full distribution

� Clever Hans behavior: model picks up shortcuts that

optimize performance on training set

� Compromises test & OOD performance

Can be spotted using model’s explanations

Source: (Lapuschkin et al., 2019)

4

Clever Hans behavior & Explanations

� Training data is not representative of full distribution

� Clever Hans behavior: model picks up shortcuts that

optimize performance on training set

� Compromises test & OOD performance

Can be spotted using model’s explanations

Source: (DeGrave et al., 2021)

4

Explanations Don’t Fix Bugs

� Explanations are great for identifying bugs.

� They also hint at what should be done to fix those bugs.

� However, taken in isolation, they are insufficient to correct the model.

Idea: show explanations to sufficiently expert users (e.g., domain experts, machine learning/data science

practitioners) and integrate their feedback into the model.

This hints at integrating explanations into interactive machine learning. How?

5

Explanations Don’t Fix Bugs

� Explanations are great for identifying bugs.

� They also hint at what should be done to fix those bugs.

� However, taken in isolation, they are insufficient to correct the model.

Idea: show explanations to sufficiently expert users (e.g., domain experts, machine learning/data science

practitioners) and integrate their feedback into the model.

This hints at integrating explanations into interactive machine learning. How?

5

Explanations Don’t Fix Bugs

� Explanations are great for identifying bugs.

� They also hint at what should be done to fix those bugs.

� However, taken in isolation, they are insufficient to correct the model.

Idea: show explanations to sufficiently expert users (e.g., domain experts, machine learning/data science

practitioners) and integrate their feedback into the model.

This hints at integrating explanations into interactive machine learning. How?

5

Dimensions

� Goal: learning vs debugging vs editing.

� Explanations used: local (input-, example-, concept- based) vs global.

� Feedback received: very many, often corrections to the explanations or to the training data.

� Incorporation: data augmentation vs additional loss.

A fuller description can be found in (Teso et al., 2022).

6

Explanatory Debugging (Kulesza et al., 2015)

■ Designed for quick customization in, e.g., spam detection.

■ Assumes naive Bayes classifier:

p(Y | x) =
p(y) · p(x | y)

p(x)

where:

� p(y) is proportion of documents in class y

� p(x | y) assumes cond. indep. between words x1, . . . , xℓ

p(x | y) =
∏
i

p(xi | y)ni

Here, ni is the # of copies of word xi in documents of class y , plus extra regularization (e.g., Laplace cor-

rection).

Debugging is carried out on these two terms independently.

7

Explanatory Debugging

Step 1: pick an example that looks fishy or are costly.

8

Explanatory Debugging

Step 2: look at the class probabilities.

8

Explanatory Debugging

Step 3: look at the words that most impact the prediction – akin to a local explanation.

8

Explanatory Debugging

Step 4: check influence of class prior and individual words – in context.

8

Explanatory Debugging

Step 5: always have an overiview of overall word impact – akin to a global explanation.

8

Explanatory Debugging

PROs:

� Designed to be user-compatible from the ground up.

� Allows users to select instances.

� Makes use of ad-hoc local and global explanations for communicating what the model learned.

� User feedback is integrated directly into parameters.

� User immediately sees impact of their feedback.

CONs:

� Limited to naive Bayes classifiers.

� User is responsible for choosing predictions to be debugged.

� Limited to simple tasks.

9

Active Learning is Opaque

■ The user cannot:

� observe the model’s beliefs

� affect them directly

� see what her feedback does

■ How can she:

� prevent the model from acquiring shortcuts?

� fix shortcuts acquired by the model?

� justifiably build/reject trust? a

aBut see (Honeycutt et al., 2020).

10

Explanatory Interactive Learning (Teso and Kersting, 2019; Schramowski et al., 2020)

■ Machine explains own predictions

� helps with understandability

� helps assessing competence

■ User can supply corrections

� substantially improves directability

■ Compared to previous approaches:

� Focus on modern, complex ML models

� Builds on general (rather than ad hoc) ex-

planatory AI tools

How to align model to user’s corrections in a gen-

eral enough manner?

11

Explanatory Interactive Learning (Teso and Kersting, 2019; Schramowski et al., 2020)

■ Machine explains own predictions

� helps with understandability

� helps assessing competence

■ User can supply corrections

� substantially improves directability

■ Compared to previous approaches:

� Focus on modern, complex ML models

� Builds on general (rather than ad hoc) ex-

planatory AI tools

How to align model to user’s corrections in a gen-

eral enough manner?

11

Explanatory Interactive Learning (Teso and Kersting, 2019; Schramowski et al., 2020)

■ Machine explains own predictions

� helps with understandability

� helps assessing competence

■ User can supply corrections

� substantially improves directability

■ Compared to previous approaches:

� Focus on modern, complex ML models

� Builds on general (rather than ad hoc) ex-

planatory AI tools

How to align model to user’s corrections in a gen-

eral enough manner?

11

Explanatory Interactive Learning (Teso and Kersting, 2019; Schramowski et al., 2020)

■ Machine explains own predictions

� helps with understandability

� helps assessing competence

■ User can supply corrections

� substantially improves directability

■ Compared to previous approaches:

� Focus on modern, complex ML models

� Builds on general (rather than ad hoc) ex-

planatory AI tools

How to align model to user’s corrections in a gen-

eral enough manner?

11

CAIPI (Teso and Kersting, 2019)

■ Corrections identify false relevant pixels: CAIPI converts them to regular examples & retrains

Example: if “wolf” predicted right for the wrong reasons:

Such CEs teach the model to predict the right label without using the random data

12

CAIPI: Counter-examples

Idea: sample k perturbed copies of (x, y) by randomizing irrelevant pixels

■ CEs capture invariances: they show that the label does not change with x2.

■ In a sense, they are the opposite of counterfactuals/adversarial examples: counter-examples tell the model

that the label should not change, counterfactuals seek changes that do impact the label.

13

CAIPI: Counter-examples

Idea: sample k perturbed copies of (x, y) by randomizing irrelevant pixels

■ CEs capture invariances: they show that the label does not change with x2.

■ In a sense, they are the opposite of counterfactuals/adversarial examples: counter-examples tell the model

that the label should not change, counterfactuals seek changes that do impact the label.

13

CAIPI: Counter-examples

■ Intuitively, prediction (or score) at x should not depend on x2, i.e.,

⟨(w1,w2), x⟩ = ⟨(w1, 0), x⟩ −→ ∀ local x ′2 . ⟨(w1,w2), x)⟩ = ⟨(w1,w2), (x1, x
′
2)⟩

where w is a hyperplane that (locally) approximates f . The augmented examples ((x1, x ′2), y) approximate an

orthogonality constraint

■ Also works in feature space ϕ(x): randomize ϕi in place of xi

14

CAIPI and issues with LIME (Teso, 2019)

■ A bug appearing in LIME explanations may not reflect the model’s actual reasoning.

■ Asking the user to correct such “fake” issues wastes the user’s effort and does not improve the model.

■ Can we do away with LIME?

15

CAIPI and issues with LIME (Teso, 2019)

■ A bug appearing in LIME explanations may not reflect the model’s actual reasoning.

■ Asking the user to correct such “fake” issues wastes the user’s effort and does not improve the model.

■ Can we do away with LIME?

15

Self-explainable Neural Networks (Alvarez-Melis and Jaakkola, 2018)

pθ(1 | x) = σ
(∑

i

wi (x)ϕi (x)︸ ︷︷ ︸
“score” of x

)

� ϕ : Rd → Rk embeds inputs into feature space

� w : Rd → Rk computes a weight vector for each input

� w(x) is regularized to vary slowly w.r.t. x

■ Defines a different linear model for every x ∈ Rd

■ Linear models associated to nearby inputs x encouraged to be similar, i.e., in the neighborhood of any x0
there exists a constant vector w0 that depends only on x0 and a “large enough” α > 0 such that:∑

i

wi (x
′)ϕi (x

′) ≈
∑
i

w0iϕi (x0) for all x′ that are closer than α to x0

■ If w(x) ≡ w is constant w.r.t. x, we obtain a linear model again

16

Self-explainable Neural Networks (Alvarez-Melis and Jaakkola, 2018)

pθ(1 | x) = σ
(∑

i

wi (x)ϕi (x)︸ ︷︷ ︸
“score” of x

)

� ϕ : Rd → Rk embeds inputs into feature space

� w : Rd → Rk computes a weight vector for each input

� w(x) is regularized to vary slowly w.r.t. x

■ Defines a different linear model for every x ∈ Rd

■ Linear models associated to nearby inputs x encouraged to be similar, i.e., in the neighborhood of any x0
there exists a constant vector w0 that depends only on x0 and a “large enough” α > 0 such that:∑

i

wi (x
′)ϕi (x

′) ≈
∑
i

w0iϕi (x0) for all x′ that are closer than α to x0

■ If w(x) ≡ w is constant w.r.t. x, we obtain a linear model again

16

Self-explainable Neural Networks (Alvarez-Melis and Jaakkola, 2018)

pθ(1 | x) = σ
(∑

i

wi (x)ϕi (x)︸ ︷︷ ︸
“score” of x

)

� ϕ : Rd → Rk embeds inputs into feature space

� w : Rd → Rk computes a weight vector for each input

� w(x) is regularized to vary slowly w.r.t. x

■ Defines a different linear model for every x ∈ Rd

■ Linear models associated to nearby inputs x encouraged to be similar, i.e., in the neighborhood of any x0
there exists a constant vector w0 that depends only on x0 and a “large enough” α > 0 such that:∑

i

wi (x
′)ϕi (x

′) ≈
∑
i

w0iϕi (x0) for all x′ that are closer than α to x0

■ If w(x) ≡ w is constant w.r.t. x, we obtain a linear model again

16

Self-explainable Neural Networks (Alvarez-Melis and Jaakkola, 2018)

pθ(1 | x) = σ
(∑

i

wi (x)ϕi (x)︸ ︷︷ ︸
“score” of x

)

� ϕ : Rd → Rk embeds inputs into feature space

� w : Rd → Rk computes a weight vector for each input

� w(x) is regularized to vary slowly w.r.t. x

■ Defines a different linear model for every x ∈ Rd

■ Linear models associated to nearby inputs x encouraged to be similar, i.e., in the neighborhood of any x0
there exists a constant vector w0 that depends only on x0 and a “large enough” α > 0 such that:∑

i

wi (x
′)ϕi (x

′) ≈
∑
i

w0iϕi (x0) for all x′ that are closer than α to x0

■ If w(x) ≡ w is constant w.r.t. x, we obtain a linear model again

16

Self-explainable Neural Networks (Alvarez-Melis and Jaakkola, 2018)

pθ(1 | x) = σ
(∑

i

wi (x)ϕi (x)︸ ︷︷ ︸
“score” of x

)

� ϕ : Rd → Rk embeds inputs into feature space

� w : Rd → Rk computes a weight vector for each input

� w(x) is regularized to vary slowly w.r.t. x

■ Defines a different linear model for every x ∈ Rd

■ Linear models associated to nearby inputs x encouraged to be similar, i.e., in the neighborhood of any x0
there exists a constant vector w0 that depends only on x0 and a “large enough” α > 0 such that:∑

i

wi (x
′)ϕi (x

′) ≈
∑
i

w0iϕi (x0) for all x′ that are closer than α to x0

■ If w(x) ≡ w is constant w.r.t. x, we obtain a linear model again

16

SENN

■ Left: a linear model. Notice that the weights w are constant everywhere.

■ Right: a SENN. Notice that locally the weights w(x) are almost identical!

■ SENNs are stable locally (interpretability) but flexible globally (large capacity)

17

SENN

■ Left: a linear model. Notice that the weights w are constant everywhere.

■ Right: a SENN. Notice that locally the weights w(x) are almost identical!

■ SENNs are stable locally (interpretability) but flexible globally (large capacity)

17

XIL with Right for the Right Reasons (Schramowski et al., 2020)

Input Gradient (Baehrens et al., 2010)

The Input Gradient (IG) of f at x is:

IGi (f , (x, y)) :=
∂

∂xi
scoref (x, y)

I.e., relevance of i-th input is proportional to how much score of class y changes

when perturbing xi . It can be viewed from the lens of independent causal effects

(ICE) (?).

■ Instead of adding CEs, directly penalize f for relying on irrelevant attributes (Ross et al., 2017):

ℓrrr(f , (x , y)) :=
∑

i irrelevant for (x, y)

(IGi (f , (x, y)))
2

IG of irrelevant inputs should be near-zero; IG of relevant inputs is not penalized.

■ Benefits:

� Enables end-to-end training: backprop through IGs is straightforward using Tensorflow, Pytorch, etc.

� No more data augmentation: no extra space & no costly sampling required

� No need to fine-tune and/or over-sample LIME, no variability in explanations

18

XIL with Right for the Right Reasons (Schramowski et al., 2020)

Input Gradient (Baehrens et al., 2010)

The Input Gradient (IG) of f at x is:

IGi (f , (x, y)) :=
∂

∂xi
scoref (x, y)

I.e., relevance of i-th input is proportional to how much score of class y changes

when perturbing xi . It can be viewed from the lens of independent causal effects

(ICE) (?).

■ Instead of adding CEs, directly penalize f for relying on irrelevant attributes (Ross et al., 2017):

ℓrrr(f , (x , y)) :=
∑

i irrelevant for (x, y)

(IGi (f , (x, y)))
2

IG of irrelevant inputs should be near-zero; IG of relevant inputs is not penalized.

■ Benefits:

� Enables end-to-end training: backprop through IGs is straightforward using Tensorflow, Pytorch, etc.

� No more data augmentation: no extra space & no costly sampling required

� No need to fine-tune and/or over-sample LIME, no variability in explanations

18

XIL with Right for the Right Reasons (Schramowski et al., 2020)

Input Gradient (Baehrens et al., 2010)

The Input Gradient (IG) of f at x is:

IGi (f , (x, y)) :=
∂

∂xi
scoref (x, y)

I.e., relevance of i-th input is proportional to how much score of class y changes

when perturbing xi . It can be viewed from the lens of independent causal effects

(ICE) (?).

■ Instead of adding CEs, directly penalize f for relying on irrelevant attributes (Ross et al., 2017):

ℓrrr(f , (x , y)) :=
∑

i irrelevant for (x, y)

(IGi (f , (x, y)))
2

IG of irrelevant inputs should be near-zero; IG of relevant inputs is not penalized.

■ Benefits:

� Enables end-to-end training: backprop through IGs is straightforward using Tensorflow, Pytorch, etc.

� No more data augmentation: no extra space & no costly sampling required

� No need to fine-tune and/or over-sample LIME, no variability in explanations

18

XIL with Right for the Right Reasons (Schramowski et al., 2020)

■ Ideally, align IG of (score of) learned model f to ground-truth g . In reality, the ground-truth gradient ∇xg is

unknown; supervision only denotes (some of) its null entries.

■ Like CAIPI, introduces a orthogonality constraint, except it is explicit & no sampling required

19

Alternatives to RRR Loss

■ There exist a variety of “RRR-like” losses:

Name Formalization

RRR (Ross et al., 2017)
(∑

y
∂
∂xi

sf (x, y)
)2

GradMask (Simpson et al., 2019)
∣∣ ∂
∂xi

(sf (x, 0) − sf (x, 1))
∣∣

CDEP (Rieger et al., 2020)
∥∥attr(f , (x, y)) − expli

∥∥
2

RBR (Shao et al., 2021)
(∑

y IF(
∂
∂xi

sf (x, y))
)2

.

■ Many variants of RRR itself!

Some alternatives lead to better and more stable results

Source: (Ross et al., 2017).

20

Application: Hyperspectral Images

Source: (Teso and Kersting, 2019). Source: (Schramowski et al., 2020).

21

CAIPI

⊕ Model-agnostic = LIME + Data Augmentation

⊖ Space hungry for larger k

⊖ Substantial overhead (sampling)

⊖ Can be unfaithful (sampling)

XIL + RRR

⊖ Requires differentiable model & attr. method

⊕ Space efficient

⊕ Limited overhead

⊕ As faithful as the attr. method

Remark

Both strategies can be adapted to using partial corrections, i.e., where the annotator only corrects part of the

inputs (pixels). This makes interaction much more affordable.

22

CAIPI

⊕ Model-agnostic = LIME + Data Augmentation

⊖ Space hungry for larger k

⊖ Substantial overhead (sampling)

⊖ Can be unfaithful (sampling)

XIL + RRR

⊖ Requires differentiable model & attr. method

⊕ Space efficient

⊕ Limited overhead

⊕ As faithful as the attr. method

Remark

Both strategies can be adapted to using partial corrections, i.e., where the annotator only corrects part of the

inputs (pixels). This makes interaction much more affordable.

22

Interactive Attention Learning (Heo et al., 2020)

■ Human-in-the-loop learning for models with attention1

Source: (Heo et al., 2020).

■ Lowers retraining cost:

� Only updates attention module rather than full model

� Considerably speeds-up integrating human feedback

� Can help with overfitting

■ Prioritizes annotating incorrect/influential elements

� Reranks both instances & features (e.g., words)

� Can leverage uncertainty, influence; CF score for feats

� E.g., prevents annotating already-correct examples

1Notice that attention is not necessarily explainable, cf. (Bastings and Filippova, 2020).

23

Are Local Explanations Enough?

Machine-initiated Interaction → Narrative Bias

■ The queries, predictions and explanations output by the model narrate the evolution of the model over time

■ By witnessing that the model’s narrative, the human “teacher” builds trust into the “student” model

■ What if the machine (unintentionally) lies about its own performance? Nothing prevents the machine from

repeatedly choosing instances on which it does well → narrative bias

1

T

T∑
t=1

L(ft , xt)︸ ︷︷ ︸
loss at queries

−Ex∼p(X)[L(fT , x)]︸ ︷︷ ︸
actual loss at T

i.e., difference between perceived and actual performance (loss).2

■ This can occur even if the machine is not malicious!

2Loss on explanations is affected too.

24

Machine-initiated Interaction → Narrative Bias

■ The queries, predictions and explanations output by the model narrate the evolution of the model over time

■ By witnessing that the model’s narrative, the human “teacher” builds trust into the “student” model

■ What if the machine (unintentionally) lies about its own performance?

Nothing prevents the machine from

repeatedly choosing instances on which it does well → narrative bias

1

T

T∑
t=1

L(ft , xt)︸ ︷︷ ︸
loss at queries

−Ex∼p(X)[L(fT , x)]︸ ︷︷ ︸
actual loss at T

i.e., difference between perceived and actual performance (loss).2

■ This can occur even if the machine is not malicious!

2Loss on explanations is affected too.

24

Machine-initiated Interaction → Narrative Bias

■ The queries, predictions and explanations output by the model narrate the evolution of the model over time

■ By witnessing that the model’s narrative, the human “teacher” builds trust into the “student” model

■ What if the machine (unintentionally) lies about its own performance? Nothing prevents the machine from

repeatedly choosing instances on which it does well → narrative bias

1

T

T∑
t=1

L(ft , xt)︸ ︷︷ ︸
loss at queries

−Ex∼p(X)[L(fT , x)]︸ ︷︷ ︸
actual loss at T

i.e., difference between perceived and actual performance (loss).2

■ This can occur even if the machine is not malicious!

2Loss on explanations is affected too.

24

Machine-initiated Interaction → Narrative Bias

■ The queries, predictions and explanations output by the model narrate the evolution of the model over time

■ By witnessing that the model’s narrative, the human “teacher” builds trust into the “student” model

■ What if the machine (unintentionally) lies about its own performance? Nothing prevents the machine from

repeatedly choosing instances on which it does well → narrative bias

1

T

T∑
t=1

L(ft , xt)︸ ︷︷ ︸
loss at queries

−Ex∼p(X)[L(fT , x)]︸ ︷︷ ︸
actual loss at T

i.e., difference between perceived and actual performance (loss).2

■ This can occur even if the machine is not malicious!

2Loss on explanations is affected too.

24

Narrative Bias

■ This is active learning with uncertainty sampling running on top of an RBF SVM on a simple red vs. blue

classification task. The red points are arranged on a 5× 5 grid.

25

Narrative Bias

■ The machine is affected by unknown unknowns: it is uncertain about regions close to the red clusters it has

found, but completely certain that everything else is blue.

25

Narrative Bias

■ After 140 iterations, the machine is still unaware of most red clusters. Its predictions and explanations in the

known region, however, will be very high quality → narrative bias.

25

■ Summarizing, the “narrative” overestimates quality of the model because the machine doesn’t know where

the hard instances are

■ Idea: if the machine cannot know – ask the user instead!

■ If the user knows, give him/her tools for choosing challenging instances. (This is what professors do when

testing students!)

■ However, normally the human teacher is blind:

� impossible to establish justifiable trust

� she may provide examples that teach nothing new to the machine

How can we expect the human to provide useful examples?

26

■ Summarizing, the “narrative” overestimates quality of the model because the machine doesn’t know where

the hard instances are

■ Idea: if the machine cannot know – ask the user instead!

■ If the user knows, give him/her tools for choosing challenging instances. (This is what professors do when

testing students!)

■ However, normally the human teacher is blind:

� impossible to establish justifiable trust

� she may provide examples that teach nothing new to the machine

How can we expect the human to provide useful examples?

26

■ Summarizing, the “narrative” overestimates quality of the model because the machine doesn’t know where

the hard instances are

■ Idea: if the machine cannot know – ask the user instead!

■ If the user knows, give him/her tools for choosing challenging instances. (This is what professors do when

testing students!)

■ However, normally the human teacher is blind:

� impossible to establish justifiable trust

� she may provide examples that teach nothing new to the machine

How can we expect the human to provide useful examples?

26

■ Summarizing, the “narrative” overestimates quality of the model because the machine doesn’t know where

the hard instances are

■ Idea: if the machine cannot know – ask the user instead!

■ If the user knows, give him/her tools for choosing challenging instances. (This is what professors do when

testing students!)

■ However, normally the human teacher is blind:

� impossible to establish justifiable trust

� she may provide examples that teach nothing new to the machine

How can we expect the human to provide useful examples?

26

Explanatory Guided Learning (Popordanoska et al., 2020)

■ Idea: build on top of guided learning: the machine provides a target label y , asks the user for an instance x

of that class. Easy to do with search engines.

27

Explanatory Guided Learning (Popordanoska et al., 2020)

■ Assume the machine and user “decision surfaces” differ as shown in the picture. In regular guided learning,

interaction is opaque: the user has no clue it should provide a blue example!

27

Explanatory Guided Learning (Popordanoska et al., 2020)

■ Instead, we use global explanations, e.g., rules that summarize the overall decision surface of the model.

They provide a simplified, human-friendly view of the model’s beliefs.

27

Explanatory Guided Learning (Popordanoska et al., 2020)

■ Based on rules, the user has the chance of identifying bugs and issues in the model – in this case, a blue

region wrongly classified as red.

27

Explanatory Guided Learning (Popordanoska et al., 2020)

■ At this point, the user is free to provide a counterexample to the model, which is can then added to the

training set and used to fine-tune the model as usual.

27

Explanatory Guided Learning (Popordanoska et al., 2020)

■ XGL achieves comparable performance and dramatically reduces narrative bias!

28

FIND (Lertvittayakumjorn et al., 2020)

■ Local explanations present a partial view of the model ■ Local fixes may have unclear global effects

■ FIND (Feature Investigation aNd Disabling) paints a more complete picture of the learned model by

combining information about multiple local explanations.

Source: (Lertvittayakumjorn et al., 2020).

29

FIND (Lertvittayakumjorn et al., 2020)

■ NLP models prone to bad word–class associations, e.g., ⊕ sentiment word associated to ⊖ or neutral class

■ Realistic models with (i) black-box embedding Mf : x 7→ f and (ii) dense layer Mc : f 7→ c:

p = (softmax ◦Mc ◦Mf)(x)

Unclear what a latent feature fj means, but clear how it maps to each class c

Makes it hard to map association between words (x) and classes probabilities (p)

30

FIND (Lertvittayakumjorn et al., 2020)

� For each hj , illustrate features by identifying relevant words/n-grams using LRP (?). This gives a word

cloud that combines relevance across all training examples

� User indicates bad word–class associations by clicking on words/n-grams in word cloud

� Disable bugged latent features:

p = softmax((W ⊙ Q)Mf (x) + b))

where ⊙ is element-wise multiplication and Q is a 0-1 “weight disabling matrix” built using user’s feed-

back

� Fine-tune dense layer params W while keeping embeddings frozen

Related to (Lage and Doshi-Velez, 2020), more in Part 4.

31

Interacting via Example-based Expla-
nations

Example Attributions & Influence Functions

■ Given a predictor f and a target decision (x, y), example attributions identify what training examples are

responsible for the model f & for the decision. Ideal for case-based reasoning & debugging when features are

not sufficient

■ Influence Functions (IFs) estimate impact of reweighting a training ex-

ample without retraining (Koh and Liang, 2017):

I(z) = −H(θm)
−1∇θℓ(z, θm)

Use chain rule to eval. impact on class scores, loss, input gradients, etc.

32

Example Attributions & Influence Functions

■ Given a predictor f and a target decision (x, y), example attributions identify what training examples are

responsible for the model f & for the decision. Ideal for case-based reasoning & debugging when features are

not sufficient

■ Influence Functions (IFs) estimate impact of reweighting a training ex-

ample without retraining (Koh and Liang, 2017):

I(z) = −H(θm)
−1∇θℓ(z, θm)

Use chain rule to eval. impact on class scores, loss, input gradients, etc.

32

HILDIF (Zylberajch et al., 2021)

■ Model’s predictions may rely on the wrong examples → correct the model’s IF

■ HILDIF for Natural Language Inference:

� Select validation examples {(xi , yi)}

� For each of them, pick k most influential training points {(x̃ij , ỹij)}

� User supplies similarity sij ∈ {1, . . . , 5} between i-th and j-th examples

� Augment data with 10× sij perturbed training points

33

Sequential Learning under Noise

■ Learning from sequence of examples (x1, y1), (x2, y2), . . . but labels are noisy!

Applications: crowd-sourcing, citizen science, interactive personal assistants learning from diary data, . . .

E.g., inexperienced annotators, unwillingness to self-report, → poor performance

34

Sequential Learning under Noise

■ Learning from sequence of examples (x1, y1), (x2, y2), . . . but labels are noisy!

Applications: crowd-sourcing, citizen science, interactive personal assistants learning from diary data, . . .

E.g., inexperienced annotators, unwillingness to self-report, → poor performance

34

Skeptical Learning (SKL)

■ Skeptical machines challenge the user about suspicious examples

Intuition: suspicious examples (x, ỹ) identified by computing their margin:

µθ(x) := pθ(ŷ | x)− pθ(ỹ | x)

i.e., the difference in likelihood between the model’s prediction ŷ and the observed annotation ỹ

35

Skeptical Learning (SKL)

■ The user is asked to double-check and relabel the suspicious examples

. . . this is often enough to correct mistakes due, e.g., to inattention

36

SKL cleans incoming examples only!

■ Noise can accumulate in the training set, because of:

� Pre-existing noisy data in the bootstrap set

� Incoming noisy data that elude the skeptical check (e.g. at initialization, when the model is uncertain)

This seriously impacts both prediction performance and ability to be skeptical: incoming noisy examples falling

close to corrupted regions are not detected

■ SKL is also completely black-box:

� The user has no clue why the model is skeptical – what if it is because of a mistake in the training set?

37

CINCER: XIL for Skeptical Learning (Teso et al., 2021)

Ask (trustworthy) annotator to double-check and relabel incoming examples with suspiciously low likelihood:

pθ(ŷ | x)︸ ︷︷ ︸
pred. label

≫ pθ(ỹ | x)︸ ︷︷ ︸
annotation

Skeptical for the right reasons

E.g., there is a past example “similar” to the current one but

has a different label & it is annotated correctly.

Skeptical for the wrong reasons

E.g., data in support of skepticism is annotated wrongly or past

lies ;-) PADDING PADDING PADDING PADDING PADDING

CINCER

Find tr. examples zk ∈ D explaining why model is skeptical about new example z̃t , user fixes them

38

CINCER: XIL for Skeptical Learning (Teso et al., 2021)

Ask (trustworthy) annotator to double-check and relabel incoming examples with suspiciously low likelihood:

pθ(ŷ | x)︸ ︷︷ ︸
pred. label

≫ pθ(ỹ | x)︸ ︷︷ ︸
annotation

Skeptical for the right reasons

E.g., there is a past example “similar” to the current one but

has a different label & it is annotated correctly.

Skeptical for the wrong reasons

E.g., data in support of skepticism is annotated wrongly or past

lies ;-) PADDING PADDING PADDING PADDING PADDING

CINCER

Find tr. examples zk ∈ D explaining why model is skeptical about new example z̃t , user fixes them

38

CINCER: XIL for Skeptical Learning (Teso et al., 2021)

Ask (trustworthy) annotator to double-check and relabel incoming examples with suspiciously low likelihood:

pθ(ŷ | x)︸ ︷︷ ︸
pred. label

≫ pθ(ỹ | x)︸ ︷︷ ︸
annotation

Skeptical for the right reasons

E.g., there is a past example “similar” to the current one but

has a different label & it is annotated correctly.

Skeptical for the wrong reasons

E.g., data in support of skepticism is annotated wrongly or past

lies ;-) PADDING PADDING PADDING PADDING PADDING

CINCER

Find tr. examples zk ∈ D explaining why model is skeptical about new example z̃t , user fixes them

38

CINCER: XIL for Skeptical Learning (Teso et al., 2021)

Ask (trustworthy) annotator to double-check and relabel incoming examples with suspiciously low likelihood:

pθ(ŷ | x)︸ ︷︷ ︸
pred. label

≫ pθ(ỹ | x)︸ ︷︷ ︸
annotation

Skeptical for the right reasons

E.g., there is a past example “similar” to the current one but

has a different label & it is annotated correctly.

Skeptical for the wrong reasons

E.g., data in support of skepticism is annotated wrongly or past

lies ;-) PADDING PADDING PADDING PADDING PADDING

CINCER

Find tr. examples zk ∈ D explaining why model is skeptical about new example z̃t , user fixes them

38

Explain Skepticism using Counter-examples

■ A counter-example is a concrete past example zk ∈ D that is:

D1. Contrastive: it explains why z̃t is suspicious (highlighting an inconsistency in data)

D2. Influential: if mislabeled, correcting it should improve the model as much as possible.

■ Are there examples that satisfy both desiderata? Yes!

39

Selecting a contrastive CE

Intuition: a CE is contrastive if removing it from the data set and retraining leads to a less suspicious model.

■ Find CE zk ∈ D for z̃t by maximizing the difference in likelihood:

argmaxk∈[t−1]

{
P(ỹt | xt ; θ−k

t−1)− P(ỹt | xt ; θt−1)
}

with θt−1 current params, θ−k
t−1 params after deleting CE zk .

■ Requires to retrain |t − 1| times; very impractical, especially in interactive settings.

40

Influence Functions

■ Influence Functions (IFs) approximate the change in parameters due to reweighting a training example:

Iθt (z) :=
d

dϵ
θt(z, ϵ)

∣∣∣∣
ϵ=0

(1)

≈ −H(θt)
−1∇θℓ(z, θt) (2)

where the Hessian is H(θt). IFs work even with non-convex models Koh and Liang (2017)

Idea: use chain rule to compute the change in likelihood due to removing an example:

−
1

t − 1

(
d

dϵ
P(ỹt | xt ; θt−1(zk , ϵ))

∣∣∣∣
ϵ=0

)
= −

1

t − 1

(
∇θP(ỹt | xt ; θt−1)

⊤ d

dϵ
θt−1(zk , ϵ)

∣∣∣∣
ϵ=0

)
(3)

= −
1

t − 1
∇θP(ỹt | xt ; θt−1)

⊤Iθt−1
(zk) (4)

■ The Algorithm: select contrastive CE zk ∈ D by solving:

argmaxk∈[t−1] ∇θP(ỹt | xt ; θt−1)⊤H(θt−1)−1∇θℓ(zk , θt−1) (5)

Solve this by i) Caching the inverse Hessian-vector product (HVP), and ii) computing the inverse HVP with an

efficient stochastic estimator

41

Influence Functions

■ Influence Functions (IFs) approximate the change in parameters due to reweighting a training example:

Iθt (z) :=
d

dϵ
θt(z, ϵ)

∣∣∣∣
ϵ=0

(1)

≈ −H(θt)
−1∇θℓ(z, θt) (2)

where the Hessian is H(θt). IFs work even with non-convex models Koh and Liang (2017)

Idea: use chain rule to compute the change in likelihood due to removing an example:

−
1

t − 1

(
d

dϵ
P(ỹt | xt ; θt−1(zk , ϵ))

∣∣∣∣
ϵ=0

)
= −

1

t − 1

(
∇θP(ỹt | xt ; θt−1)

⊤ d

dϵ
θt−1(zk , ϵ)

∣∣∣∣
ϵ=0

)
(3)

= −
1

t − 1
∇θP(ỹt | xt ; θt−1)

⊤Iθt−1
(zk) (4)

■ The Algorithm: select contrastive CE zk ∈ D by solving:

argmaxk∈[t−1] ∇θP(ỹt | xt ; θt−1)⊤H(θt−1)−1∇θℓ(zk , θt−1) (5)

Solve this by i) Caching the inverse Hessian-vector product (HVP), and ii) computing the inverse HVP with an

efficient stochastic estimator

41

Contrastive CEs are Influential!

For the cross-entropy loss ℓ(z, θ) = − logP(y | x; θ):

∇θP(ỹt | xt ; θt−1) = P(ỹt | xt ; θt−1)∇θ logP(ỹt | xt ; θt−1) = −P(ỹt | xt ; θt−1)∇θℓ(z̃t , θt−1) (6)

Hence, the objective to be maximized can be rewritten as:

−∇θℓ(z̃t , θt−1)
⊤H(θt−1)

−1∇θℓ(zk , θt−1) (7)

Under this assumption, counter-example selection becomes:

argmaxk∈[t−1] −∇θℓ(z̃t , θt−1)⊤H(θt−1)−1∇θℓ(zk , θt−1) (8)

This recovers exactly the definition of influential examples: highly influential counter-examples are highly

contrastive and vice versa!

■ The same algorithm selects examples that are both contrastive and influential.

42

The CINCER Algorithm

Inputs: initial (noisy) training set D0; threshold τ .

Outputs:

1: fit θ0 on D0 ▷ Initialize model

2: for t = 1, 2, . . . do

3: receive new example z̃t = (xt , ỹt)

4: if µ(z̃t , θt−1) < τ then ▷ Does z̃t look suspicious?

5: Dt ← Dt−1 ∪ {z̃t} ▷ No

6: else

7: find counterexample zk using the algorithm ▷ Yes, find counter-example zk
8: present z̃t , zk to the user, receive possibly cleaned labels y ′

t , y
′
k

9: Dt ← (Dt−1 \ {zk}) ∪ {(xt , y ′
t), (xk , y

′
k)} ▷ Update data set

10: fit θt on Dt ▷ Update model

43

CINCER: Skeptical for the Right Reasons

1) User supplies mislabeled example “■”. 2) Machine catches the mistake because of low likelihood; CINCER

identifies clean example in support of machine’ skepticism. 3) Attentive user realizes and rectifies her mistake.
44

CINCER: Skeptical for the Wrong Reasons

1) User supplies clean example “■”. 2) Machine is skeptical because of low likelihood; CINCER identifies

mislabeled example in support of machine’ skepticism. 3) User relabels the mislabeled example.
45

Interacting via Concept-based Expla-
nations

Motivation - Limitations of Input-based Explanations

Lack of precision of input-based explanations for:

� Understandability

� Revisability

⇒ Difficult to access more abstract, concept-level

reasons particularly for black-box models

Credit: (Stammer et al., 2021)

46

Concept-Based Models (CBMs)

Modified figure from: (Koh et al., 2020)

Achieve partial, selective interpretability, via two step processing:

� Bottom level: f (x) = c, typically neural module extracts higher-level concepts from input samples

� Top level: g(c) = y , potentially more transparent module aggregates the concept activations for final

prediction

47

Concept-Based Models (CBMs)

Modified figure from: (Koh et al., 2020)

� Model’s decision is roughly independent of input given concept activations

� Concepts reperesentations are supervisedly or interactively human-aligned

48

Concept-Based Models – Learning Human-aligned Concept Representations

� Auto-encoder based concepts, inspectable for human-user (Alvarez-Melis and Jaakkola, 2018)

� Prototype representations e.g. of training samples or parts there of (Chen et al., 2019; Barnett et al.,

2021b)

� Concepts exlicitly learned from supervision (Koh et al., 2020; Chen et al., 2020)

� Interactively receiving feedback on feature-level dependencies (Lage and Doshi-Velez, 2020)

49

Part-Prototype Networks (aka ProtoPNets)

ProtoPNets Chen et al. (2019) are “gray-box” image classifiers that combine

� transparent reasoning

� flexibility of black-box neural networks

Prediction: compare the input image x with a set of part-prototypes, like objects or parts thereof.

Train: optimize the log-likelihood of the data and two clustering losses that encourage the part-prototypes to

strongly activate only on examples of their associated class.

50

Part-Prototype Networks

Embedding stage

51

Part-Prototype Networks

Part-Prototype stage

51

Part-Prototype Networks

Part-Prototype stage

51

Part-Prototype Networks

Aggregation stage

51

ProtoPNet explanations

For each part-prototype p, they compute:

1. relevance for the target decision (x, y) given by the score wjaj (x)

2. attribution map attr(p, x) showing where they activate on the input

3. training example that it projects onto

52

ProtoPNet explanations

For each part-prototype p, they compute:

1. relevance for the target decision (x, y) given by the score wjaj (x)

2. attribution map attr(p, x) showing where they activate on the input

3. training example that it projects onto

52

ProtoPNet explanations

For each part-prototype p, they compute:

1. relevance for the target decision (x, y) given by the score wjaj (x)

2. attribution map attr(p, x) showing where they activate on the input

3. training example that it projects onto

52

Confounding in ProtoPNets

Explanations expose confounds picked up from training data as part-prototypes.

Models exploit confounds to maximize training set performance.

� class-correlated watermarks

� irrelevant patches of background sky, sea or foliage

� borders of X-ray lung scans

Issue: they impact generalization and out-of-distribution performance Lapuschkin et al. (2019).

How to dissuade the model from acquiring confounds?

53

Confounding in ProtoPNets

Explanations expose confounds picked up from training data as part-prototypes.

Models exploit confounds to maximize training set performance.

� class-correlated watermarks

� irrelevant patches of background sky, sea or foliage

� borders of X-ray lung scans

Issue: they impact generalization and out-of-distribution performance Lapuschkin et al. (2019).

How to dissuade the model from acquiring confounds?

53

Existing debugging strategies

■ IAIA-BL penalizes part-prototypes

activating on pixels annotated as irrelevant Barnett et al. (2021a)

Limitations:

� attribution masks do not generalize across images

� substantial number of examples must be annotated

� acquiring per-pixel attribution is expensive

■ remove confounded prototypes and fine-tune the network and/or the top

layer

Limitations:

� re-learning the confound

� no guarantee that surviving prototypes capture meaningful information

54

Existing debugging strategies

■ IAIA-BL penalizes part-prototypes

activating on pixels annotated as irrelevant Barnett et al. (2021a)

Limitations:

� attribution masks do not generalize across images

� substantial number of examples must be annotated

� acquiring per-pixel attribution is expensive

■ remove confounded prototypes and fine-tune the network and/or the top

layer

Limitations:

� re-learning the confound

� no guarantee that surviving prototypes capture meaningful information

54

Concept-level debugging with ProtoPDebug

55

Concept-level debugging with ProtoPDebug

55

Concept-level debugging with ProtoPDebug

55

Concept-level debugging with ProtoPDebug

55

Fine-tuning the model

Forgetting loss minimizes how much the part-

prototype p activates on the concept f to be

forgotten

ℓfor(θ) :=
1

v

∑
y∈[v]

max
p∈Py

f∈Fy

act(p, f)

Remembering loss maximizes how much the

part-prototype p activates on the concept v to

be remembered

ℓrem(θ) := − 1

v

∑
y∈[v]

min
p∈Py

v∈Vy

act(p, v)

Overall loss to fine-tuning the model

ProtoPNets︷︸︸︷
ℓ(θ) +

ProtoPDebug︷ ︸︸ ︷
λfℓfor(θ) + λrℓrem(θ)

56

Fine-tuning the model

Forgetting loss minimizes how much the part-

prototype p activates on the concept f to be

forgotten

ℓfor(θ) :=
1

v

∑
y∈[v]

max
p∈Py

f∈Fy

act(p, f)

Remembering loss maximizes how much the

part-prototype p activates on the concept v to

be remembered

ℓrem(θ) := − 1

v

∑
y∈[v]

min
p∈Py

v∈Vy

act(p, v)

Overall loss to fine-tuning the model

ProtoPNets︷︸︸︷
ℓ(θ) +

ProtoPDebug︷ ︸︸ ︷
λfℓfor(θ) + λrℓrem(θ)

56

Fine-tuning the model

Forgetting loss minimizes how much the part-

prototype p activates on the concept f to be

forgotten

ℓfor(θ) :=
1

v

∑
y∈[v]

max
p∈Py

f∈Fy

act(p, f)

Remembering loss maximizes how much the

part-prototype p activates on the concept v to

be remembered

ℓrem(θ) := − 1

v

∑
y∈[v]

min
p∈Py

v∈Vy

act(p, v)

Overall loss to fine-tuning the model

ProtoPNets︷︸︸︷
ℓ(θ) +

ProtoPDebug︷ ︸︸ ︷
λfℓfor(θ) + λrℓrem(θ)

56

A debugging session with ProtoPDebug

In each round:

1. iterates over all learned part-prototypes p ∈ P

2. for each of them retrieves the training examples x that it activates the most on

3. if p appears confounded to user → add cut-out xR to forbidden concepts

4. if p appears high-quality to user → add cut-out xR to valid concepts

5. if no confounds found, terminate

6. fine-tune by minimizing ℓ(θ) + λfℓfor(θ) + λrℓrem(θ)

57

A debugging session with ProtoPDebug

In each round:

1. iterates over all learned part-prototypes p ∈ P

2. for each of them retrieves the training examples x that it activates the most on

3. if p appears confounded to user → add cut-out xR to forbidden concepts

4. if p appears high-quality to user → add cut-out xR to valid concepts

5. if no confounds found, terminate

6. fine-tune by minimizing ℓ(θ) + λfℓfor(θ) + λrℓrem(θ)

57

A debugging session with ProtoPDebug

In each round:

1. iterates over all learned part-prototypes p ∈ P

2. for each of them retrieves the training examples x that it activates the most on

3. if p appears confounded to user → add cut-out xR to forbidden concepts

4. if p appears high-quality to user → add cut-out xR to valid concepts

5. if no confounds found, terminate

6. fine-tune by minimizing ℓ(θ) + λfℓfor(θ) + λrℓrem(θ)

57

Concept-based debugging

input-level

penalizes part-prototypes that activate on pixels

annotated as irrelevant

concept-based (ProtoPDebug)

Penalizes part-prototype that correlate with

known-forbidden concepts

Advantages of concept-based supervision:

■ generalizes across images:

one concept-level annotation = several pixel-level annotations

■ speeds up convergence, avoids relapse

■ cheap click-based feedback by showing part-prototypes activation on images

58

Concept-based debugging

input-level

penalizes part-prototypes that activate on pixels

annotated as irrelevant

concept-based (ProtoPDebug)

Penalizes part-prototype that correlate with

known-forbidden concepts

Advantages of concept-based supervision:

■ generalizes across images:

one concept-level annotation = several pixel-level annotations

■ speeds up convergence, avoids relapse

■ cheap click-based feedback by showing part-prototypes activation on images

58

Concept-based debugging

input-level

penalizes part-prototypes that activate on pixels

annotated as irrelevant

concept-based (ProtoPDebug)

Penalizes part-prototype that correlate with

known-forbidden concepts

Advantages of concept-based supervision:

■ generalizes across images:

one concept-level annotation = several pixel-level annotations

■ speeds up convergence, avoids relapse

■ cheap click-based feedback by showing part-prototypes activation on images

58

Concept-based debugging

input-level

penalizes part-prototypes that activate on pixels

annotated as irrelevant

concept-based (ProtoPDebug)

Penalizes part-prototype that correlate with

known-forbidden concepts

Advantages of concept-based supervision:

■ generalizes across images:

one concept-level annotation = several pixel-level annotations

■ speeds up convergence, avoids relapse

■ cheap click-based feedback by showing part-prototypes activation on images

58

Empirical Analysis

Experiment 1

Experiment 2

Experiment 3

Concept-level debugging is useful ...

... even for natural confounds ...

... and in high-stakes applications.

59

Experiment 1: Concept-level vs instance-level debugging

CUB5box : synthetic colored

square added to 3 classes out

of 5

0 2 4 6 8 10 12 14
training epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75

F 1

ProtoPDebug
ProtoPNet clean
ProtoPNet

IAIA-BL n=3
IAIA-BL 5%
IAIA-BL 20%
IAIA-BL 100%

IAIA-BL with 100% pixel annotations fails to match the confound-free ProtoPNetsclean

ProtoPDebug with only 3 single clicks reaches the performance of ProtoPNetsclean

60

Experiment 1: Concept-level vs instance-level debugging

CUB5box : synthetic colored

square added to 3 classes out

of 5

0 2 4 6 8 10 12 14
training epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75

F 1

ProtoPDebug
ProtoPNet clean
ProtoPNet

IAIA-BL n=3
IAIA-BL 5%
IAIA-BL 20%
IAIA-BL 100%

IAIA-BL with 100% pixel annotations fails to match the confound-free ProtoPNetsclean

ProtoPDebug with only 3 single clicks reaches the performance of ProtoPNetsclean

60

Experiment 2: ProtoPDebug on CUB5nat

CUB5nat :

- 5 most confounded CUB200 classes

- contains natural confounds (patches of

sky or foliage)

- swapped backgrounds of test images to

prevent confounding to affect performance

three rounds of sequential debugging

ProtoPNets ProtoPDebug

test F1 0.56 0.62 (+0.08)

interpretability 0.68 0.88 (+0.20)

ProtoPNets ProtoPDebug

ProtoPDebug improves over ProtoPNets and learn more interpretable prototypes

61

Experiment 2: ProtoPDebug on CUB5nat

CUB5nat :

- 5 most confounded CUB200 classes

- contains natural confounds (patches of

sky or foliage)

- swapped backgrounds of test images to

prevent confounding to affect performance

three rounds of sequential debugging

ProtoPNets ProtoPDebug

test F1 0.56 0.62 (+0.08)

interpretability 0.68 0.88 (+0.20)

ProtoPNets ProtoPDebug

ProtoPDebug improves over ProtoPNets and learn more interpretable prototypes

61

Experiment 3: ProtoPDebug on COVID

� COVID- vs. COVID+

� data sets: ????

� four rounds of sequential debugging

1st Round 2nd Round 3nd Round 4th Round

✗ ✗ ✗ ✓

✗ ✗ ✗ ✓

test F1: ProtoPNets (first column) 0.26 → 0.54 ProtoPDebug (last column)

62

Grounded Natural Language Explanations (Zellers et al., 2021)

Grounded symbolic explanations via transformer-

based physics dynamics model

� Use a pre-trained language module (BERT)

� Model learns grounded commonsense knowl-

edge via interactions in a simulated physics

environment

� Learns to communicate action predictions in

symbolic form

Credit: (Zellers et al., 2021)

63

Interpretability-by-design?

■ What is a concept?

■ Symbolic communication requires machine concepts to roughly match those understood and used by the user

– in both directions.

■ Usually machine acquires concepts from data using heuristics – e.g., autoencoders, prototypes, etc. – but this

gives no guarantees.

■ Even supplying concept-level supervision is not enough to ensure that concepts have the right semantis (e.g.,

concept leakage)

64

Interpretability-by-design?

■ What is a concept?

■ Symbolic communication requires machine concepts to roughly match those understood and used by the user

– in both directions.

■ Usually machine acquires concepts from data using heuristics – e.g., autoencoders, prototypes, etc. – but this

gives no guarantees.

■ Even supplying concept-level supervision is not enough to ensure that concepts have the right semantis (e.g.,

concept leakage)

64

Take-away

� Explanations are a vital part in understanding the internal reasoning of a model and identify bugs

� Annotators naturally supply explanations (?).

� Aligning model’s explanations with user’s corrections fixes bugs

� We covered human-in-the-loop strategies for modern ML models / XAI techniques

� Research indicates particular advantage of symbolic, concept-level explanations for human-machine interac-

tions (Kambhampati et al., 2021).

� Several exciting challenges remain, maybe for you to tackle?

■ Curated literature available at: github.com/awesome-explanatory-supervision

65

https://github.com/stefanoteso/awesome-explanatory-supervision

References

Alvarez-Melis, D. and Jaakkola, T. S. (2018). Towards robust interpretability with self-explaining neural

networks. In Proceedings of the 32nd International Conference on Neural Information Processing Systems,

pages 7786–7795.

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., and Müller, K.-R. (2010). How to

explain individual classification decisions. The Journal of Machine Learning Research, 11:1803–1831.

Barnett, A. J., Schwartz, F. R., Tao, C., Chen, C., Ren, Y., Lo, J. Y., and Rudin, C. (2021a). A case-based

interpretable deep learning model for classification of mass lesions in digital mammography. Nat. Mach. Intell.

Barnett, A. J., Schwartz, F. R., Tao, C., Chen, C., Ren, Y., Lo, J. Y., and Rudin, C. (2021b). Iaia-bl: A

case-based interpretable deep learning model for classification of mass lesions in digital mammography. arXiv

preprint arXiv:2103.12308.

Bastings, J. and Filippova, K. (2020). The elephant in the interpretability room: Why use attention as

explanation when we have saliency methods? In Proceedings of the Third BlackboxNLP Workshop on

Analyzing and Interpreting Neural Networks for NLP, pages 149–155.

Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., and Su, J. K. (2019). This looks like that: Deep learning for

interpretable image recognition. Advances in Neural Information Processing Systems, 32:8930–8941.

Chen, Z., Bei, Y., and Rudin, C. (2020). Concept whitening for interpretable image recognition. Nature

Machine Intelligence, 2(12):772–782.

DeGrave, A. J., Janizek, J. D., and Lee, S.-I. (2021). Ai for radiographic covid-19 detection selects shortcuts

over signal. Nature Machine Intelligence, 3(7):610–619.

65

Heo, J., Park, J., Jeong, H., Kim, K. J., Lee, J., Yang, E., and Hwang, S. J. (2020). Cost-effective interactive

attention learning with neural attention processes. In International Conference on Machine Learning, pages

4228–4238. PMLR.

Honeycutt, D., Nourani, M., and Ragan, E. (2020). Soliciting human-in-the-loop user feedback for interactive

machine learning reduces user trust and impressions of model accuracy. In Proceedings of the AAAI

Conference on Human Computation and Crowdsourcing, volume 8, pages 63–72.

Kambhampati, S., Sreedharan, S., Verma, M., Zha, Y., and Guan, L. (2021). Symbols as a lingua franca for

bridging human-ai chasm for explainable and advisable ai systems. arXiv preprint arXiv:2109.09904.

Koh, P. W. and Liang, P. (2017). Understanding black-box predictions via influence functions. In Proceedings

of the 34th International Conference on Machine Learning, pages 1885–1894.

Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., and Liang, P. (2020). Concept

bottleneck models. In International Conference on Machine Learning, pages 5338–5348. PMLR.

Kulesza, T., Burnett, M., Wong, W.-K., and Stumpf, S. (2015). Principles of explanatory debugging to

personalize interactive machine learning. In Proceedings of the 20th international conference on intelligent

user interfaces, pages 126–137.

Lage, I. and Doshi-Velez, F. (2020). Learning interpretable concept-based models with human feedback. arXiv

preprint arXiv:2012.02898.

Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., and Müller, K.-R. (2019). Unmasking

clever hans predictors and assessing what machines really learn. Nature communications, 10(1):1–8.

65

Lertvittayakumjorn, P., Specia, L., and Toni, F. (2020). Find: human-in-the-loop debugging deep text

classifiers. In Conference on Empirical Methods in Natural Language Processing, pages 332–348.

Popordanoska, T., Kumar, M., and Teso, S. (2020). Machine guides, human supervises: Interactive learning

with global explanations. arXiv preprint arXiv:2009.09723.

Rieger, L., Singh, C., Murdoch, W., and Yu, B. (2020). Interpretations are useful: penalizing explanations to

align neural networks with prior knowledge. In International Conference on Machine Learning, pages

8116–8126. PMLR.

Ross, A. S., Hughes, M. C., and Doshi-Velez, F. (2017). Right for the right reasons: training differentiable

models by constraining their explanations. In Proceedings of the 26th International Joint Conference on

Artificial Intelligence, pages 2662–2670.

Schramowski, P., Stammer, W., Teso, S., Brugger, A., Herbert, F., Shao, X., Luigs, H.-G., Mahlein, A.-K., and

Kersting, K. (2020). Making deep neural networks right for the right scientific reasons by interacting with

their explanations. Nature Machine Intelligence, 2(8):476–486.

Shao, X., Skryagin, A., Schramowski, P., Stammer, W., and Kersting, K. (2021). Right for better reasons:

Training differentiable models by constraining their influence function. In Proceedings of Thirty-Fifth AAAI

Conference on Artificial Intelligence (AAAI).

Simpson, B., Dutil, F., Bengio, Y., and Cohen, J. P. (2019). Gradmask: Reduce overfitting by regularizing

saliency. In International Conference on Medical Imaging with Deep Learning–Extended Abstract Track.

Stammer, W., Schramowski, P., and Kersting, K. (2021). Right for the right concept: Revising neuro-symbolic

concepts by interacting with their explanations. In Conference on Computer Vision and Pattern Recognition,

pages 3619–3629.

65

Teso, S. (2019). Toward faithful explanatory active learning with self-explainable neural nets. In Proceedings of

the Workshop on Interactive Adaptive Learning (IAL 2019), pages 4–16.

Teso, S., Alkan, Ö., Stammer, W., and Daly, E. (2022). Leveraging explanations in interactive machine learning:

An overview. arXiv preprint arXiv:2207.14526.

Teso, S., Bontempelli, A., Giunchiglia, F., and Passerini, A. (2021). Interactive label cleaning with

example-based explanations. In NeurIPS’21.

Teso, S. and Kersting, K. (2019). Explanatory interactive machine learning. In Proceedings of the 2019

AAAI/ACM Conference on AI, Ethics, and Society, pages 239–245.

Zellers, R., Holtzman, A., Peters, M. E., Mottaghi, R., Kembhavi, A., Farhadi, A., and Choi, Y. (2021). Piglet:

Language grounding through neuro-symbolic interaction in a 3d world. In Annual Meeting of the Association

for Computational Linguistics, pages 2040–2050.

Zylberajch, H., Lertvittayakumjorn, P., and Toni, F. (2021). Hildif: Interactive debugging of nli models using

influence functions. Workshop on Interactive Learning for Natural Language Processing, page 1.

65

	Are Local Explanations Enough?
	Interacting via Example-based Explanations
	Interacting via Concept-based Explanations
	References

