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B SOTA Deep Learning models are Black-boxes

v/ High-dimensional, sub-symbolic inputs X Not self-explainable
v/ Learn from 11D X Cannot learn over time
v High performance in specific tasks X Bad performances on OOD generalization

fictional




Concept in Explainable Al

Concept Bottleneck Models

Pang Wei Koh ! Thao Nguyen "2 Yew Siang Tang " !

Stephen Mussmann! Emma Pierson! Been Kim? Percy Liang !

Abstract input x
We seek to learn models that we can interact with _concepts ¢
using high-level concepts: if the model did not sclerosis
bone spurs tasky

think there was a bone spur in the x-ray, would
it still predict severe arthritis? State-of-the-art
models today do not typically support the manip-
ulation of concepts like “the existence of bone
spurs”, as they are trained end-to-end to go di-
rectly from raw input (e.g., pixels) to output (e.g.,
arthritis severity). We revisit the classic idea of
first predicting concepts that are provided at train-
ing time, and then using these concepts to predict
the label. By construction, we can intervene on
these concept bottleneck models by editing their
predicted concept values and propagating these
changes to the final prediction. On x-ray grading
and bird identification, concept bottleneck mod-
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wing color
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els achieve competitive accuracy with standard Figure 1. We study concept bottleneck models that first predict
end-to-end models, while enabling interpretation an intermediate set of human-specified concepts c, then use ¢ to
in terms of high-level clinical concepts (“bone predict the final output y. We illustrate the two applications we
ernre™ ar hird attribntec (“wina calar™ Thace consider: knee x-ray grading and bird identification.

(Source: [1] Also: Concept Whitening [2])



Current Strategies for Interpretability

B Concepts are “sparse”

M Concepts are “orthogonal”

M Concepts “activate highly” on concrete training examples
B Concepts “activate highly” on parts of training examples



Problems

B Learn with label and concept supervision (concepts are specific for the application)

X The label/concept accuracy trade-off (supervision on concepts?)

X Spurious correlations in the learned concepts (aka Concept Leakage)
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Promises and Pitfalls of Black-Box Concept Learning Models
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Abstract

Machine learning models that incorporate concept
leaing s eemediste scpi i deision
s can match the performance of
ox predictive models while retaining the
ability to explain outcomes in human understand-
able terms. However, we demonstrate that the

‘models

Losch etal. (2019)). In each case, the neural network model
learns 1o map raw input to concepts and then map those
concepts to predictions. We call the mapping from input to
concepts a Concept Learning Model (CLM), although this
‘mapping may not always be trained independently from the
downstream prediction task. Models that incorporate a CLM
component have been shown to maich the performance of
complex black-box prediction models while etaining the
of

defined con-

bun
forhese models,onecan xplin th model

o
cepts, and that natural mitigation strategies do
notfully work, rendering the interpretation of the
downstream prediction misleading. We describe
the mechanism underlying the information leak-

its effects.

decision in terms of intermediate concepts.

Unfortunately, recent work noted that black-box CLMs do
not learn as expected. Specifically, Margeloiu et a. (2021)

outputs of CLMs used in Concept Bottle-
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Concept bottleneck models map from raw inputs to concepts, and then from con-
cepts to targets. Such models aim to incorporate pre-specified, high-level concepts
into the learning procedure, and have been motivated to meet three desiderata
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Neuro-Symbolic models make also use of concepts

B Neuro-Symbolic (NeSy) models/predictors are deemed to be trustworthy due to compliance to
prior-knowledge.
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@ Perception: Extract (binary) concepts to be input for the reasoning

@ Reasoning: Perform probabilistic reasoning from the concepts



Neuro-Symbolic models make also use of concepts

B Neuro-Symbolic (NeSy) models/predictors are deemed to be trustworthy due to compliance to
prior-knowledge.

‘ Cl+C2=Y }—>Y:5

T T
c, c,
T T
nn ’ nn
T T

@ Perception: Extract (binary) concepts to be input for the reasoning
@ Reasoning: Perform probabilistic reasoning from the concepts

B Changing the knowledge we can use the same concepts to solve different tasks.



Trustworthiness claim

B NeSy predictors are learned with input-output samples (typically no concept supervision)

H Claim: this is sufficient to solve the symbol grounding problem:

integrating the knowledge = recovering the intended concepts ? (False)

% ROAD-R 2023 Home  Announcements GettingStarted ~ Dataset Prizes Resources Rules
—

About the Dataset

ROAD-R is an extension of the ROAD dataset with a set of 243 manually annotated requirements over the 41 labels grouped into agents, actions and
locations. The requirements are logical constraints provided in disjunctive normal form and express background knowledge applicable in autonomous
driving scenarios, such as:

= Atraffic light cannot be red and green at the same time.

« Avehicle lane cannot be a parking ot

« Atraffic light cannot move,

« Ifan agent is crossing, it is either a pedestrian or a cyclist.




How to make sure the learned concepts/representations are interpretable?

1. Interpretability in Representation Learning. What is an interpretable representation?

2. Reasoning Shortcuts (in NeSy Al). Do NeSy Al models learn the intended concepts?
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Interpretability of the concepts

10



“color” “shape”

What is concept interpretability? If any change a makes to their mental representation impacts the
machine representation in a way that they can understand, they the two concepts share the same

name.
B The formalization includes the human B Leakage is lack of context-style separation
B Alignment for non-disentangled repr B Link to causal abstractions

11



The Naming Game

red
circular
duck

—
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The Naming Game
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circular
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The Naming Game
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The Naming Game

)

can the user understand

_| the change?

blue
circular
duck




M Let's formalize what we are doing:

O Several generative factors G = (Gy,. ..

» Gn),

encoding hair color, age, complexion, ...

Generative process, adapted from [5].
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M Let's formalize what we are doing:

O Several generative factors G = (Gy, ..., Gp),

encoding hair color, age, complexion, ...

O They jointly cause an observation X, e.g., the
Yoda image

O May be correlated through hidden confounds C,
but can be independently manipulated

O Model acquires latent factors Z1, ..., Zx

Generative process, adapted from [5].

16



Interpretability as Alignment

B Communication is possible < same semantics

0 Assume subset of generative factors G, are
understandable to a human agent. For instance,
G1 = age, G2 = hair color, G3 = complexion.

Interpretability as alignment.
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Interpretability as Alignment

B Communication is possible < same semantics
0 Assume subset of generative factors G, are
understandable to a human agent. For instance,
G1 = age, G2 = hair color, G3 = complexion.

O CBM implicitly learns a map « : G1.3 — Z1:3

B Example: if o is permutes elements, then Z;.3
are by construction interpretable!

Interpretability as alignment.
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Interpretability as Alignment

B Communication is possible < same semantics

0 Assume subset of generative factors G, are
understandable to a human agent. For instance,
G1 = age, G2 = hair color, G3 = complexion.

O CBM implicitly learns a map « : G1.3 — Z1:3

B Example: If « is rescales individual elements,
then Z1.3 are by construction interpretable!

Interpretability as alignment.
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Interpretability as Alignment

B Communication is possible < same semantics

0 Assume subset of generative factors G, are
understandable to a human agent. For instance,
G1 = age, G2 = hair color, G3 = complexion.

O CBM implicitly learns a map « : G1.3 — Z1:3

O How much can we push?

Interpretability as alignment.
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Interpretability as Alignment

B Communication is possible < same semantics

0 Assume subset of generative factors G, are
understandable to a human agent. For instance,
G1 = age, G2 = hair color, G3 = complexion.

O CBM implicitly learns a map « : G1.3 — Z1:3

O How much can we push? Let's be conservative

Interpretability as alignment.

17



Interpretability as Alignment

The map alpha from ground-truth concepts to
machine concepts:

@ mixes no two generative factors into the
same learned concept (disentanglement)

@ is elementwise monotonic.

Interpretability as alignment.
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The map alpha from ground-truth concepts to
machine concepts:

@ mixes no two generative factors into the
same learned concept (disentanglement)

@ is elementwise monotonic.

Interpretability as alignment.

17



@ Interpretability = Alignment

Effect of intervening on observed G, or unobserved G_, factors:

M ground truth M ground truth M ground truth
M learned M learned M learned

M ground truth
M learned

18



@ Concept Leakage = Unintended Semantics

@ Fit two concepts to recognize MNIST images of
“4"s and "5"s using full concept annotations

itis "4" | it is "5"

19



@ Concept Leakage = Unintended Semantics

@ Fit two concepts to recognize MNIST images of
“4"s and "5"s using full concept annotations

itis "4" | it is "5"

@ Use the learned concepts, predict parity of
remaining digits (i.e., all except "4" and "5")

"even"or "odd"

/ 0 3 ¢

B Performance is much better than random!

19



@ GlanceNet = Aligned A Leak-proof

GlanceNets = VAE + concept supervision
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@ GlanceNet = Aligned A Leak-proof

GlanceNets = VAE + concept supervision + open-set rejection

osr T input space x latent space z

20



@ GlanceNet = Aligned A Leak-proof

GlanceNets = VAE + concept supervision + open-set rejection

osr T input space latent space

20



GlanceNets Foster Alignment

B Metrics:
e Accuracy
o Alignment (linear DCI)

B CelebA w/ supervision for 6 generative factors,
realistic labels obtained via clustering.

B Same # of concepts for both GlanceNets and
Concept Bottleneck models [4].

Accuracy
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Learning the concepts/symbols in Neuro-Symbolic Al
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We study predictions where symbolic knowledge K must be satisfied,
e.g., autonomous driving with safety constraints

23



We study predictions where symbolic knowledge K must be satisfied,
e.g., autonomous driving with safety constraints

Faster-RCNN
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We study predictions where symbolic knowledge K must be satisfied,
e.g., autonomous driving with safety constraints

§ — | Faster-RCNN
bb1: Pedestrian
bb3: Car (far)

K = (pedestrian v red = stop)

Learning on (input,output) samples (annotation on concepts is costly!)
like DeepProbLog [6], Semantic Loss [7], and Logic Tensor Networks [8]

23



Probably, you'd expect that. ..
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B Knowledge + supervision on labels constrain the concepts to acquire the right semantics, i.e., to be
grounded correctly.
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“if my NeSy model predicts correct actions in all examples of autonomous driving, then the
concepts are good! For instance, red_light = T iff there is a red traffic light in the dashcam
image!”
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Probably, you'd expect that. ..

B Knowledge + supervision on labels constrain the concepts to acquire the right semantics, i.e., to be
grounded correctly.

“if my NeSy model predicts correct actions in all examples of autonomous driving, then the

concepts are good! For instance, red_light = T iff there is a red traffic light in the dashcam
image!”

B This would be ideal: concepts with the right semantics generalize to new tasks (as required by, e.g.,
NeSy verification [9]) and support interpretability.

24



K, = (pedestrian v red = stop)

y=stop §=stop y=stop §=stop

M Task: predict stop vs. go using concepts “pedestrian”, “red’, and “green”.
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K, = (pedestrian v red = stop)

~

y=stop §=stop y=stop §=stop
B Task: predict stop vs. go using concepts "pedestrian’, “red’, and “green’.

Perfect accuracy by predicting pedestrians as red lights!!!

25



K, = (emergency A -pedestrian = go) A K,

s ™

.

red
s

y=go X

B Task: ...but now if there is an emergency, we can ignore “red” lights

25



We answer to the following questions:
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We answer to the following questions:

1. How can we characterize RSs, and how many of them are present?

2. What are the root causes?
3. What are natural mitigation strategies?

4. Do RSs appear in real-world tasks?

26



Formalization (but not covered today :) )

B Data generation: g € G C N* and s € R?. The joint distribution is
factorized p(G)p(S) and there exist:

p"(X|G,8) and p*(Y|G;K)

where x € X C R" and y € ¥ C N*. Typically, £ < k.

M Learning in DPL, with C = G: @
po(Y [ X;K) = p*(Y | ¢ K)po(c | X)
ceC T
trained with max H po(y | x; K) @
(x,y)€D
B Technical Assumptions: The data generation
A1l There exists invertible (and differentiable over s) f : (g,s) — x process.

underlying p*(X | G,S): p"(x | g,5) = d(x — f(g,s))
A2 The knowledge K is deterministic: there exists Sk : g — y such that
P (y | & K) = 1{y = B«(g)}

27



@ Intended Semantics vs Reasoning Shortcuts
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@ Intended Semantics vs Reasoning Shortcuts

B We construct the data generation process from Causal Representation
Learning where:

e G are (binary or discrete) ground-truth concepts

e S are (real-valued) stylistic factors @

The data generation
process.
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Learning where:

e G are (binary or discrete) ground-truth concepts

e S are (real-valued) stylistic factors

B We consider two key properties:
1. Optimality when Y is correct A\ K is satisfied
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@ Intended Semantics vs Reasoning Shortcuts

B We construct the data generation process from Causal Representation
Learning where:

e G are (binary or discrete) ground-truth concepts

e S are (real-valued) stylistic factors

B We consider two key properties:
1. Optimality when Y is correct A\ K is satisfied

2. Intended Semantics when (Vx, ¢ = g)

Def A Reasoning Shortcut (RS) occurs whenever the model achieves
optimality but learns unintended concepts.

‘®

The NeSy model
extracts C and
computes Y.

28



@ How many Reasoning Shortcuts?

®

i

©

Generative process +
the NeSy predictor.
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@ How many Reasoning Shortcuts?

M Every NeSy predictor entails a map « : g — ¢ from ground-truth to
learned concepts. Ideally, it'd be the identity!

()
©

Map « entailed by a
NeSy predictor.

29



@ How many Reasoning Shortcuts?

B Every NeSy predictor entails a map « : g — ¢ from ground-truth to
learned concepts. Ideally, it'd be the identity!

B We consider those a's that are optimal for the reasoning Ok : g +— vy,
underlying the prior knowledge.

(2

Map o and knowledge

Bk.
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@ How many Reasoning Shortcuts?

M Every NeSy predictor entails a map « : g — ¢ from ground-truth to
learned concepts. Ideally, it'd be the identity!

B We consider those a's that are optimal for the reasoning Sk : g — vy,
underlying the prior knowledge.

Theorem (informal): # of Reasoning Shortcuts

Under assumptions™, the # of these a's for NeSy predictors? is:

EQEA ]]'{ /\g€supp(G) (BK © a)(g) = BK(g)} >1

“We prove they are shared between DeepProbLog [6], Semantic Loss [7], and Logic Tensor
Networks [8].

®

Map o and knowledge
Bk.

29



Example: MNIST-Addition with few sums.

‘ CI#—C?::Y'}*Y:5

T T
c, c,
T T
o [
T T

Inference in DeepProbLog with the same neural
network M

A+rd=1
B+H-=2

Problem. How many optimal solutions?

G

Qe

le

20

C

0

ol

2
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Example: MNIST-Addition with few sums.

B+dA-=1
‘ Cil+C2=Y }—>Y—5 A-H-=2
T T
CT'] CT’Q Solution 1. Intended solution
T T
"
le

Inference in DeepProbLog with the same neural
network M
2¢

20

91

92
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Example: MNIST-Addition with few sums.

‘ CI#—C?::Y'}*Y:5

T T
c, c,
T T
o [
T T

Inference in DeepProbLog with the same neural

network M

A+rd=1
B+H-=2

Solution 2. Reasoning Shortcut

G
Qe
le

2¢

20

21

2
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Example: MNIST-Addition with few sums.

A+rd=1

‘ Ci1+0C2=Y }—>Y:5 A+H-=2
T T

¢ CTYQ Solution 2. Reasoning Shortcut

C c

B Knowledge is not enough explicit to recover the right concepts!

k1 ' !
le 31
Inference in DeepProbLog with the same neural
network M
2¢ 2

30



Example: MNIST-Addition with few sums.

A+rd=1
Cl+C2=Y }—*Y:5 B+H-=2
CI B Knowledge is not enough explicit to recover the right concepts!
nn J { mn—1 o -C
. |
ﬁ B Concepts combinations are not exhaustive! 0
: . 167 1
Inference in DeepProbLog with the same neural
network H
2 2

30



@ What are the Root Causes?

Recall the count is:

ZOLEA ]]‘{ /\g€supp(G) (IBK © (X)(g) = IBK(g)} >1
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@ What are the Root Causes?

Recall the count is:

ECXEA ]]'{ /\gESupp(G) (ﬁK o a)(g) = ﬁK(g)} > 1

Causes of RSs can be read off of it:

@ Structure of knowledge K, via 3,

@ Loss, via optimality of objective

objective

@ Structure of data set, via supp(G)
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@ What are the Root Causes?

Recall the count is:

Z ]1{ /\gESUpp(G) (ﬁK © )(g) = /HK(g)} >1

objective

Causes of RSs can be read off of it:

G Structure of knowledge K, via 3, @ Structure of data set, via supp(G)

@ Loss, via optimality of objective Architecture bias of the model, via

31



@ Natural Mitigation Strategies (are not enough)
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@ Natural Mitigation Strategies (are not enough)

TARGET REQ.
Multi-task @ tasks

Knowledge becomes more explicit

B Multi-task learning consists on solving more tasks in parallel

32



@ Natural Mitigation Strategies (are not enough)

TARGET REQ. TARGET REQ.
Multi-task @ tasks Concept-sup @+@ concepts
Knowledge becomes more explicit Optimizes the ideal objective

B Concept supervision involves regressing on the ground-truth concepts

32



@ Natural Mitigation Strategies (are not enough)

e )
TARGET REQ. TARGET REQ.
Multi-task @ tasks Concept-sup @+@ concepts
Knowledge becomes more explicit Optimizes the ideal objective
\ J
\
TARGET REQ.
Reconstruction @ (dec.)
Avoids collapsing the concepts
7

B Reconstruction penalty for recovering the original input from the learned concepts
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@ Natural Mitigation Strategies (are not enough)

TARGET REQ. TARGET REQ.
Multi-task @ tasks Concept-sup @+@ concepts
Knowledge becomes more explicit Optimizes the ideal objective
N .
TARGET REQ. TARGET REQ.
Reconstruction @ (dec.) Disentanglement @ structure
Avoids collapsing the concepts Independent concepts
J \

M Disentanglement = independent variations of the concepts

32



Natural Mitigation Strategies (are not enough)

Table 1: Impact of different mitigation strategies on the number of deterministic optima: R is
reconstruction, € supervision on C, MTL multi-task learning, and DIS disentanglement. All strategies
reduce the number of «’s in Eq. (6), sometimes substantially, but require different amounts of effort

to be put in place. Actual counts for our data sets are reported in Appendix C.2.

MITIGATION REQUIRES CONSTRAINT ON « ASSUMPTIONS RESULT
None - Ngeswpia) ((Bx 0 @)(8) = Br(g)) Al A2 Theorem 2
MTL Tasks Ngesup(@) Neciry ((Beo 0 @) (8) = By (8)) Al, A2 Proposition 4
¢ Sup. on C 25 Cupp(C) Nier (vi(g) = g:) Al Proposition 5
R - Ag.g’ coupp(C) zre’ (a(g) # alg") A1 A3 Proposition 6
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Natural Mitigation Strategies (are not enough)

Table 1: Impact of different mitigation strategies on the number of deterministic optima: R is
reconstruction, € supervision on C, MTL multi-task learning, and DIS disentanglement. All strategies
reduce the number of «’s in Eq. (6), sometimes substantially, but require different amounts of effort
to be put in place. Actual counts for our data sets are reported in Appendix C.2.

MITIGATION REQUIRES CONSTRAINT ON « ASSUMPTIONS RESULT
None - Ngeswpia) ((Bx 0 @)(8) = Br(g)) Al A2 Theorem 2
MTL Tasks Ngesupic) Neciry ((Beer © @) (&) = Bxa (8)) Al A2 Proposition 4
¢ Sup. on C /\ggsc;upp(c) Nier (vi(g) = g:) Al Proposition 5
R - Ag.g’ coupp(C) zre’ (a(g) # alg") A1 A3 Proposition 6

B Plenty of experiments: no existing mitigation strategy is sufficient in all cases!
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Natural Mitigation Strategies (are not enough)

Table 1: Impact of different mitigation strategies on the number of deterministic optima: R is
reconstruction, € supervision on C, MTL multi-task learning, and DIS disentanglement. All strategies
reduce the number of «’s in Eq. (6), sometimes substantially, but require different amounts of effort
to be put in place. Actual counts for our data sets are reported in Appendix C.2.

MITIGATION  REQUIRES CONSTRAINT ON « ASSUMPTIONS RESULT
None - Ngeswpia) ((Bx 0 @)(8) = Br(g)) Al A2 Theorem 2
MTL Tasks Ngesupic) Neciry ((Beer © @) (&) = Bxa (8)) Al A2 Proposition 4
C Sup. on C /\ggsc;upp(c) Nier (u,(g) = g,) Al Proposition 5
R - Ag.g’ coupp(C) zre’ (a(g) # alg") A1 A3 Proposition 6

B Plenty of experiments: no existing mitigation strategy is sufficient in all cases!

B Bonus: We prove that optimal maps «'s are the extremes of the simplex of optimal solutions in
Probabilistic Logic. This can be leveraged to be agnostic about which RS to pick!
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Example: MNIST-Addition with full dataset, without disentanglement

Y=5
1
[K:(01+CQ:Y)
T T
¢ C
R
T T

(0,2)e

(11)e

(2,0)e

¢(0,0)

¢(0,1)

e(1,0)

¢(0,2)

o(1,1)

*(2,0)
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Example: MNIST-Addition with full dataset, without disentanglement

G C
Y=245
T (0,0)e 2(0,0)
[ K=(Ci+ Co=Y)
(0,1) (0,1)
T T i:
% (%2 (1,0)e (1,0)
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Example: MNIST-Addition with full dataset, without disentanglement
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Example: MNIST-Addition with full dataset, without disentanglement
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Example: MNIST-Addition with full dataset, without disentanglement

Y=15
T
K= (Ci+ Cg2=Y)
T T
C Cs
T T
R
i i

In this setting, the number of Reasoning Shortcuts
scales like:
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Example: MNIST-Addition with full dataset, without disentanglement

Y=5 In this setting, the number of Reasoning Shortcuts
T scales like:
KZ(C]—I—CQZY) ~ 1078
T T
C, C
T T
T T
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Example: MNIST-Addition with full dataset,

[ Cil+C2=Y }—>Y:5

T T

& C;

T T
Bk

T T

without disentanglement

In this setting, the number of Reasoning Shortcuts

scales like:

~ 1078

If we disentangle the concepts, Reasoning
Shortcuts completely vanish!

A+A-=0
A+d-=1
a+8=18
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Example: MNIST-Addition with full dataset, without disentanglement

In this setting, the number of Reasoning Shortcuts

scales like:
‘ Cl1+C2=Y ]—»Y:5 "
~ 10
T T
CI 02 If we disentangle the concepts, Reasoning
1 . T . Shortcuts completely vanish!
nn j [ nn ? Frequency in % of RSs over 30 optimal runs.
T T XOR MNIST-Addition

DPL SL LTN DPL SL LTN
= 100% 100% 100% 96.7% 82.9% 100%

pis 0% 0% 0% 0% 0% 0%
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Example: MNIST-Addition with full dataset, without disentanglement

In this setting, the number of Reasoning Shortcuts

scales like:
‘ Cl1+C2=Y ]—»Y:5 "
~ 10
g
B Having disentanglement in practice is hard, the # of RSs can explode!
runs.
i) T XOR MNIST-Addition

DPL SL LTN DPL SL LTN
= 100% 100% 100% 96.7% 82.9% 100%

pis 0% 0% 0% 0% 0% 0%
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@ BDD-0IA: Real-world Autonomous Vehicle Data Set [10]

Dashcam Image

Global Environment Awareness
& Salient Object Ranking

! !

At ducing Objects Multiple-Action With Explanation

S ti i,
tggestion - Traffic light
is red
Q I Obstacle:

Traffic ——————— pedestrian
light Pedestrians
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@ BDD-0IA: Real-world Autonomous Vehicle Data Set [10]

M Predict one or more actions:
e move_forward / stop
e turn_left

e turn_right

M 20-ish concepts including:
e red_light / green_light
e obstacle / road_clear

Predicted (C)
FORWARD STOP LEFT

DPL

Ground-truth (G)

DPL+C+H

Top: No supervision on concepts
Bottom: Full supervision on concepts + entropy

RIGHT

10

00
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Unintended Concepts do not Transfer in NeSy Continual Learning [11]
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Unintended Concepts do not Transfer in NeSy Continual Learning [11]

B Learn to solve a sequence of NeSy predictions over different episodes/tasks
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Unintended Concepts do not Transfer in NeSy Continual Learning [11]

B Learn to solve a sequence of NeSy predictions over different episodes/tasks

B We show that here Reasoning Shortcuts are also likely to happen and standard CL strategies fail
to preserve the intended concepts
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Unintended Concepts do not Transfer in NeSy Continual Learning [11]

B Learn to solve a sequence of NeSy predictions over different episodes/tasks

B We show that here Reasoning Shortcuts are also likely to happen and standard CL strategies fail
to preserve the intended concepts

Same_COIOr -

Task 1 Examples Future Task

Task 2 Examples

1 1
1 1
1 1
1 1
1 1
1 1
sl I i
y=1 | v=0 y=1 |  v=1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

—
~—

Y=0
Pred [ § | Pred [l 8
? 7
nn
True [ § | True

E. Marconato, G. Bontempo, E. Ficarra, S. Calderara, A. Passerini, and S. Teso; Neuro-Symbolic Continual Learning:
Knowledge, Reasoning Shortcuts, and Concept Rehearsal, ICML (2023).
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Take-home message:

B Interpretability of concepts can be framed within a Causal framework and allows to define properly
some notions, like interpretability, concept leakage, and completeness.

B Reasoning shortcuts constitute a severe problem for perception (the maps o) 4 reasoning (the
knowledge K), undermining trustworthiness and interpretability.

o Existing mitigation strategies are not effective and more research is needed!

B Fruitful intersection between Concept Learning, NeSy Al with Causal Representation Learning.

2 1 o

Ground-truth

3

DeepProbLog (left),

Predicted
0 1

Semantic Loss (center),

Predicted Predicted
1 2 1

o 2 3

3 o

and Logic Tensor Networks (right) pick similar Reasoning Shortcuts.
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Future extension to learning end-to-end

B New works are appearing to learn both the concepts and the knowledge:

e DSL (Deep Symbolic Learning) [12]
e ROAP (Regularize, Overparametrize, and Amoritize for Programs) [13]

Figure 1: Architecture of Deep Symbolic Learning for the Sum task. Red arrows represent the backward signal during learning.

H This problem is even less constrained than before:

o RSs affecting models with prior knowledge transfer to models learning the knowledge
e More RSs can appear by mistaking the knowledge
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Do LLMs synthesize Reasoning Shortcuts?

ChatGPT 3.5 ~

Continue until you reach the leftmost column. In this case, you'll end up with:

markdown

123234345
+ 987876765

1110113110

So, 123234345 + 987876765 = 1110113110.

) Copy code
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Do LLMs synthesize Reasoning Shortcuts?

1111111110 |

% AC
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Do LLMs synthesize Reasoning Shortcuts?

ChatGPT 35 ~

Continue until you reach the leftmost column. In this case, you'll end up with

O corae B LLMs (without plugins) fail in reasoning:
e Shortcut behavior in NLI [14]

e Failures in reasoning benchmarks [15]

65 = 1110113110.

e Non-unique solutions in modular arithmetic [16]

‘5351111110 e Pitfalls of out-of-distribution generalization on Dyck
grammars with 2-layer transformers [17]

Because of an interplay of wrong concepts and/or wrong
knowledge?
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Thank you for your attention!

Contacts:

: emanuele.marconato@unitn.it
: ema-marconato

«Dz

: ema marconato
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emanuele.marconato@unitn.it
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