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■ SOTA Deep Learning models are Black-boxes

✓ High-dimensional, sub-symbolic inputs

✓ Learn from IID

✓ High performance in specific tasks

yoda

✗ Not self-explainable

✗ Cannot learn over time

✗ Bad performances on OOD generalization
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Concept in Explainable AI

(Source: [1] Also: Concept Whitening [2])
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Current Strategies for Interpretability

■ Concepts are “sparse”

■ Concepts are “orthogonal”

■ Concepts “activate highly” on concrete training examples

■ Concepts “activate highly” on parts of training examples

■ . . .
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Problems

■ Learn with label and concept supervision (concepts are specific for the application)

✗ The label/concept accuracy trade-off (supervision on concepts?)

✗ Spurious correlations in the learned concepts (aka Concept Leakage)

(Source: [3, 4])
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Neuro-Symbolic models make also use of concepts

■ Neuro-Symbolic (NeSy) models/predictors are deemed to be trustworthy due to compliance to
prior-knowledge.

1 Perception: Extract (binary) concepts to be input for the reasoning

2 Reasoning: Perform probabilistic reasoning from the concepts

■ Changing the knowledge we can use the same concepts to solve different tasks.
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Trustworthiness claim

■ NeSy predictors are learned with input-output samples (typically no concept supervision)

■ Claim: this is sufficient to solve the symbol grounding problem:

integrating the knowledge =⇒ recovering the intended concepts ? (False)
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How to make sure the learned concepts/representations are interpretable?

1. Interpretability in Representation Learning. What is an interpretable representation?

2. Reasoning Shortcuts (in NeSy AI). Do NeSy AI models learn the intended concepts?
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Our Work

Accepted at NeurIPS 2022

Published in MDPI Entropy

Accepted at ICML 2023

Accepted at NeurIPS 2023
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Interpretability of the concepts
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What is concept interpretability? If any change a makes to their mental representation impacts the
machine representation in a way that they can understand, they the two concepts share the same
name.

■ The formalization includes the human

■ Alignment for non-disentangled repr

■ Leakage is lack of context-style separation

■ Link to causal abstractions
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The Naming Game

red m1
m2
m3

circular
duck

... ...
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The Naming Game

blue m'1
m'2
m'3

circular
duck

... ...
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The Naming Game

blue m1
m2
m'3

circular
duck

... ...
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The Naming Game

blue can the user understand
the change? m1

m2
m'3

circular
duck

... ...
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■ Let’s formalize what we are doing:

□ Several generative factors G = (G1, . . . ,Gn),
encoding hair color, age, complexion, . . .

Generative process, adapted from [5].
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■ Let’s formalize what we are doing:

□ Several generative factors G = (G1, . . . ,Gn),
encoding hair color, age, complexion, . . .

□ They jointly cause an observation X, e.g., the
Yoda image

□ May be correlated through hidden confounds C,
but can be independently manipulated

□ Model acquires latent factors Z1, . . . ,Zk

Generative process, adapted from [5].
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Interpretability as Alignment

■ Communication is possible ⇔ same semantics

□ Assume subset of generative factors GI are
understandable to a human agent. For instance,
G1 = age, G2 = hair color, G3 = complexion.

Interpretability as alignment.
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understandable to a human agent. For instance,
G1 = age, G2 = hair color, G3 = complexion.
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Interpretability as Alignment

■ Communication is possible ⇔ same semantics

□ Assume subset of generative factors GI are
understandable to a human agent. For instance,
G1 = age, G2 = hair color, G3 = complexion.

□ CBM implicitly learns a map α : G1:3 7→ Z1:3

■ Example: If α is rescales individual elements,
then Z1:3 are by construction interpretable!

Interpretability as alignment.
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Interpretability as Alignment

■ Communication is possible ⇔ same semantics

□ Assume subset of generative factors GI are
understandable to a human agent. For instance,
G1 = age, G2 = hair color, G3 = complexion.

□ CBM implicitly learns a map α : G1:3 7→ Z1:3

□ How much can we push?
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Interpretability as Alignment

■ Communication is possible ⇔ same semantics

□ Assume subset of generative factors GI are
understandable to a human agent. For instance,
G1 = age, G2 = hair color, G3 = complexion.

□ CBM implicitly learns a map α : G1:3 7→ Z1:3

□ How much can we push? Let’s be conservative

Interpretability as alignment.
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Interpretability as Alignment

Alignment
The map alpha from ground-truth concepts to
machine concepts:

1 mixes no two generative factors into the
same learned concept (disentanglement)

2 is elementwise monotonic.

Interpretability as alignment.
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1 Interpretability = Alignment

Effect of intervening on observed GI or unobserved G−I factors:
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2 Concept Leakage = Unintended Semantics

1 Fit two concepts to recognize MNIST images of
“4”s and “5”s using full concept annotations

2 Use the learned concepts, predict parity of
remaining digits (i.e., all except “4” and “5”)

■ Performance is much better than random!
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3 GlanceNet = Aligned ∧ Leak-proof

GlanceNets = VAE + concept supervision
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GlanceNets = VAE + concept supervision + open-set rejection
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GlanceNets Foster Alignment

■ Metrics:

• Accuracy

• Alignment (linear DCI)

■ CelebA w/ supervision for 6 generative factors,
realistic labels obtained via clustering.

■ Same # of concepts for both GlanceNets and
Concept Bottleneck models [4].
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Learning the concepts/symbols in Neuro-Symbolic AI
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We study predictions where symbolic knowledge K must be satisfied,
e.g., autonomous driving with safety constraints

Learning on input-output samples (annotation on concepts is costly!)
SotA like DeepProbLog, Semantic Loss, and Logic Tensor Networks do not make use of concept

supervision
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We study predictions where symbolic knowledge K must be satisfied,
e.g., autonomous driving with safety constraints

Learning on (input,output) samples (annotation on concepts is costly!)
like DeepProbLog [6], Semantic Loss [7], and Logic Tensor Networks [8]
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Probably, you’d expect that. . .

■ Knowledge + supervision on labels constrain the concepts to acquire the right semantics, i.e., to be
grounded correctly.

“if my NeSy model predicts correct actions in all examples of autonomous driving, then the
concepts are good! For instance, red_light = ⊤ iff there is a red traffic light in the dashcam
image!”

■ This would be ideal: concepts with the right semantics generalize to new tasks (as required by, e.g.,
NeSy verification [9]) and support interpretability.
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■ Task: predict stop vs. go using concepts “pedestrian”, “red”, and “green”.

blank
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■ Task: predict stop vs. go using concepts “pedestrian”, “red”, and “green”.

Perfect accuracy by predicting pedestrians as red lights!!!
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■ Task: . . . but now if there is an emergency, we can ignore “red” lights
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We answer to the following questions:

1. How can we characterize RSs, and how many of them are present?

2. What are the root causes?

3. What are natural mitigation strategies?

4. Do RSs appear in real-world tasks?
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Formalization (but not covered today :) )

■ Data generation: g ∈ G ⊂ Nk and s ∈ Rq. The joint distribution is
factorized p(G)p(S) and there exist:

p∗(X | G, S) and p∗(Y | G;K)

where x ∈ X ⊂ Rn and y ∈ Y ⊂ Nℓ. Typically, ℓ < k.

■ Learning in DPL, with C = G:

pθ(Y | X;K) =
∑
c∈C

p∗(Y | c;K)pθ(c | X)

trained with max
θ

∏
(x,y)∈D

pθ(y | x;K)

■ Technical Assumptions:

A1 There exists invertible (and differentiable over s) f : (g, s) 7→ x
underlying p∗(X | G,S): p∗(x | g, s) = δ(x − f (g, s))

A2 The knowledge K is deterministic: there exists βK : g 7→ y such that
p∗(y | g;K) = 1{y = βK(g)}

S G

X Y

C

The data generation
process.
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1 Intended Semantics vs Reasoning Shortcuts
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1 Intended Semantics vs Reasoning Shortcuts

■ We construct the data generation process from Causal Representation
Learning where:

• G are (binary or discrete) ground-truth concepts

• S are (real-valued) stylistic factors

S G

X Y

C

The data generation
process. pollo
regnerà!!!
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1 Intended Semantics vs Reasoning Shortcuts

■ We construct the data generation process from Causal Representation
Learning where:

• G are (binary or discrete) ground-truth concepts

• S are (real-valued) stylistic factors

■ We consider two key properties:

1. Optimality when Y is correct ∧ K is satisfied

2. Intended Semantics when (∀x, c = g)

Def A Reasoning Shortcut (RS) occurs whenever the model achieves
optimality but learns unintended concepts.

S G

X Y

C

The NeSy model
extracts C and
computes Y.
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1 How many Reasoning Shortcuts?

S G

X Y

C

Generative process +

the NeSy predictor.
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1 How many Reasoning Shortcuts?

■ Every NeSy predictor entails a map α : g 7→ c from ground-truth to
learned concepts. Ideally, it’d be the identity!

S G

X Y

C

Map α entailed by a
NeSy predictor.
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1 How many Reasoning Shortcuts?

■ Every NeSy predictor entails a map α : g 7→ c from ground-truth to
learned concepts. Ideally, it’d be the identity!

■ We consider those α’s that are optimal for the reasoning βK : g 7→ y,
underlying the prior knowledge.

Theorem (informal): # of Reasoning Shortcuts
Under assumptions™, the # of these α’s for NeSy predictorsa is:∑

α∈A 1
{∧

g∈supp(G) (βK ◦α)(g) = βK(g)
}
≥ 1

aWe prove they are shared between DeepProbLog [6], Semantic Loss [7], and Logic Tensor
Networks [8].

S G

X Y

C

Map α and knowledge
βK.
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Example: MNIST-Addition with few sums.

Inference in DeepProbLog with the same neural
network ■

 + = 1

+ = 2

Problem. How many optimal solutions?

2 2

1 1

0 0

G C

■ Knowledge is not enough explicit to recover the right concepts!

■ Knowledge is not enough explicit to recover the right concepts!

■ Concepts combinations are not exhaustive!
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2 What are the Root Causes?

Recall the count is:

∑
α∈A 1

{∧
g∈supp(G) (βK ◦α)(g) = βK(g)

}
≥ 1
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2 What are the Root Causes?

Recall the count is:

∑
α∈A 1

{∧
g∈supp(G) (βK ◦α)(g) = βK(g)︸ ︷︷ ︸

objective

}
≥ 1

Causes of RSs can be read off of it:

K Structure of knowledge K, via βK

L Loss, via optimality of objective

D Structure of data set, via supp(G)

A Architecture bias of the model, via α
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3 Natural Mitigation Strategies (are not enough)
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3 Natural Mitigation Strategies (are not enough)

target req.

Multi-task K tasks

Knowledge becomes more explicit

target req.

Reconstruction L (dec.)

Penalty for input reconstruction

■ Multi-task learning consists on solving more tasks in parallel
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Multi-task K tasks

Knowledge becomes more explicit
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Reconstruction L (dec.)

Penalty for input reconstruction

target req.

Concept-sup D + L concepts

Optimizes the ideal objective

■ Concept supervision involves regressing on the ground-truth concepts
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target req.

Multi-task K tasks

Knowledge becomes more explicit

target req.

Reconstruction L (dec.)

Avoids collapsing the concepts

target req.

Concept-sup D + L concepts

Optimizes the ideal objective

■ Reconstruction penalty for recovering the original input from the learned concepts
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3 Natural Mitigation Strategies (are not enough)

target req.

Multi-task K tasks

Knowledge becomes more explicit

target req.

Reconstruction L (dec.)

Avoids collapsing the concepts

target req.

Concept-sup D + L concepts

Optimizes the ideal objective

target req.

Disentanglement A structure

Independent concepts

■ Disentanglement = independent variations of the concepts
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Natural Mitigation Strategies (are not enough)

■ Plenty of experiments: no existing mitigation strategy is sufficient in all cases!

■ Bonus: We prove that optimal maps α’s are the extremes of the simplex of optimal solutions in
Probabilistic Logic. This can be leveraged to be agnostic about which RS to pick!
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Example: MNIST-Addition with full dataset, without disentanglement

(2,0) (2,0)

(1,1) (1,1)

(0,2) (0,2)

(1,0) (1,0)

(0,1) (0,1)

(0,0) (0,0)

G C
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Example: MNIST-Addition with full dataset, without disentanglement

In this setting, the number of Reasoning Shortcuts
scales like:

■ Having disentanglement in practice is hard, the # of RSs can explode!

35



Example: MNIST-Addition with full dataset, without disentanglement

In this setting, the number of Reasoning Shortcuts
scales like:

∼ 1078

■ Having disentanglement in practice is hard, the # of RSs can explode!

35



Example: MNIST-Addition with full dataset, without disentanglement

In this setting, the number of Reasoning Shortcuts
scales like:

∼ 1078

If we disentangle the concepts, Reasoning
Shortcuts completely vanish!



+ = 0

+ = 1
...

+ = 18

■ Having disentanglement in practice is hard, the # of RSs can explode!

35



Example: MNIST-Addition with full dataset, without disentanglement

In this setting, the number of Reasoning Shortcuts
scales like:

∼ 1078

If we disentangle the concepts, Reasoning
Shortcuts completely vanish!

Frequency in % of RSs over 30 optimal runs.

■ Having disentanglement in practice is hard, the # of RSs can explode!

35



Example: MNIST-Addition with full dataset, without disentanglement

In this setting, the number of Reasoning Shortcuts
scales like:

∼ 1078

If we disentangle the concepts, Reasoning
Shortcuts completely vanish!

Frequency in % of RSs over 30 optimal runs.

■ Having disentanglement in practice is hard, the # of RSs can explode!

35



4 BDD-OIA: Real-world Autonomous Vehicle Data Set [10]
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4 BDD-OIA: Real-world Autonomous Vehicle Data Set [10]

■ Predict one or more actions:

• move_forward / stop

• turn_left

• turn_right

■ 20-ish concepts including:

• red_light / green_light

• obstacle / road_clear

• . . .

Predicted (C)

G
ro

un
d-

tr
ut

h
(G

)
Top: No supervision on concepts
Bottom: Full supervision on concepts + entropy
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Unintended Concepts do not Transfer in NeSy Continual Learning [11]

■ Learn to solve a sequence of NeSy predictions over different episodes/tasks

■ We show that here Reasoning Shortcuts are also likely to happen and standard CL strategies fail
to preserve the intended concepts

K same ̱color = 0

(   ,   )

nn

Y = 0 Y = 1 Y = 0 Y = 1 Y = 1

True

Pred
? ?

Task 1 Examples

True

Pred

Task 2 Examples Future Task

☹
E. Marconato, G. Bontempo, E. Ficarra, S. Calderara, A. Passerini, and S. Teso; Neuro-Symbolic Continual Learning:

Knowledge, Reasoning Shortcuts, and Concept Rehearsal, ICML (2023).
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Take-home message:

■ Interpretability of concepts can be framed within a Causal framework and allows to define properly
some notions, like interpretability, concept leakage, and completeness.

■ Reasoning shortcuts constitute a severe problem for perception (the maps α) + reasoning (the
knowledge K), undermining trustworthiness and interpretability.

• Existing mitigation strategies are not effective and more research is needed!

■ Fruitful intersection between Concept Learning, NeSy AI with Causal Representation Learning.

DeepProbLog (left), Semantic Loss (center), and Logic Tensor Networks (right) pick similar Reasoning Shortcuts.
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Future extension to learning end-to-end

■ New works are appearing to learn both the concepts and the knowledge:

• DSL (Deep Symbolic Learning) [12]

• ROAP (Regularize, Overparametrize, and Amoritize for Programs) [13]

■ This problem is even less constrained than before:
• RSs affecting models with prior knowledge transfer to models learning the knowledge
• More RSs can appear by mistaking the knowledge
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Do LLMs synthesize Reasoning Shortcuts?
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Do LLMs synthesize Reasoning Shortcuts?

■ LLMs (without plugins) fail in reasoning:

• Shortcut behavior in NLI [14]

• Failures in reasoning benchmarks [15]

• Non-unique solutions in modular arithmetic [16]

• Pitfalls of out-of-distribution generalization on Dyck
grammars with 2-layer transformers [17]

Because of an interplay of wrong concepts and/or wrong
knowledge?
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Thank you for your attention!

paper

Contacts:

: emanuele.marconato@unitn.it
: ema-marconato
: ema_marconato

code
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