
pytorch_geometric_intro

July 23, 2021

1 Pytorch Geometric (PyG)

Pytorch Geometric (PyG) is a geometric deep learning extension library for PyTorch. It consists of
various methods for deep learning on graphs and other irregular structures. It implements plenty
of graph neural networks from the literature and allows to easily prototype new ones.

Adapted from tutorials and notebooks from https://github.com/rusty1s/pytorch_geometric

1.1 Creating Message Passing Networks

Graph neural networks can be defined in terms of a neighborhood aggregation or message passing
scheme. With x(k−1)

i ∈ RF denoting node features of node i in layer (k−1) and ej,i ∈ RD denoting
(optional) edge features from node j to node i, message passing graph neural networks can be
described as

x(k)
i = γ(k)

(
x(k−1)
i ,□j∈N (i) ϕ

(k)
(

x(k−1)
i ,x(k−1)

j , ej,i

))
,

where □ denotes a differentiable, permutation invariant function, e.g., sum, mean or max, and γ
and ϕ denote differentiable functions such as MLPs (Multi Layer Perceptrons).

1.2 The “MessagePassing” Base Class

PyTorch Geometric provides the MessagePassing base class, which helps in creating such kinds
of message passing graph neural networks by automatically taking care of message propagation.
The user only has to define the functions ϕ , i.e. message, and γ , i.e. update, as well as the
aggregation scheme to use, i.e. aggr="add", aggr="mean" or aggr="max".

This is done with the help of the following methods:

• MessagePassing(aggr="add", flow="source_to_target", node_dim=-2): Defines the ag-
gregation scheme to use ("add", "mean" or "max") and the flow direction of message passing
(either "source_to_target" or "target_to_source"). Furthermore, the node_dim attribute
indicates along which axis to propagate.

• MessagePassing.propagate(edge_index, ...): The initial call to start propagating mes-
sages. Takes in the edge indices and all additional data which is needed to construct messages
and to update node embeddings.

1

• MessagePassing.message(...): Constructs messages to node i in analogy to ϕ for each edge
in (j, i) ∈ E if flow="source_to_target" and (i, j) ∈ E if flow="target_to_source". Can
take any argument which was initially passed to propagate. In addition, tensors passed to
propagate can be mapped to the respective nodes i and j by appending i or j to the variable
name, .e.g. xi and xj . Note that we generally refer to i as the central nodes that aggregates
information, and refer to j as the neighboring nodes, since this is the most common notation.

• MessagePassing.update(aggr_out, ...): Updates node embeddings in analogy to γ for
each node i ∈ V. Takes in the output of aggregation as first argument and any argument
which was initially passed to MessagePassing.propagate.

Let us verify this by re-implementing two popular GNN variants, the GCN layer from Kipf and
Welling <https://arxiv.org/abs/1609.02907>_ and the EdgeConv layer from Wang et al.
<https://arxiv.org/abs/1801.07829>_.

1.3 Implementing the GCN Layer

The GCN layer from Kipf and Welling is a popular GNN that was the first to bring the idea of
layerwise convolutions to graphs processing. The layer is mathematically defined as

x(k)
i =

∑
j∈N (i)∪{i}

1√
deg(i) ·

√
deg(j)

·
(

� · x(k−1)
j

)
,

where neighboring node features are first transformed by a weight matrix �, normalized by their
degree, and finally summed up. This formula can be divided into the following steps:

1. Add self-loops to the adjacency matrix.
2. Linearly transform node feature matrix.
3. Compute normalization coefficients.
4. Normalize node features in ϕ.
5. Sum up neighboring node features ("add" aggregation).

Steps 1-3 are typically computed before message passing takes place. Steps 4-5 can be easily
processed using the MessagePassing base class. The full layer implementation is shown below:

[11]: # Install required packages.
!pip install -q torch-scatter -f https://pytorch-geometric.com/whl/torch-1.9.
↪→0+cu102.html

!pip install -q torch-sparse -f https://pytorch-geometric.com/whl/torch-1.9.
↪→0+cu102.html

!pip install -q torch-geometric

import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree

class myGCNConv(MessagePassing):
def __init__(self, in_channels, out_channels):

super(myGCNConv, self).__init__(aggr='add') # "Add" aggregation (Step 5).

2

self.lin = torch.nn.Linear(in_channels, out_channels)

def forward(self, x, edge_index):
x has shape [N, in_channels]

edge_index has shape [2, E] (sparse adjacency matrix as a list of edges)

Step 1: Add self-loops to the adjacency matrix.
edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))

Step 2: Linearly transform node feature matrix.
x = self.lin(x)

Step 3: Compute normalization.
row, col = edge_index
deg = degree(col, x.size(0), dtype=x.dtype)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]

Step 4-5: Start propagating messages.
return self.propagate(edge_index, x=x, norm=norm)

def message(self, x_j, norm):
x_j has shape [E, out_channels]

Step 4: Normalize node features.
return norm.view(-1, 1) * x_j

[12]: # Helper function for visualization.
%matplotlib inline
import torch
import networkx as nx
import matplotlib.pyplot as plt

def visualize(h, color, epoch=None, loss=None):
plt.figure(figsize=(7,7))
plt.xticks([])
plt.yticks([])

if torch.is_tensor(h):
h = h.detach().cpu().numpy()
plt.scatter(h[:, 0], h[:, 1], s=140, c=color, cmap="Set2")
if epoch is not None and loss is not None:

plt.xlabel(f'Epoch: {epoch}, Loss: {loss.item():.4f}', fontsize=16)
else:

nx.draw_networkx(G, pos=nx.spring_layout(G, seed=42), with_labels=False,

3

node_color=color, cmap="Set2")
plt.show()

2 Example: node classification

Following Kipf et al. (2017), let’s dive into the world of GNNs by looking at a simple graph-
structured example, the well-known Zachary’s karate club network. This graph describes a
social network of 34 members of a karate club and documents links between members who interacted
outside the club. Here, we are interested in detecting communities that arise from the member’s
interaction.

PyTorch Geometric provides an easy access to this dataset via the torch_geometric.datasets
subpackage:

[13]: from torch_geometric.datasets import KarateClub

dataset = KarateClub()
print(f'Dataset: {dataset}:')
print('======================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')

Dataset: KarateClub():
======================
Number of graphs: 1
Number of features: 34
Number of classes: 4

After initializing the KarateClub dataset, we first can inspect some of its properties. For example,
we can see that this dataset holds exactly one graph, and that each node in this dataset is assigned
a 34-dimensional feature vector (which uniquely describes the members of the karate club).
Furthermore, the graph holds exactly 4 classes, which represent the community each node belongs
to.

Let’s now look at the underlying graph in more detail:

[14]: data = dataset[0] # Get the first graph object.

print(data)
print('==')

Gather some statistics about the graph.
print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
print(f'Number of training nodes: {data.train_mask.sum()}')

4

https://arxiv.org/abs/1609.02907
https://en.wikipedia.org/wiki/Zachary%27s_karate_club
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.KarateClub

print(f'Training node label rate: {int(data.train_mask.sum()) / data.num_nodes:.
↪→2f}')

print(f'Contains isolated nodes: {data.contains_isolated_nodes()}')
print(f'Contains self-loops: {data.contains_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')

Data(edge_index=[2, 156], train_mask=[34], x=[34, 34], y=[34])
==
Number of nodes: 34
Number of edges: 156
Average node degree: 4.59
Number of training nodes: 4
Training node label rate: 0.12
Contains isolated nodes: False
Contains self-loops: False
Is undirected: True

Each graph in PyTorch Geometric is represented by a single Data object, which holds all the infor-
mation to describe its graph representation. We can print the data object anytime via print(data)
to receive a short summary about its attributes and their shapes:

Data(edge_index=[2, 156], x=[34, 34], y=[34], train_mask=[34])

We can see that this data object holds 4 attributes: (1) The edge_index property holds the
information about the graph connectivity, i.e., a tuple of source and destination node indices
for each edge. PyG further refers to (2) node features as x (each of the 34 nodes is assigned a
34-dim feature vector), and to (3) node labels as y (each node is assigned to exactly one class).
(4) There also exists an additional attribute called train_mask, which describes for which nodes we
already know their community assigments. In total, we are only aware of the ground-truth labels
of 4 nodes (one for each community), and the task is to infer the community assignment for the
remaining nodes.

We can further visualize the graph by converting it to the networkx library format, which imple-
ments, in addition to graph manipulation functionalities, powerful tools for visualization:

[15]: from torch_geometric.utils import to_networkx

G = to_networkx(data, to_undirected=True)
visualize(G, color=data.y)

5

https://pytorch-geometric.readthedocs.io/en/latest/modules/data.html#torch_geometric.data.Data

2.1 Implementing a GCN

We implement a GCN as a torch.nn.Module class that contains a sequence of GCNConv layers.

[27]: import torch
from torch.nn import Linear
#from torch_geometric.nn import GCNConv

class GCN(torch.nn.Module):
def __init__(self):

super(GCN, self).__init__()
torch.manual_seed(112233)
self.conv1 = myGCNConv(dataset.num_features, 4)

6

self.conv2 = myGCNConv(4, 4)
self.conv3 = myGCNConv(4, 2)
self.classifier = Linear(2, dataset.num_classes)

def forward(self, x, edge_index):
h = self.conv1(x, edge_index)
h = h.tanh()
h = self.conv2(h, edge_index)
h = h.tanh()
h = self.conv3(h, edge_index)
h = h.tanh() # Final GNN embedding space.

Apply a final (linear) classifier.
out = self.classifier(h)

return out, h

model = GCN()
print(model)

GCN(
(conv1): myGCNConv(

(lin): Linear(in_features=34, out_features=4, bias=True)
)
(conv2): myGCNConv(

(lin): Linear(in_features=4, out_features=4, bias=True)
)
(conv3): myGCNConv(

(lin): Linear(in_features=4, out_features=2, bias=True)
)
(classifier): Linear(in_features=2, out_features=4, bias=True)

)

Here, we first initialize all of our building blocks in __init__ and define the computation flow
of our network in forward. We first define and stack three graph convolution layers, which
corresponds to aggregating 3-hop neighborhood information around each node (all nodes up to 3
“hops” away). In addition, the myGCNConv layers reduce the node feature dimensionality to 2, i.e.,
34 → 4 → 4 → 2. Each myGCNConv layer is enhanced by a tanh non-linearity.

After that, we apply a single linear transformation (torch.nn.Linear) that acts as a classifier to
map our nodes to 1 out of the 4 classes/communities.

We return both the output of the final classifier as well as the final node embeddings produced by
our GNN. We proceed to initialize our final model via GCN(), and printing our model produces a
summary of all its used sub-modules.

7

https://pytorch.org/docs/stable/generated/torch.nn.Tanh.html?highlight=tanh#torch.nn.Tanh
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html?highlight=linear#torch.nn.Linear

2.1.1 Embedding the Karate Club Network

Let’s take a look at the node embeddings produced by our GNN. Here, we pass in the initial
node features x and the graph connectivity information edge_index to the model, and visualize its
2-dimensional embedding.

[28]: model = GCN()

_, h = model(data.x, data.edge_index)
print(f'Embedding shape: {list(h.shape)}')

visualize(h, color=data.y)

Embedding shape: [34, 2]

Remarkably, even before training the weights of our model, the model produces an embedding

8

of nodes that closely resembles the community-structure of the graph. Nodes of the same color
(community) are already closely clustered together in the embedding space, although the weights
of our model are initialized completely at random and we have not yet performed any training
so far! This leads to the conclusion that GNNs introduce a strong inductive bias, leading to similar
embeddings for nodes that are close to each other in the input graph.

2.1.2 Training on the Karate Club Network

But can we do better? Let’s look at an example on how to train our network parameters based on
the knowledge of the community assignments of 4 nodes in the graph (one for each community):

Since everything in our model is differentiable and parameterized, we can add some labels, train
the model and observse how the embeddings react. Here, we make use of a semi-supervised or
transductive learning procedure: We simply train against one node per class, but are allowed to
make use of the complete input graph data.

Training our model is very similar to any other PyTorch model. In addition to defining our net-
work architecture, we define a loss critertion (here, CrossEntropyLoss) and initialize a stochastic
gradient optimizer (here, Adam).

Note that our semi-supervised learning scenario is achieved by the following line:

loss = criterion(out[data.train_mask], data.y[data.train_mask])

While we compute node embeddings for all of our nodes, we only make use of the training
nodes for computing the loss. Here, this is implemented by filtering the output of the classifier
out and ground-truth labels data.y to only contain the nodes in the train_mask.

Let us now start training and see how our node embeddings evolve over time (best experienced by
explicitely running the code):

[29]: import time
#from IPython.display import Javascript # Restrict height of output cell.
#display(Javascript('''google.colab.output.setIframeHeight(0, true, {maxHeight:␣
↪→430})'''))

model = GCN()
criterion = torch.nn.CrossEntropyLoss() # Define loss criterion.
optimizer = torch.optim.Adam(model.parameters(), lr=0.01) # Define optimizer.

def train(data):
optimizer.zero_grad() # Clear gradients.
out, h = model(data.x, data.edge_index) # Perform a single forward pass.
loss = criterion(out[data.train_mask], data.y[data.train_mask]) # Compute␣

↪→the loss solely based on the training nodes.
loss.backward() # Derive gradients.
optimizer.step() # Update parameters based on gradients.
return loss, h

for epoch in range(401):

9

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/optim.html?highlight=adam#torch.optim.Adam

loss, h = train(data)
if epoch % 10 == 0:

visualize(h, color=data.y, epoch=epoch, loss=loss)
time.sleep(0.3)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

As one can see, our 3-layer GCN model manages to linearly separating the communities and clas-
sifying most of the nodes correctly.

Note that we do not need to reimplement standard GNN architectures, the library provides imple-
mentations for the most popular ones, including the GCN Layer:

torch_geometric.nn.GCNConv

3 Example: graph classification

Let’s now have a closer look at how to apply Graph Neural Networks (GNNs) to the task of
graph classification. Graph classification refers to the problem of classifiying entire graphs (in
contrast to nodes), given a dataset of graphs, based on some structural graph properties. Here,

50

we want to embed entire graphs, and we want to embed those graphs in such a way so that they
are linearly separable given a task at hand.

The most common task for graph classification is molecular property prediction, in which
molecules are represented as graphs, and the task may be to infer whether a molecule inhibits HIV
virus replication or not.

The TU Dortmund University has collected a wide range of different graph classification datasets,
known as the TUDatasets, which are also accessible via torch_geometric.datasets.TUDataset
in PyTorch Geometric. Let’s load and inspect one of the smaller ones, the MUTAG dataset:

[32]: import torch
from torch_geometric.datasets import TUDataset

dataset = TUDataset(root='data/TUDataset', name='MUTAG')

print()
print(f'Dataset: {dataset}:')
print('====================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')

data = dataset[0] # Get the first graph object.

print()
print(data)
print('===')

Gather some statistics about the first graph.
print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
print(f'Contains isolated nodes: {data.contains_isolated_nodes()}')
print(f'Contains self-loops: {data.contains_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')

Downloading https://www.chrsmrrs.com/graphkerneldatasets/MUTAG.zip
Extracting data/TUDataset/MUTAG/MUTAG.zip
Processing…
Done!

Dataset: MUTAG(188):
====================
Number of graphs: 188
Number of features: 7

51

https://chrsmrrs.github.io/datasets/
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.TUDataset

Number of classes: 2

Data(edge_attr=[38, 4], edge_index=[2, 38], x=[17, 7], y=[1])
===
Number of nodes: 17
Number of edges: 38
Average node degree: 2.24
Contains isolated nodes: False
Contains self-loops: False
Is undirected: True

This dataset provides 188 different graphs, and the task is to classify each graph into one out
of two classes.

By inspecting the first graph object of the dataset, we can see that it comes with 17 nodes
(with 7-dimensional feature vectors) and 38 edges (leading to an average node degree of
2.24). It also comes with exactly one graph label (y=[1]), and, in addition to previous datasets,
provides addtional 4-dimensional edge features (edge_attr=[38, 4]). However, for the sake
of simplicity, we will not make use of those.

PyTorch Geometric provides some useful utilities for working with graph datasets, e.g., we can
shuffle the dataset and use the first 150 graphs as training graphs, while using the remaining ones
for testing:

[33]: torch.manual_seed(12345)
dataset = dataset.shuffle()

train_dataset = dataset[:150]
test_dataset = dataset[150:]

print(f'Number of training graphs: {len(train_dataset)}')
print(f'Number of test graphs: {len(test_dataset)}')

Number of training graphs: 150
Number of test graphs: 38

3.1 Mini-batching of graphs

Since graphs in graph classification datasets are usually small, a good idea is to batch the graphs
before inputting them into a Graph Neural Network to guarantee full GPU utilization. In the image
or language domain, this procedure is typically achieved by rescaling or padding each example
into a set of equally-sized shapes, and examples are then grouped in an additional dimension. The
length of this dimension is then equal to the number of examples grouped in a mini-batch and is
typically referred to as the batch_size.

However, for GNNs the two approaches described above are either not feasible or may result in a
lot of unnecessary memory consumption. Therefore, PyTorch Geometric opts for another approach
to achieve parallelization across a number of examples. Here, adjacency matrices are stacked in

52

a diagonal fashion (creating a giant graph that holds multiple isolated subgraphs), and node and
target features are simply concatenated in the node dimension:

This procedure has some crucial advantages over other batching procedures:

1. GNN operators that rely on a message passing scheme do not need to be modified since
messages are not exchanged between two nodes that belong to different graphs.

2. There is no computational or memory overhead since adjacency matrices are saved in a sparse
fashion holding only non-zero entries, i.e., the edges.

PyTorch Geometric automatically takes care of batching multiple graphs into a single giant
graph with the help of the torch_geometric.data.DataLoader class:

[34]: from torch_geometric.data import DataLoader

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)

for step, data in enumerate(train_loader):
print(f'Step {step + 1}:')
print('=======')
print(f'Number of graphs in the current batch: {data.num_graphs}')
print(data)
print()

Step 1:
=======
Number of graphs in the current batch: 64
Batch(batch=[1185], edge_attr=[2624, 4], edge_index=[2, 2624], ptr=[65],
x=[1185, 7], y=[64])

Step 2:
=======
Number of graphs in the current batch: 64
Batch(batch=[1146], edge_attr=[2538, 4], edge_index=[2, 2538], ptr=[65],
x=[1146, 7], y=[64])

Step 3:
=======
Number of graphs in the current batch: 22
Batch(batch=[383], edge_attr=[832, 4], edge_index=[2, 832], ptr=[23], x=[383,
7], y=[22])

53

https://pytorch-geometric.readthedocs.io/en/latest/modules/data.html#torch_geometric.data.DataLoader

3.2 Training a Graph Neural Network (GNN)

Training a GNN for graph classification usually follows a simple recipe:

1. Embed each node by performing multiple rounds of message passing
2. Aggregate node embeddings into a unified graph embedding (readout layer)
3. Train a final classifier on the graph embedding

There exists multiple readout layers in literature, but the most common one is to simply take
the average of node embeddings:

xG =
1

|V|
∑
v∈V

§(L)v

PyTorch Geometric provides this functionality via torch_geometric.nn.global_mean_pool,
which takes in the node embeddings of all nodes in the mini-batch and the assignment vector
batch to compute a graph embedding of size [batch_size, hidden_channels] for each graph in
the batch.

The final architecture for applying GNNs to the task of graph classification then looks as follows
and allows for complete end-to-end training:

[38]: from torch.nn import Linear
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
from torch_geometric.nn import global_mean_pool

class GCN(torch.nn.Module):
def __init__(self, hidden_channels):

super(GCN, self).__init__()
torch.manual_seed(1234567)
self.conv1 = GCNConv(dataset.num_node_features, hidden_channels)
self.conv2 = GCNConv(hidden_channels, hidden_channels)
self.conv3 = GCNConv(hidden_channels, hidden_channels)
self.lin = Linear(hidden_channels, dataset.num_classes)

def forward(self, x, edge_index, batch):
1. Obtain node embeddings
x = self.conv1(x, edge_index)
x = x.relu()
x = self.conv2(x, edge_index)
x = x.relu()
x = self.conv3(x, edge_index)

2. Readout layer
x = global_mean_pool(x, batch) # [batch_size, hidden_channels]

3. Apply a final classifier

54

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.glob.global_mean_pool

x = F.dropout(x, p=0.5, training=self.training)
x = self.lin(x)

return x

model = GCN(hidden_channels=64)
print(model)

GCN(
(conv1): GCNConv(7, 64)
(conv2): GCNConv(64, 64)
(conv3): GCNConv(64, 64)
(lin): Linear(in_features=64, out_features=2, bias=True)

)

Here, we again make use of the GCNConv with ReLU(x) = max(x, 0) activation for obtaining local-
ized node embeddings, before we apply our final classifier on top of a graph readout layer.

Let’s train our network for a few epochs to see how well it performs on the training as well as test
set:

[40]: #from IPython.display import Javascript
#display(Javascript('''google.colab.output.setIframeHeight(0, true, {maxHeight:␣
↪→300})'''))

model = GCN(hidden_channels=64)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = torch.nn.CrossEntropyLoss()

def train():
model.train()

for data in train_loader: # Iterate in batches over the training dataset.
out = model(data.x, data.edge_index, data.batch) # Perform a single␣

↪→forward pass.
loss = criterion(out, data.y) # Compute the loss.
loss.backward() # Derive gradients.
optimizer.step() # Update parameters based on gradients.
optimizer.zero_grad() # Clear gradients.

def test(loader):
model.eval()

correct = 0
for data in loader: # Iterate in batches over the training/test dataset.

out = model(data.x, data.edge_index, data.batch)
pred = out.argmax(dim=1) # Use the class with highest probability.

55

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.GCNConv

correct += int((pred == data.y).sum()) # Check against ground-truth␣
↪→labels.

return correct / len(loader.dataset) # Derive ratio of correct predictions.

for epoch in range(1, 51):
train()
train_acc = test(train_loader)
test_acc = test(test_loader)
print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:

↪→.4f}')

Epoch: 001, Train Acc: 0.6467, Test Acc: 0.7368
Epoch: 002, Train Acc: 0.6467, Test Acc: 0.7368
Epoch: 003, Train Acc: 0.6467, Test Acc: 0.7368
Epoch: 004, Train Acc: 0.6533, Test Acc: 0.7368
Epoch: 005, Train Acc: 0.6533, Test Acc: 0.7632
Epoch: 006, Train Acc: 0.7200, Test Acc: 0.7632
Epoch: 007, Train Acc: 0.7333, Test Acc: 0.7632
Epoch: 008, Train Acc: 0.7067, Test Acc: 0.7895
Epoch: 009, Train Acc: 0.7067, Test Acc: 0.6579
Epoch: 010, Train Acc: 0.7267, Test Acc: 0.7632
Epoch: 011, Train Acc: 0.6800, Test Acc: 0.7632
Epoch: 012, Train Acc: 0.7600, Test Acc: 0.7632
Epoch: 013, Train Acc: 0.7133, Test Acc: 0.7895
Epoch: 014, Train Acc: 0.7200, Test Acc: 0.7895
Epoch: 015, Train Acc: 0.7467, Test Acc: 0.7632
Epoch: 016, Train Acc: 0.7467, Test Acc: 0.7368
Epoch: 017, Train Acc: 0.7200, Test Acc: 0.7895
Epoch: 018, Train Acc: 0.7200, Test Acc: 0.7895
Epoch: 019, Train Acc: 0.7267, Test Acc: 0.7895
Epoch: 020, Train Acc: 0.7133, Test Acc: 0.7895
Epoch: 021, Train Acc: 0.7133, Test Acc: 0.7895
Epoch: 022, Train Acc: 0.7267, Test Acc: 0.7632
Epoch: 023, Train Acc: 0.7467, Test Acc: 0.7368
Epoch: 024, Train Acc: 0.7533, Test Acc: 0.7368
Epoch: 025, Train Acc: 0.7267, Test Acc: 0.8158
Epoch: 026, Train Acc: 0.7200, Test Acc: 0.8421
Epoch: 027, Train Acc: 0.7467, Test Acc: 0.7632
Epoch: 028, Train Acc: 0.7533, Test Acc: 0.7632
Epoch: 029, Train Acc: 0.7400, Test Acc: 0.7632
Epoch: 030, Train Acc: 0.7400, Test Acc: 0.7632
Epoch: 031, Train Acc: 0.7467, Test Acc: 0.7632
Epoch: 032, Train Acc: 0.7533, Test Acc: 0.7632
Epoch: 033, Train Acc: 0.7533, Test Acc: 0.7895
Epoch: 034, Train Acc: 0.7533, Test Acc: 0.7632
Epoch: 035, Train Acc: 0.7667, Test Acc: 0.7632

56

Epoch: 036, Train Acc: 0.7533, Test Acc: 0.7632
Epoch: 037, Train Acc: 0.7533, Test Acc: 0.7895
Epoch: 038, Train Acc: 0.7533, Test Acc: 0.7895
Epoch: 039, Train Acc: 0.7667, Test Acc: 0.7632
Epoch: 040, Train Acc: 0.7667, Test Acc: 0.7632
Epoch: 041, Train Acc: 0.7600, Test Acc: 0.7632
Epoch: 042, Train Acc: 0.7600, Test Acc: 0.7632
Epoch: 043, Train Acc: 0.7667, Test Acc: 0.7895
Epoch: 044, Train Acc: 0.7667, Test Acc: 0.7632
Epoch: 045, Train Acc: 0.7667, Test Acc: 0.7632
Epoch: 046, Train Acc: 0.7600, Test Acc: 0.7632
Epoch: 047, Train Acc: 0.7733, Test Acc: 0.7632
Epoch: 048, Train Acc: 0.7400, Test Acc: 0.7895
Epoch: 049, Train Acc: 0.7667, Test Acc: 0.7895
Epoch: 050, Train Acc: 0.7667, Test Acc: 0.7632
Epoch: 051, Train Acc: 0.7667, Test Acc: 0.7632
Epoch: 052, Train Acc: 0.7667, Test Acc: 0.8158
Epoch: 053, Train Acc: 0.7733, Test Acc: 0.7895
Epoch: 054, Train Acc: 0.7667, Test Acc: 0.7632
Epoch: 055, Train Acc: 0.7667, Test Acc: 0.7632
Epoch: 056, Train Acc: 0.7667, Test Acc: 0.7632
Epoch: 057, Train Acc: 0.7733, Test Acc: 0.7895
Epoch: 058, Train Acc: 0.7733, Test Acc: 0.7895
Epoch: 059, Train Acc: 0.7667, Test Acc: 0.7632
Epoch: 060, Train Acc: 0.7667, Test Acc: 0.7632
Epoch: 061, Train Acc: 0.7733, Test Acc: 0.7895
Epoch: 062, Train Acc: 0.7667, Test Acc: 0.7895
Epoch: 063, Train Acc: 0.7800, Test Acc: 0.7895
Epoch: 064, Train Acc: 0.7800, Test Acc: 0.7632
Epoch: 065, Train Acc: 0.7800, Test Acc: 0.7632
Epoch: 066, Train Acc: 0.7800, Test Acc: 0.8158
Epoch: 067, Train Acc: 0.7800, Test Acc: 0.7632
Epoch: 068, Train Acc: 0.7733, Test Acc: 0.7632
Epoch: 069, Train Acc: 0.7867, Test Acc: 0.7632
Epoch: 070, Train Acc: 0.7867, Test Acc: 0.7632
Epoch: 071, Train Acc: 0.7800, Test Acc: 0.7632
Epoch: 072, Train Acc: 0.7800, Test Acc: 0.7632
Epoch: 073, Train Acc: 0.7733, Test Acc: 0.7895
Epoch: 074, Train Acc: 0.7733, Test Acc: 0.8158
Epoch: 075, Train Acc: 0.7733, Test Acc: 0.8158
Epoch: 076, Train Acc: 0.7800, Test Acc: 0.7632
Epoch: 077, Train Acc: 0.7733, Test Acc: 0.7632
Epoch: 078, Train Acc: 0.7733, Test Acc: 0.7895
Epoch: 079, Train Acc: 0.7733, Test Acc: 0.7895
Epoch: 080, Train Acc: 0.7800, Test Acc: 0.7632
Epoch: 081, Train Acc: 0.7733, Test Acc: 0.7632
Epoch: 082, Train Acc: 0.7933, Test Acc: 0.7895
Epoch: 083, Train Acc: 0.7800, Test Acc: 0.7632

57

Epoch: 084, Train Acc: 0.7800, Test Acc: 0.7632
Epoch: 085, Train Acc: 0.7733, Test Acc: 0.7632
Epoch: 086, Train Acc: 0.7867, Test Acc: 0.8158
Epoch: 087, Train Acc: 0.7733, Test Acc: 0.7632
Epoch: 088, Train Acc: 0.7667, Test Acc: 0.7632
Epoch: 089, Train Acc: 0.7733, Test Acc: 0.7632
Epoch: 090, Train Acc: 0.7800, Test Acc: 0.7632
Epoch: 091, Train Acc: 0.7733, Test Acc: 0.7632
Epoch: 092, Train Acc: 0.7800, Test Acc: 0.7632
Epoch: 093, Train Acc: 0.7867, Test Acc: 0.8421
Epoch: 094, Train Acc: 0.7733, Test Acc: 0.7368
Epoch: 095, Train Acc: 0.7733, Test Acc: 0.7368
Epoch: 096, Train Acc: 0.7933, Test Acc: 0.7368
Epoch: 097, Train Acc: 0.7733, Test Acc: 0.7632
Epoch: 098, Train Acc: 0.7733, Test Acc: 0.7105
Epoch: 099, Train Acc: 0.7867, Test Acc: 0.7895
Epoch: 100, Train Acc: 0.8267, Test Acc: 0.7368

As one can see, our model reaches around 76% test accuracy. Reasons for the fluctations in
accuracy can be explained by the rather small dataset (only 38 test graphs), and usually disappear
once one applies GNNs to larger datasets.

58

	Pytorch Geometric (PyG)
	Creating Message Passing Networks
	The ``MessagePassing'' Base Class
	Implementing the GCN Layer

	Example: node classification
	Implementing a GCN
	Embedding the Karate Club Network
	Training on the Karate Club Network

	Example: graph classification
	Mini-batching of graphs
	Training a Graph Neural Network (GNN)

