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White-box models

Examples: shallow DTs, sparse linear models, and rules lists over interpretable input variables.

Pros

� Many well-known, easy to use models.

� Make explanations available for free.

� High performance on certain types of tabular data.

Cons

� No support for representation learning.

� Low performance on non-tabular data, e.g., text, images, audio, video.
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Black-box models

Examples: neural networks, non-linear kernel machines, ensamble methods.

Pros

� Many well-known, easy to use examples.

� High performance on non-tabular data like images and text.

Cons

� Support representation learning.

� Opaque, explanations must be obtained in a post-hoc fashion.

� Post-hoc attribution techniques can be contradictory or ambiguous (e.g., input gradients) or expensive to

compute and have high variance (e.g., LIME).

Extra Pro: post-hoc explainers do not require to modify or retrain the model, e.g., download a pre-trained

model and compute explanations for it. Is this always desirable/necessary?
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Tree Regularization



■ Regularizing black-boxes to be more transparent is a well-known strategy

■ Idea: take a black-box fθ and fine-tune it to make it more interpretable.

Example

If fθ is a dense linear model, add a sparsifying L1 regularizer so that its weight vector contains many zeros.

This makes the model more simulatable [Lipton, 2018]: “take in input data together with the parameters of

the model and in reasonable time step through every calculation required to produce a prediction”.

■ Can we go generalize this idea? Can we make a neural network behave like a decision tree – so as to

facilitate conversion into one using, e.g., LIME?
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Tree Regularization [Wu et al., 2018]

■ Take a regular neural network pθ(y | x) and a training set S =

{(xi , yi ) : i = 1, . . . ,m}. Normally, you would train it by minimizing

the following empirical loss:

1

|S |
∑

(x,y)∈S

− log pθ(x, y)

The structure of a typical feed-forward neural

network with L layers.
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Tree Regularization [Wu et al., 2018]

■ Take a regular neural network pθ(y | x) and a training set S =

{(xi , yi ) : i = 1, . . . ,m}. Normally, you would train it by minimizing

the following empirical loss:

1

|S |
∑

(x,y)∈S

− log pθ(x, y)

■ Minimize the following augmented loss instead:

1

|S |
∑

(x,y)∈S

(
− log pθ(x, y) + λ · Ω(θ)

)
where Ω(θ) is the average depth of a decision tree that fits fθ. In other

words, Ω is small only if fθ(x) can be simulated – on average – by a

small decision tree. The structure of a typical feed-forward neural

network with L layers.
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Illustration

The tree complexity is computed at a the black point x
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The tree complexity is computed at a the black point x
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Issues

■ How to compute Ω(θ)?

■ How to make minimize Ω(θ)?

■ Idea: learn an auxiliary regressor Ω̂µ(θ) that predicts the average depth of a decision tree that fits fθ from

the parameters θ themselves.
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Tree Regularization Algorithm

� Sample reference networks Θ = {θ1, . . . , θq}, e.g., pre-trained models or at random.

� Sample reference instances Q = {x1, . . . , xq}, either from the training set S or at random

� Compute Ω(θ) for each reference network θi : fit a decision tree for θi on the reference instances Q labeled

using fθi using scikit-learn, the evaluate the average tree depth over Q.

� Fit Ω̂µ(θ) so that it approximates Ω on the reference models in Θ:

argmin
µ

(Ω̂µ(θ)− Ω(θ))2 + ∥µ∥2

� Fit fθ on training set (cold start)

� Repeat:

� Fit θ for one epoch using the modified loss:

argmin
θ

1

|S|
∑

(x,y)∈S

− log pθ(x, y) + λ Ω̂µ(θ)

The loss is now fully differentiable.

� Add θ to the reference networks and fine-tune Ω̂µ.
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Example: Fitting a Parabola

■ For λ = 9500 (the exact value is not impor-

tant) the tree-regularized network recovers exactly

the shape of a DT with depth 2. Increasing λ

further further flattens the tree to depth 1, at the

cost of accuracy.
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■ Tree-based regularization has some limitations:

� Training is either computationally expensive: must train Ω̂µ in every epoch!

� The regularizer is approximate: no guarantee that Ω̂µ performs well, the depth prediction task is quite

challenging!

� Decision trees only make sense for tabular data, so the overall network is restricted to this case too.

� Conflicts with representation learning

■ Can we combine the benefits of black-box and white-box models in a more direct and efficient manner?

Yes: change the nets’ architecture
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Concept-based Model (CBM)

A model fθ is gray-box if it combines uninterpretable black-box components with a white-box skeleton and:

� It automatically outputs explanations for all of its decisions

� Its explanations are cheap to compute

� Its explanations are faithful (and hence low-variance)

� Features large capacity and representation learning

aka “partially interpretable models” because only parts of their decision process are transparent.

■ We will see different classes of CBMs:

� Self-explainable Neural Networks (SENNs) [Alvarez-Melis and Jaakkola, 2018]

� Prototypical Nets (ProtoNets) [Snell et al., 2017]

� Prototype Classification Networks (PCNs) [Li et al., 2018]

� Part-Prototype Networks (PPNets) [Chen et al., 2019]

and discuss their promise and issues
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Self-explainable Neural Networks



A linear model has the form:

f (x) = sign
( ∑
i∈[d ]

wixi + b

︸ ︷︷ ︸
“score” of x

)

A linear model is sparse if w ∈ Rd few non-zero entries [Tibshirani, 1996, Ustun and Rudin, 2016] and dense

otherwise. We will briefly forget about sparsity for now.

It is easy to gather an intuitive understanding of what the model does:

� wi > 0 =⇒ xi correlates with, aka “votes for”, the positive class

� wi < 0 =⇒ xi anti-correlates with, aka “votes against”, the positive class

� wi ≈ 0 =⇒ xi is irrelevant: changing it does not affect the outcome
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Example: Papayas

Does a papaya x taste good?

Consider a linear classifier:

f (x) = sign
(
1.3 · 1(x pulp is orange)+

0.7 · 1(x skin is yellow)+

0 · 1(x is round)+

−0.5 · 1(x skin is green)+

−2.3 · 1(x is moldy)
) Figure 1: A bunch of papaya fruits.

It is easy to read off what attributes are “for” and “against” x being tasty for the model – specifically because

the model encodes independence assumptions, e.g., that the shape of x is unrelated to its color.1

1When explaining a decision made by the model, it is irrelevant whether these assumptions match how reality works: we are explaining the

model’s reasoning process, or equivalently its interpretation of how reality works, not reality itself!
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■ Linear models only work for linear data and cannot perform represen-

tation learning: their only parameters are weights, and these are applied

to the inputs directly!

■ We already know that to turn a linear model work in a non-linear one

it is sufficient to embed all points, giving:

p(1 | x) = σ
(∑

i

wixi

)
7→ p(1 | x) = σ

(∑
i

wiϕi (x)
)

where, e.g., x are words in a document and ϕ(x) is a BERT or TF-IDF

embedding. However, doing so forfeits interpretability!

Illustration of a linear model. It cannot separate data with a

complex, non-linear distribution.

Illustration of a non-linear model. It works well with non-linear

data like text, images, etc.
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■ Self-explainable neural networks

(SENNs) [Alvarez-Melis and Jaakkola, 2018], generalize linear

models to non-linear data and representation learning.

■ Idea: take a non-linear model (e.g., a neural net) but ensure that it

behaves like a linear model at any given point x ∈ Rd !

Illustration of a linear model. It cannot separate data with a

complex, non-linear distribution.

Illustration of a non-linear model. It works well with non-linear

data like text, images, etc.
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Illustration of Embedding

Top left: original data, not lineary separable. Top right: embedded data, now more easily seprable. Bottom right: linear model learned in embedding space. Bottom left: decision

surface of the same model in input (linear) space.
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■ A self-explainable neural network has the form:

pθ(1 | x) = σ
(∑

i

wi (x)ϕi (x)︸ ︷︷ ︸
“score” of x

)

where:

� ϕ : Rd → Rk embeds inputs into feature space

� w : Rd → Rk computes a weight vector for each input

� w(x) is regularized to vary slowly w.r.t. x

■ Defines a different linear model for every x ∈ Rd

■ Linear models associated to nearby inputs x encouraged to be similar, i.e., in the neighborhood of any x0
there exists a constant vector w0 that depends only on x0 and a “large enough” α > 0 such that:∑

i

wi (x
′)ϕi (x

′) ≈
∑
i

w0iϕi (x0) for all x′ that are closer than α to x0

■ If w(x) ≡ w is constant w.r.t. x, we obtain a linear model again
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■ Left: a linear model. Notice that the weights w are constant everywhere.

■ Right: a SENN. Notice that locally the weights w(x) are almost identical!

■ SENNs are stable locally (interpretability) but flexible globally (large capacity)
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Learning w(x)

■ How to ensure that w(x) is “locally linear”?

Taylor’s approximation for vector-valued functions

Let w(x) be a vector-valued function of a vector input x. Taylor’s

theorem implies that w can be approximated around any x0 as:

w(x) = w(x0) + J (x− x0)︸ ︷︷ ︸
first-order term

+ . . .︸︷︷︸
quadratic+ terms

where J is the matrix of derivatives Jab = ∂wa
∂xb

.

■ The approximation is actually exact for linear functions:

w⊤x = w⊤x0 + J(x− x0)

■ If we want w(x) to behave like a linear function we should minimize

the contribution of the quadratic term, but doing so directly is challeng-

ing.

Taylor decomposition of a one-dimensional function, namely

sin x . The original function can be viewed as a (weighted)

sum of the 1st, 2nd, 3rd, etc. derivatives of the function.

Credits: Wikimedia.

18



Idea: regularize the model to approximate its own first-order Taylor expansion

A SENN with parameters θ (including the params of w(x) and of ϕ(x)) is trained by minimizing:

1

|S|
∑

(x,y)∈S

− log pθ(y | x) + λ · Ω(θ, x)

where the regularizer Ω penalizes w(x) for deviations from linearity:

Ω(θ, x) := ∥ ∇xpθ(1 | x)︸ ︷︷ ︸
neural net analogue of weights

− Jϕx θ(x)︸ ︷︷ ︸
if f were linear

∥

and λ > 0 trades off between performance and non-linearity.

■ Conceptually similar to tree-regularization, but with linear models in place of DTs. It is actually much faster

because the regularizer does not require to learn DTs during training & Jacobian can be computed relatively

quickly using autodiff packages.
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Learning the Embedding Function ϕ(x)

Idea: learn to map x to interpretable concepts ϕ. Strict requirement! Recall that an explanation looks like:(
w1(x) : ϕ1(x), . . . ,wd (x) : ϕn(x)

)
If ϕi (x) has clear semantics (e.g., “document x is about politics”) this is a valid explanation, otherwise (e.g.,

for BERT embeddings) it is not!

A minimal set of desiderata:

1. Fidelity: the representation of x in terms of concepts should preserve relevant information

2. Diversity: inputs should be representable with few, non-overlapping concepts

3. Grounding: concepts should have an immediate human-understandable interpretation.

This is a very rough and incomplete list.

Remark: nobody knows how to formalize/implement the last desideratum properly!
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■ There are a few alternatives. One is to assume that ϕ(·) is defined manually by a domain expert:

Example

Consider a medical diagnosis setting. A medical doctor could tell you that lorazepam is an important feature

for predicting clinical depression. This can be modelled as a feature of the form:

ϕ3(x) = 1(the clinical record x reports administration of lorazepam)

This process makes perfect sense for tabular data.

■ An alternative useful for non-tabular data is to learn ϕ(·) automatically from the data beforehand:

Example

Train a convolutional neural network to classify ImageNet (1000 classes including many common objects) and

then use the predictions made by the model to define 1000 different features, one for each class.

■ Or, ideally, learn ϕ(·) jointly with the rest of the model. How?
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■ Model ϕ(·) using an autoencoder:

An autoencoder is defined as an encoder-decoder pair (ϕ,ψ):

ϕ : Rd → Rk ψ : Rk → Rd

Encoder and decoder are trained jointly to minimize reconstruction loss ℓrec(x, x′) =
∑

j∈[d ] (xi − x ′i )
2

The idea is to learn the autoencoder end-to-end with the SENN by minimizing:

1

|S |
∑

(x,y)∈S

{
−pθ(y | x) + λ · Ω(θ, x) + λ′ · ℓrec(x,ψ(ϕ(x)))

}
■ This encourages ϕ to satisfy fidelity, i.e., preserving both task-relevant information (because of the

cross-entropy loss) and instance-relevant information (because of ℓrec)
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The complete architecture of a SENN is:

23



Recall that during training we minimize:

1

|S |
∑

(x,y)∈S

{
−pθ(y | x) + λ · Ω(θ) + λ′ · ℓrec(x,ψ(ϕ(x)))

}
, ℓrec(x, x

′) =
∑
j∈[d ]

(xi − x ′i )
2

■ Extra elements:

� Diversity: encourage sparse concept activations by adding λ′′ · ∥ϕ(x)∥1 to the loss

� Grounding: represent learned concepts ϕj (x) using concrete examples.

* A set of concrete prototypes, i.e., training examples that maximally activate them:

P(j) = argmax
P⊆S :|P|=p

∑
x∈P

ϕj (x)

* synthetic prototypes, i.e., inputs x that maximally activate one concept without activating the others:

x(j) = argmax
x∈Rd

ϕj (x)−
∑
k ̸=j

ϕj (x)

In practice, approximated using gradient ascent or similar techniques.
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Is there a more direct way of incorporating prototypes and representation learning in an interpretable manner?

26



Prototypes + Deep Learning



■ A prototype is an example that is prototypical of a certain class.

■Example: in a dog vs. cat image classification problem, the prototypes for the dog class correspond to

prototypical images of dogs (e.g., a chihuahua, a mastiffs, . . . ) that have “average features”.

■ Formally, a prototype is an example that is close (or similar) to many examples of the corresponding class,

s.t. taken together they manage to “cover” all examples of that class. Distance is computed in, e.g., embedding

space.

They can be found by clustering the data of a given class, for instance using k-means or other clustering

algorithms. 27



Prototypical Networks

■ What about prototypical networks (ProtoNets)? [Snell et al., 2017]

Idea:

� Learn an embedding function ϕ : Rd → Rc

� Represent each class y ∈ {1, . . . , v} by its centroid in embedding space cy := 1
Sy

∑
(x,k)∈Sy ϕ(x)

� Fix a distance function d(ϕ,ϕ′), compute vector of distances from class centroids:

d = (d(ϕ(x), c1), . . . , d(ϕ(x), cv ))

The Euclidean distance d(ϕ,ϕ′) = ∥ϕ− ϕ′∥2 works well [Snell et al., 2017]

� Predicted probability of x belonging to class y proportional to distance from prototype of that class:

pθ(y | x) := softmax(−d)y =
exp(−d(ϕ(x), cy ))∑
y′ exp(−d(ϕ(x), cy

′ ))

� Set of all parameters is θ = {ϕ, c1, . . . , cv}.
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■ Very simple architecture

29



■ And also very explainable! The probability of each class can be traced back to the corresponding prototype!

30



■ Fit ϕ by minimizing cross-entropy on the training set:

argminϕ,{c1,...,cv} −
1
|S|

∑
(x,y)∈S log pθ(y | x)

The negative log-likelihood at a training example (x, y) is:

− log pθ(y | x) = − log softmax(−d)y (1)

= − log
exp(−d(ϕ(x), cy ))∑
y′ exp(−d(ϕ(x), cy

′ ))
(2)

= −
{
log exp(−d(ϕ(x), cy ))− log

∑
y′ exp(−d(ϕ(x), cy

′
))
}

(3)

= −
{
− d(ϕ(x), cy )− log

∑
y′ exp(−d(ϕ(x), cy

′
))
}

(4)

= d(ϕ(x), cy ) + log
∑

y′ exp(−d(ϕ(x), cy
′
)) (5)

The first element is the distance to the prototype of class y . The second element is the “soft maximum” of the

negative distances to other classes 2:

max{−d1, . . . ,−dv} ≤ log
∑
y′

exp(−dy′ ) ≤ max{−d1, . . . ,−dv}+ log(v)

Minimizing this implies (i) min. distance to true class y and (ii) approx. max. distance to other classes.

2See: https://en.wikipedia.org/wiki/LogSumExp
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■ Very clear results 32



■ During training both the space in which the embeddings live (determined by the lower layer) and the

prototypes ck are learned jointly!

33



Prototypical Networks are not without issues:

+ Somewhat interpretable:

- Each class is clearly identified by a prototype

- Each prediction can be decomposed into contributions of different prototypes

- Not really interpretable:

- Class prototypes seldom correspond to concrete examples (e.g., average of several examples)

- Unclear why a particular prototype is relevant/similar to an example

+/- Designed for few-shot regime

- Only one prototype per class

- Works well if few examples, poorly if many
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+/- Designed for few-shot regime

- Only one prototype per class

- Works well if few examples, poorly if many
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Prototype Classification Networks

Architecture of prototype classification networks (PCNs)

� Autoencoder:

Encoder: f : Rp → Rq , z := f (x) Decoder: g : Rq → Rp , x̂ := g(z)

Learned so that g(f (x)) ≈ x, for instance by minimizing ∥x− x̂∥2 over the training set.

� Prototype Layer [new!]

- Memorizes m prototypes [p1, . . . , pm], with pj ∈ Rq

- Outputs squared Euclidean distances between f (x) and each prototype:

p(z) = (∥z− p1∥2, . . . , ∥z− pm∥2)

� Dense Layer + Softmax

pθ(y | x) = softmax(Wp(f (x)))y =
expw(y) · p(f (x))

exp
∑

y′ w
(y′) · p(f (x))
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Prototype Classification Networks
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■ ProtoNets:

� Map x to space of emebeddings Rq

� Each class y is represented by exactly one centroid cy ∈ Rq

� Predict label based on closest centroid

■ PCNs:

� Map x to space of embeddings Rq

� Has a budget of m prototypes, not class-specific

� Compute (squared) distance to all prototypes

� Predict label based on weighted sum of squared distances

■ PCNs are more flexible: possibly multiple prototypes per class

■ PCNs recover ProtoNets if one prototype per class and W is fixed to −I
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■ The PCN loss is a weighted sum of several terms:

� Classification loss, like the negative log-likelihood:

− 1
|S|

∑
(x,y)∈S log pθ(y | x) = − 1

|S|
∑

(x,y)∈S

∑
k 1(y = k) log pθ(k | x)

� Reconstruction loss so tha the autoencoder works as expected:

1
|S|

∑
(x,y)∈S∥x− g(f (x))∥2

Ensures that z is representative of both x and of y

� Interpretability regularizer:
1
m

∑
j∈[m] min(x,y)∈S ∥pj − f (x)∥2

Each prototype must be as close as possible to one training example → if decoder is smooth, decoding of

prototype will be interpretable

� Clustering regularizer:
1
|S|

∑
(x,y)∈S minj∈[m] ∥pj − f (x)∥2

Each example must be as close as possible to one of the prototypes → prototypes cluster examples

■ In practice min over S restricted to mini-batch.
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Learned Prototypes
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Learned Prototypes
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Learned Prototypes

■ Cars dataset – contains small B/W images of cars from different angles.

■ High performance without entirely sacrificing interpretability.

41



■ Interpretation of prototype-class weights for MNIST
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Effect of Regularizers

■ Disabling the regularizers hinders interpretability of the prototypes
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■ Is autoencoding the way to go?

■ Can we go beyond concrete prototypes and look at where certain prototypes activate?
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■ How would you describe why the image looks like a “clay colored sparrow”?

■ Perhaps bird’s head and wing bars look like those of a prototypical clay colored sparrow

■ Radiologists compare X-ray scans with prototypical tumor images

Idea: enable models to focus on parts of the image and compare them with prototypical parts of training

images from a class – reasoning of the form “this looks like that”
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Refresher: Convolutional Filters

■ Structure:

� Given an input x of size w × h × c

� A conv. layer has d kernels kj , j ∈ [d ], each

of size w ′ × h′ × c

� Each kernel is convolved with the input to

obtain an output yj of size a × b, with a =

w − 2
⌊
w′

2

⌋
and b = h − 2

⌊
h′

2

⌋
� The outputs y1, . . . , yd are stacked to obtain

the complete a× b × d embedding y

■ The size of the kernel is the receptive field of

the convolutional layer
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Refresher: Convolutional Networks

■ Convolutional filters take an input, typically

reduce its size, and output a variable number of

channels (depth)

■ Pooling layers behave similarly but aggregate

their inputs using max or avg, and have no learn-

able parameters

■ CNNs stack convolutional layers intermixed

with pooling layers (e.g., max activations) on top

of each other to produce a latent representation:

w × h × c −→ w ′ × h′ × d
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■ Consider convolutional embeddings z = f (x) :

w × h × c −→ w ′ × h′ × d

with w ′ ≤ w and h′ ≤ h

■ In ProtoNets and PCNs, a prototype p ∈ Rw′×h′×d is a point in embedding space:

� Summarizes a set of examples

� Distance from prototype used as activation

� Interpretability achieved by ensuring that p is “close” to concrete example

■ In PPNets, a part-prototype p ∈ R1×1×d is a part of a point in embedding space

� Summarizes a set of example parts

� Distance from part-prototype used as activation

� Interpretability achieved by ensuring that p is “close” to concrete example parts
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Part-Prototype Networks

Architecture of part-prototype networks (PPNets)

� Embedding function [it was an autoencoder]

f : Rw×h×c → Rw′×h′×d

Loaded from a pre-trained network. Top layers can be fine-tuned while leaving the rest fixed (frozen).

� Part-prototype Layer

- Memorizes m part-prototypes [p1, . . . , pm], with pj ∈ R1×1×d [they were full prototypes]

- Part-prototypes are per class,
⌊
m
v

⌋
for each class y ∈ [v ] [they were shared]

- Computes activation of part-prototypes of each y on z = f (x):

a = a(1) ◦ . . . ◦ a(v) a(y)(z) = [act(z, p
(y)
1 ))2, . . . , act(z, p

(y)
m )2]

[it was squared L2 distance]

� Dense Layer + Softmax [same]

pθ(y | x) = softmax(W a(f (x)))y =
expw(y) · a(y)(f (x))

exp
∑

y′ w
(y′) · a(y′)(f (x))
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■ How to measure activation of part-prototype p ∈ R1×1×d on a full embedding z ∈ Rw′×h′×d?

� Break down z into all its pieces z̃ of size 1 × 1 × d ,

denoted:

parts(z)

� Measure L2 distance between p and each part z̃ of z:

d(p, z̃) = ∥p− z∥

� Convert distance into activation:

act(p, z̃) = log

(
d(p, z̃)2 + 1

d(p, z̃)2 + ϵ

)
� Define activation of p on full embeddings z as maximum

activation of its parts:

act(p, z) = max
z̃∈parts(z)

act(p, z̃)

Comparison between difference-of-logs

and Gaussian of d :

act′(p, z̃) = exp
(
−γ · d(p, z̃)2

)
In the plot ϵ = 0.001, γ = 1
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d(p, z̃) = ∥p− z∥

� Convert distance into activation:

act(p, z̃) = log

(
d(p, z̃)2 + 1

d(p, z̃)2 + ϵ

)
� Define activation of p on full embeddings z as maximum

activation of its parts:

act(p, z) = max
z̃∈parts(z)

act(p, z̃)

Comparison between difference-of-logs

and Gaussian of d :

act′(p, z̃) = exp
(
−γ · d(p, z̃)2

)
In the plot ϵ = 0.001, γ = 1
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Remark:

� Convolutional filters slide over the input (first step from the left)

� Part-prototypes slide over the embeddings (second step from the left)
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■ How to ensure that part-prototypes are class-specific?

Desiderata:

� Clustering: each training example of class y should strongly activate at least one part-prototype p of that

class.

Can be converted into a regularization term:

Ωcls :=
1

|S |
∑

(x,y)∈S

min
p∈ppsy

min
z̃∈parts(f (x))

∥p− z̃∥2

� Separation: Every training example of class y should activate none of the part-prototypes p of the other

classes.

Can be converted into a regularization term:

Ωsep := −
1

|S |
∑

(x,y)∈S

min
p̸∈ppsy

min
z̃∈parts(f (x))

∥p− z̃∥2

52



■ How to ensure that part-prototypes are class-specific?

Desiderata:

� Clustering: each training example of class y should strongly activate at least one part-prototype p of that

class.

Can be converted into a regularization term:

Ωcls :=
1

|S |
∑

(x,y)∈S

min
p∈ppsy

min
z̃∈parts(f (x))

∥p− z̃∥2

� Separation: Every training example of class y should activate none of the part-prototypes p of the other

classes.

Can be converted into a regularization term:

Ωsep := −
1

|S |
∑

(x,y)∈S

min
p̸∈ppsy

min
z̃∈parts(f (x))

∥p− z̃∥2

52



■ How to ensure that part-prototypes are class-specific?

Desiderata:

� Clustering: each training example of class y should strongly activate at least one part-prototype p of that

class.

Can be converted into a regularization term:

Ωcls :=
1

|S |
∑

(x,y)∈S

min
p∈ppsy

min
z̃∈parts(f (x))

∥p− z̃∥2

� Separation: Every training example of class y should activate none of the part-prototypes p of the other

classes.

Can be converted into a regularization term:

Ωsep := −
1

|S |
∑

(x,y)∈S

min
p̸∈ppsy

min
z̃∈parts(f (x))

∥p− z̃∥2

52



■ How to ensure that part-prototypes are class-specific?

Desiderata:

� Clustering: each training example of class y should strongly activate at least one part-prototype p of that

class.

Can be converted into a regularization term:

Ωcls :=
1

|S |
∑

(x,y)∈S

min
p∈ppsy

min
z̃∈parts(f (x))

∥p− z̃∥2

� Separation: Every training example of class y should activate none of the part-prototypes p of the other

classes.

Can be converted into a regularization term:

Ωsep := −
1

|S |
∑

(x,y)∈S

min
p̸∈ppsy

min
z̃∈parts(f (x))

∥p− z̃∥2

52



■ How to ensure that part-prototypes are class-specific?

Desiderata:

� Clustering: each training example of class y should strongly activate at least one part-prototype p of that

class.

Can be converted into a regularization term:

Ωcls :=
1

|S |
∑

(x,y)∈S

min
p∈ppsy

min
z̃∈parts(f (x))

∥p− z̃∥2

� Separation: Every training example of class y should activate none of the part-prototypes p of the other

classes.

Can be converted into a regularization term:

Ωsep := −
1

|S |
∑

(x,y)∈S

min
p̸∈ppsy

min
z̃∈parts(f (x))

∥p− z̃∥2

52



■ How to ensure that part-prototypes are interpretable?

Idea: “push” learned prototypes of class y to a concrete training example by solving:

pnew ← argmin
pnew∈Q(y)

∥pnew − p∥2

where:

Q(y) = {z̃ : z̃ ∈ parts(f (xi )), yi = y}

is the set of all parts of (latent representations of) instances xi in the prototype’s class.

■ Solved using SGD or similar.
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■ Training is split into three stages:

� Load a pre-trained CNN and take its feature extractor f (x), freeze the bottom layers.

� Learn the part prototypes {p} of all classes while fine-tuning the top convolutional layers of f by minimiz-

ing:
1

|S |
∑

(x,y)∈S

ℓce(x, y) + λ1Ωcls + λ2Ωsep

At this stage, fix the weight vectors of the top dense layer to:

w
(y)
i =

{
1 if pi belongs to class y

− 1
2

otherwise

� Periodically push prototypes close to training examples.

� Once f and {p} are found, optimize weights of top dense layer W by optimizing the cross-entropy loss →
convex problem
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Example

■ Not quite counterfactual, but useful
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Example

■ PPNets are the only method that explains where prototypes activate and where they come from!
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Example

■ Comparison between PPNets and other approaches to explainability
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A Template

■ Many concept-based models follow a two-level structure

■ The model extracts a vector of concept activations from x:

c(x) = (c1(x), . . . , ck (x)) ∈ Rk

■ Then it aggregates them into class scores, often in a simulatable [Lipton, 2018] manner, e.g., using a linear

combination:

sy (x) := ⟨w(y)(x), c(x)⟩ =
∑

j w
(y)
j (x) · cj (x)

where w(y)(x) ∈ Rk is the weight vector associated to class y .

■ Class probabilities are then obtained using a softmax: P(y | x) := softmax(s(x))y .

■ The concepts {cj} are:

� Learned from data so to be discriminative and interpretable.

� Black-box: what’s “above” the concepts is interpretable, what’s “underneath” is not.
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■ Key Feature: easy to extract a local explanation that captures how different concepts c contribute to a

decision (x, y)! These explanations take the form:

expl(x, y) := {(w (y)
j (x), cj (x)) : j ∈ [k]}

Remarks:

� The concepts and the weights are both integral to the explanation:

- Concepts {cj} establish a vocabulary that enables communication with stakeholders

- Weights {wj (x)} convey the relative importance of different concepts

� The prediction y = f (x) is independent from x given the explanation expl(x, y) → the explanations is

100% faithful to the model’s decision process.
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Take-away

■ Concept-based models combine features of white and black-box models:

� Interpretability (for parts of the prediction process)

� Faithfulness of the produced explanations, they come for free

� High performance on non-tabular data, thanks to representation learning

■ SENNs upgrade linear models to representation learning; not 100% clear how to learn interpretable concepts

■ Prototype and part-prototype models (partially) solve this issue by mapping prototypes to examples (or parts

of examples)

■ Still very much an open area of research! (Especially ensuring that concepts are interpretable)
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