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Why do we need explanations?

▶ Recidivism risk (Dressel & Farid [8])

▶ University admissions (Waters & Miikkulainen [30])

▶ Rejecting/Accepting a job applicant (Liem et al. [15])

▶ Prescribing medications and treatments (Yoo et al. [31])

▶ Many others...



Why do we need explanations?

Intelligible Models for HealthCare: Predicting Pneumonia
Risk and Hospital 30-day Readmission (Caruana et al. [4])

Predict pneumonia risk based on user features (and thus the
need for hospitalization).

Rule discovered by an RBL model:

HasAsthma(x) ⇒ LowRisk(x)

Are neural networks safer to use?
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Why do we need explanations?

▶ Example-based explanations
▶ Prototype and criticism (Kim et al. [14])

▶ (Local/Global) Model-agnostic explanations
▶ SHAP (Lundberg & Lee [16])
▶ LIME (Ribeiro et al. [21])

▶ Counterfactual explanations (Wachter et al. [29])
▶ Interpretable Models (e.g., decision trees, linear models)
▶ See surveys on the topic (Adabi & Berrada [1])

These methods mostly target machine learning
practitioners and researchers!
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Explainability as ”right to an explanation”

In reality, a user wants to know how to act to appeal to or
change a potentially negative decision.

We need to consider ”explanations as a means to help a
data-subject act rather than merely understand” [29]

It is also defined as a requirement by the GDPR [27]



Algorithmic Recourse

Definition 1 (Algorithmic Recourse, adapted from [25])
Algorithmic recourse is the systematic process of reversing
unfavourable decisions by algorithms and bureaucracies across
a range of counterfactual scenarios.



Counterfactual Explanations

Definition 2
A counterfactual explanation (CFE) is a statement about ”how
the world would have (had) to be different for a desirable
outcome to happen”.

We are usually interested in nearest counterfactual
explanations, the most similar instances of the feature vector
that change the prediction of the classifier.



Counterfactual Explanations

x := {x0, . . . , xn} x ∈ X
h : X → {0, 1}
d : X × X → R

x∗ =argmin
x′

d(x, x′)

s.t. h(x) ̸= h(x∗)
(1)
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Counterfactual Explanations

▶ CFEs are model-agnostic

▶ CFEs do not need to be instances from the training data

▶ CFEs are human-friendly explanations
▶ Both contrastive and selective

▶ CFEs are relatively easy to find (e.g., minimizing a loss
function)



Counterfactual Explanations

Wachter et al. [29] provides a loss function to learn CFEs.

L(x, x′, y ′, λ) = λ(h(x′)− y ′)2 + d(x, x′)

d(x, x′) =
n∑

i=0

|x ′i − xi |
MADi

(2)

x∗ = argmin
x ′∈X

max
λ∈R

λ(h(x′)− y ′)2 + d(x, x′) (3)
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Counterfactual Explanations

There are already many research works on how to build CFEs:

▶ Multi-objective Counterfactual Explanations [5]
▶ Counterfactual Explanations under uncertainty [24]
▶ MACE (Karimi et al. [13])
▶ LORE (Guidotti, Monreale, Ruggieri, Pedreschi, et al. [9])
▶ DICE (Mothilal et al. [17])
▶ FACE (Poyiadzi et al. [19])
▶ Many surveys on the topic. See Guidotti, Monreale,

Ruggieri, Turini, et al. [10]



Counterfactual Explanations

▶ Given x ∈ X , there exists multiple x∗ (Rashomon Effect)

▶ CFEs are not actionable

▶ CFE optimization does not consider the feasibility

▶ Prior works ignore the causal relationship between
features.



Counterfactual Interventions

▶ Actionable sequence of actions instead of a CFE

▶ It defines a cost to mimic the user’s effort for each action

▶ It considers causal relationships between features

▶ Minimize the cost of the sequence, such that h(x) ̸= h(x′)

▶ Same properties of counterfactual explanations (CFEs).



Counterfactual Interventions II

x := {x0, . . . , xn} x ∈ X
h : X → {0, 1}

a ∈ A C : A×X → R

I ∗ =argmin
I∈I

T∑
t=1

C (at , xt)

s.t. I ∗ = {at}Tt=1

xt = I (xt−1)

h(I (x0)) ̸= h(x0)

(4)

Algorithmic Recourse is an NP-Hard problem.
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Causality

Theorem 3 (Adapted from 3.2 in [22])
Unless we are intervening on variables without descendants,
algorithmic recourse can be guaranteed only if the structural
equations are known, no matter the amount or the type of
available data.
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Counterfactual Interventions

▶ Recourse in linear classification (Spangher et al. [23])

▶ SYNTH (Ramakrishnan et al. [20])

▶ CSCF (Naumann & Ntoutsi [18])

▶ FastAR (Verma et al. [26])

▶ FARE (De Toni, Lepri, & Passerini [6])

▶ See several surveys on the topic ( e.g., Karimi et al. [12])
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Counterfactual Interventions

▶ Current methods rely on optimization techniques

▶ Run them ex-novo for each user (might be a costly
process)

▶ Fail to explain why we are suggesting each intervention
(Barocas et al. [2])

▶ Limitations of CFE-based recourse (Karimi et al. [12])



FARE (De Toni, Lepri, & Passerini [6])



Future Directions

▶ Jointly train end-to-end models providing both
predictions and interventions. See VCNet (Guyomard et
al. [11])

▶ Human-in-the-Loop Counterfactual Intervention
Generation. Eliciting user preferences over the actions
(De Toni, Viappiani, et al. [7])

▶ Validation with real-users of counterfactual
interventions See ”One counterfactual does not make an
explanation” (Butz et al. [3])

▶ Fairness of Algorithmic Recourse. See ”On the fairness of
causal algorithmic recourse” (von Kügelgen et al. [28]).
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Questions?
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