# Algorithmic Recourse

Giovanni De Toni giovanni.detoni@unitn.it

Advanced Topics in Machine Learning and Optimization 30th November 2022

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Recidivism risk (Dressel & Farid [8])
- University admissions (Waters & Miikkulainen [30])
- Rejecting/Accepting a job applicant (Liem et al. [15])
- Prescribing medications and treatments (Yoo et al. [31])

Many others...

## Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission (Caruana et al. [4])

## Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission (Caruana et al. [4])

Predict pneumonia risk based on user features (and thus the need for hospitalization).

## Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission (Caruana et al. [4])

Predict pneumonia risk based on user features (and thus the need for hospitalization).

Rule discovered by an **RBL model**:

 $HasAsthma(x) \Rightarrow LowRisk(x)$ 

## Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission (Caruana et al. [4])

Predict pneumonia risk based on user features (and thus the need for hospitalization).

Rule discovered by an **RBL model**:

 $HasAsthma(x) \Rightarrow LowRisk(x)$ 

#### Are neural networks safer to use?



## Example-based explanations

- Prototype and criticism (Kim et al. [14])
- (Local/Global) Model-agnostic explanations
  - SHAP (Lundberg & Lee [16])
  - LIME (Ribeiro et al. [21])
- Counterfactual explanations (Wachter et al. [29])
- Interpretable Models (e.g., decision trees, linear models)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

See surveys on the topic (Adabi & Berrada [1])

## Example-based explanations

- Prototype and criticism (Kim et al. [14])
- (Local/Global) Model-agnostic explanations
  - SHAP (Lundberg & Lee [16])
  - LIME (Ribeiro et al. [21])
- Counterfactual explanations (Wachter et al. [29])
- Interpretable Models (e.g., decision trees, linear models)
- See surveys on the topic (Adabi & Berrada [1])

## These methods mostly target machine learning practitioners and researchers!

In reality, a user wants to know how to act to appeal to or change a potentially negative decision.

We need to consider *"explanations as a means to help a data-subject act rather than merely understand"* [29]

ション ふゆ マイビン トロン しょうくしょ

It is also defined as a requirement by the GDPR [27]

## Definition 1 (Algorithmic Recourse, adapted from [25]) Algorithmic recourse is the systematic process of reversing unfavourable decisions by algorithms and bureaucracies across a range of counterfactual scenarios.

## Definition 2

A **counterfactual explanation** (CFE) is a statement about "how the world would have (had) to be different for a desirable outcome to happen".

We are usually interested in **nearest counterfactual explanations**, the most similar instances of the feature vector that change the prediction of the classifier.

ション ふゆ マイビン トロン しょうくしょ

# **Counterfactual Explanations**

$$\mathbf{x} := \{x_0, \dots, x_n\} \quad x \in \mathcal{X}$$
$$h : \mathcal{X} \to \{0, 1\}$$
$$d : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

# **Counterfactual Explanations**

$$egin{aligned} \mathbf{x} &:= \{x_0, \dots, x_n\} \quad x \in \mathcal{X} \ &h: \mathcal{X} 
ightarrow \{0, 1\} \ &d: \mathcal{X} imes \mathcal{X} 
ightarrow \mathbb{R} \end{aligned}$$

$$\mathbf{x}^* = \mathop{\mathrm{arg\,min}}_{\mathbf{x}'} \quad d(\mathbf{x}, \mathbf{x}')$$
  
s.t.  $h(\mathbf{x}) \neq h(\mathbf{x}^*)$  (1)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

## CFEs are model-agnostic

- CFEs do not need to be instances from the training data
- CFEs are human-friendly explanations
  - Both contrastive and selective
- CFEs are relatively easy to find (e.g., minimizing a loss function)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Wachter et al. [29] provides a loss function to learn CFEs.

$$\mathcal{L}(\mathbf{x}, \mathbf{x}', y', \lambda) = \lambda (h(\mathbf{x}') - y')^2 + d(\mathbf{x}, \mathbf{x}')$$
$$d(\mathbf{x}, \mathbf{x}') = \sum_{i=0}^n \frac{|x'_i - x_i|}{MAD_i}$$
(2)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Wachter et al. [29] provides a loss function to learn CFEs.

$$\mathcal{L}(\mathbf{x}, \mathbf{x}', y', \lambda) = \lambda (h(\mathbf{x}') - y')^2 + d(\mathbf{x}, \mathbf{x}')$$
$$d(\mathbf{x}, \mathbf{x}') = \sum_{i=0}^n \frac{|x'_i - x_i|}{MAD_i}$$
(2)

$$\mathbf{x}^* = \underset{\mathbf{x}' \in \mathcal{X}}{\arg\min} \max_{\lambda \in \mathbb{R}} \quad \lambda (h(\mathbf{x}') - \mathbf{y}')^2 + d(\mathbf{x}, \mathbf{x}')$$
(3)

◆□▶ ◆圖▶ ◆国▶ ◆国▶ - 国 - のへで

There are already many research works on how to build CFEs:

- Multi-objective Counterfactual Explanations [5]
- Counterfactual Explanations under uncertainty [24]
- MACE (Karimi et al. [13])
- LORE (Guidotti, Monreale, Ruggieri, Pedreschi, et al. [9])
- DICE (Mothilal et al. [17])
- FACE (Poyiadzi et al. [19])
- Many surveys on the topic. See Guidotti, Monreale, Ruggieri, Turini, et al. [10]

- Given  $\mathbf{x} \in \mathcal{X}$ , there exists multiple  $\mathbf{x}^*$  (Rashomon Effect)
- CFEs are not actionable
- CFE optimization does not consider the feasibility
- Prior works ignore the causal relationship between features.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Actionable sequence of actions instead of a CFE
- It defines a cost to mimic the user's effort for each action
- It considers causal relationships between features
- **Minimize** the cost of the sequence, such that  $h(\mathbf{x}) \neq h(\mathbf{x}')$
- **Same properties** of counterfactual explanations (CFEs).

# **Counterfactual Interventions II**

$$\mathbf{x} := \{x_0, \dots, x_n\} \quad x \in \mathcal{X}$$
$$h : \mathcal{X} \to \{0, 1\}$$
$$\mathbf{a} \in \mathcal{A} \qquad C : \mathcal{A} \times \mathcal{X} \to \mathbb{R}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

# **Counterfactual Interventions II**

$$\mathbf{x} := \{x_0, \dots, x_n\} \quad x \in \mathcal{X}$$
$$h : \mathcal{X} \to \{0, 1\}$$
$$\mathbf{a} \in \mathcal{A} \qquad C : \mathcal{A} \times \mathcal{X} \to \mathbb{R}$$

$$I^* = \underset{l \in \mathcal{I}}{\operatorname{arg\,min}} \sum_{t=1}^{T} C(a_t, \mathbf{x}_t)$$
  
s.t. 
$$I^* = \{a_t\}_{t=1}^{T}$$
$$\mathbf{x}_t = I(\mathbf{x}_{t-1})$$
$$h(I(\mathbf{x}_0)) \neq h(\mathbf{x}_0)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

(4)

## Counterfactual Interventions II

$$\mathbf{x} := \{x_0, \dots, x_n\} \quad x \in \mathcal{X}$$

$$h : \mathcal{X} \to \{0, 1\}$$

$$\mathbf{a} \in \mathcal{A} \quad C : \mathcal{A} \times \mathcal{X} \to \mathbb{R}$$

$$I^* = \arg\min_{l \in \mathcal{I}} \sum_{t=1}^{r} C(a_t, \mathbf{x}_t)$$

$$\text{s.t.} \quad I^* = \{a_t\}_{t=1}^{T}$$

$$\mathbf{x}_t = I(\mathbf{x}_{t-1})$$

$$h(I(\mathbf{x}_0)) \neq h(\mathbf{x}_0)$$

$$(4)$$

Т

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

#### Algorithmic Recourse is an **NP-Hard problem**.

# Causality

(A)



a1 : get\_degree(bachelor)
a2 : change\_job(developer)
a3 : change\_house(buy)



# Causality

(A)



 $a_1 : get\_degree(bachelor)$  $a_2 : change\_job(developer)$  $a_3 : change\_house(buy)$ 



▲□▶▲□▶▲□▶▲□▶ □ のQで

## Theorem 3 (Adapted from 3.2 in [22])

Unless we are intervening on variables without descendants, algorithmic recourse can be guaranteed only if the structural equations are known, no matter the amount or the type of available data.

# **Counterfactual Interventions**

Recourse in linear classification (Spangher et al. [23])

- SYNTH (Ramakrishnan et al. [20])
- CSCF (Naumann & Ntoutsi [18])
- FastAR (Verma et al. [26])
- FARE (De Toni, Lepri, & Passerini [6])
- See several surveys on the topic (e.g., Karimi et al. [12])

# **Counterfactual Interventions**

Recourse in linear classification (Spangher et al. [23])

- SYNTH (Ramakrishnan et al. [20])
- CSCF (Naumann & Ntoutsi [18])
- FastAR (Verma et al. [26])
- FARE (De Toni, Lepri, & Passerini [6])
- See several surveys on the topic (e.g., Karimi et al. [12])



▲□▶▲□▶▲□▶▲□▶ □ のQで



(a) Feature relationship graph  $\mathcal{G}$  (b) Different sequences  $\mathcal{S}_1$  (red) and  $\mathcal{S}_2$  (blue)

**Fig. 2.** For simplicity, the  $\tau(\cdot)$  functions in (a) are based on binary conditions:  $\tau_{32} = 1.0$  if  $\mathcal{X}_3 := \mathbf{US}$ , else 0.5.  $\tau_{31} = 0.5$  if  $\mathcal{X}_3 := \mathbf{US}$ , else 1.0.  $\tau_{21} = 0.5$  if  $\mathcal{X}_2 \geq \mathbf{BSc}$ , else 1.0. As a reference, the action efforts  $b_i$  are provided above each feature in (a).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで



Fig. 3. Anatomy and representation of the solution decoding.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●



Fig. 4. Relative minimal sequence cost  $(o_1)$  differences between the three methods for both datasets and solutions with  $T \leq 2$ . It is computed as:  $(B - A) / \max{\{A, B\}}$ .

▲□▶▲□▶▲□▶▲□▶ □ のQで

#### Current methods rely on optimization techniques

- Run them ex-novo for each user (might be a costly process)
- Fail to explain why we are suggesting each intervention (Barocas et al. [2])
- Limitations of CFE-based recourse (Karimi et al. [12])

## FARE (De Toni, Lepri, & Passerini [6])



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 Jointly train end-to-end models providing both predictions and interventions. See VCNet (Guyomard et al. [11])

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

# **Future Directions**

- Jointly train end-to-end models providing both predictions and interventions. See VCNet (Guyomard et al. [11])
- Human-in-the-Loop Counterfactual Intervention Generation. Eliciting user preferences over the actions (De Toni, Viappiani, et al. [7])

# **Future Directions**

- Jointly train end-to-end models providing both predictions and interventions. See VCNet (Guyomard et al. [11])
- Human-in-the-Loop Counterfactual Intervention Generation. Eliciting user preferences over the actions (De Toni, Viappiani, et al. [7])
- Validation with real-users of counterfactual interventions See "One counterfactual does not make an explanation" (Butz et al. [3])

## **Future Directions**

- Jointly train end-to-end models providing both predictions and interventions. See VCNet (Guyomard et al. [11])
- Human-in-the-Loop Counterfactual Intervention Generation. Eliciting user preferences over the actions (De Toni, Viappiani, et al. [7])
- Validation with real-users of counterfactual interventions See "One counterfactual does not make an explanation" (Butz et al. [3])
- Fairness of Algorithmic Recourse. See "On the fairness of causal algorithmic recourse" (von Kügelgen et al. [28]).

# Questions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

## References I

Adabi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence. *IEEE Access*, *6*, 52138–52160.

Barocas, S., Selbst, A. D., & Raghavan, M. (2020). The hidden assumptions behind counterfactual explanations and principal reasons. In *Proceedings of the 2020 conference on fairness, accountability, and transparency* (pp. 80–89).

Butz, R., Hommersom, A., Barenkamp, M., & van Ditmarsch, H. (n.d.). One counterfactual does not make an explanation.

Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., & Elhadad, N. (2015). Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In (p. 1721–1730). New York, NY, USA: Association for Computing Machinery. Retrieved from https://doi.org/10.1145/2783258.2788613 doi: 10.1145/2783258.2788613

## References II

Dandl, S., Molnar, C., Binder, M., & Bischl, B. (2020). Multi-objective counterfactual explanations. In *International conference on parallel problem solving from nature* (pp. 448–469).

De Toni, G., Lepri, B., & Passerini, A. (2022). Synthesizing explainable counterfactual policies for algorithmic recourse with program synthesis. *arXiv preprint arXiv:2201.07135*.

De Toni, G., Viappiani, P., Lepri, B., & Passerini, A. (2022). Generating personalized counterfactual interventions for algorithmic recourse by eliciting user preferences. *arXiv preprint arXiv:2205.13743*.

Dressel, J., & Farid, H. (2018). The accuracy, fairness, and limits of predicting recidivism. *Science advances*, *4*(1), eaa05580.

Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., & Giannotti, F. (2018). Local rule-based explanations of black box decision systems. *arXiv preprint arXiv:1805.10820*.

# References III

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. *ACM computing surveys (CSUR)*, *51*(5), 1–42.

Guyomard, V., Fessant, F., Guyet, T., Bouadi, T., & Termier, A. (2022). Vcnet: A self-explaining model for realistic counterfactual generation. In *Proceedings of the european conference on machine learning and principles and practice of knowledge discovery in databases (ecml pkdd).* 

Karimi, A.-H., Schölkopf, B., & Valera, I. (2021). Algorithmic recourse: from counterfactual explanations to interventions. In *Proceedings of the 2021 acm conference on fairness, accountability, and transparency* (pp. 353–362).

Karimi, A.-H., Von Kügelgen, J., Schölkopf, B., & Valera, I. (2020). Algorithmic recourse under imperfect causal knowledge: a probabilistic approach. *Advances in neural information* processing systems, 33, 265–277.

# **References IV**

Kim, B., Khanna, R., & Koyejo, O. O. (2016). Examples are not enough, learn to criticize! criticism for interpretability. *Advances in neural information processing systems*, *2*9.

Liem, C., Langer, M., Demetriou, A., Hiemstra, A. M., Sukma Wicaksana, A., Born, M. P., & König, C. J. (2018). Psychology meets machine learning: Interdisciplinary perspectives on algorithmic job candidate screening. In *Explainable and interpretable models in computer vision and machine learning* (pp. 197–253). Springer.

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. *Advances in neural information processing systems*, 30.

Mothilal, R. K., Sharma, A., & Tan, C. (2020). Explaining machine learning classifiers through diverse counterfactual explanations. In *Proceedings of the 2020 conference on fairness, accountability, and transparency* (pp. 607–617).

## References V

Naumann, P., & Ntoutsi, E. (2021). Consequence-aware sequential counterfactual generation. In *Joint european conference on machine learning and knowledge discovery in databases* (pp. 682–698).

Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., & Flach, P. (2020). Face: feasible and actionable counterfactual explanations. In *Proceedings of the aaai/acm conference on ai, ethics, and society* (pp. 344–350).

Ramakrishnan, G., Lee, Y. C., & Albarghouthi, A. (2020). Synthesizing action sequences for modifying model decisions. In *Proceedings of the aaai conference on artificial intelligence* (Vol. 34, pp. 5462–5469).

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "why should i trust you?" explaining the predictions of any classifier. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 1135–1144). Schölkopf, B., & von Kügelgen, J. (2022). From statistical to causal learning. *arXiv preprint arXiv:2204.00607*.

Spangher, A., Ustun, B., & Liu, Y. (2018). Actionable recourse in linear classification. In *Proceedings of the 5th workshop on fairness, accountability and transparency in machine learning.* 

Tsirtsis, S., De, A., & Rodriguez, M. (2021). Counterfactual explanations in sequential decision making under uncertainty. *Advances in Neural Information Processing Systems*, *34*, 30127–30139.

Venkatasubramanian, S., & Alfano, M. (2020). The philosophical basis of algorithmic recourse. In *Proceedings of the 2020 conference on fairness, accountability, and transparency* (pp. 284–293).

# **References VII**

Verma, S., Hines, K., & Dickerson, J. P. (2022). Amortized generation of sequential algorithmic recourses for black-box models. In *Proceedings of the aaai conference on artificial intelligence* (Vol. 36, pp. 8512–8519).

Voigt, P., & Von dem Bussche, A. (2017). The eu general data protection regulation (gdpr). *A Practical Guide, 1st Ed., Cham: Springer International Publishing, 10*(3152676), 10–5555.

von Kügelgen, J., Karimi, A.-H., Bhatt, U., Valera, I., Weller, A., & Schölkopf, B. (2022). On the fairness of causal algorithmic recourse. In *Proceedings of the aaai conference on artificial intelligence* (Vol. 36, pp. 9584–9594).

Wachter, S., Mittelstadt, B., & Russell, C. (2017). Counterfactual explanations without opening the black box: Automated decisions and the gdpr. *Harv. JL & Tech.*, *31*, 841.

Waters, A., & Miikkulainen, R. (2014). Grade: Machine learning support for graduate admissions. *Ai Magazine*, 35(1), 64–64.

#### Yoo, T., Ryu, I., Lee, G., Kim, Y., Kim, J., Lee, I., ... Rim, T. (2019). Adopting machine learning to automatically identify candidate patients for corneal refractive surgery. npj digit med 2: 59.