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Premise: The World is quantum...

At microscopic length scales (molecules, atoms, electrons,...):
Newton’s laws of dynamics and electromagnetism based on
Maxwell’s equations do not work.

We need quantum mechanics to describe physical phenomena.

Quantum things:

• Superposition of states
(is the electron either "here" or "there"? In both places!).

• Observations alters the state of the observed system.
(We observe the electron "here" with some probability)

• Entanglement ("spooky action at distance" as Einstein said)

Using physical phenomena to process information is a good and old idea...
What if are we able to use quantum phenomena?



A bit of history...

1981. At the First Conference of Physics of Computation (MIT), R.
Feynman observed that quantum systems cannot be efficiently simulated
by classical computers and proposed a model of quantum computer.

1985. D. Deutsch described the universal quantum computer in terms of
the quantum Turing machine.

1994. P. Shor proposed an algorithm for a quantum computer to factor
large integers in polynomial time.

1995. L. Grover presents the quantum search algorithm in an unsorted
database.

2000s. First prototypes of working quantum computers.

2010s. Quantum computers on the market (D-Wave, IBM Q System 1).



Present days (2022)

• Anyone can run his/her quantum algorithms on available quantum
machines (a basic access is usually free).

• Real-life problems are tackled by quantum computers.

• The interest by industry and non academic institutions is
dramatically increasing.

• Availability of fault-tolerant, error-corrected, universal quantum
computers?
Not yet, we are in the Noisy Intermediate-Scale Quantum (NISQ)
era (few hundred qubits).

• Quantum supremacy? Not yet.

• Hot topics: quantum optimization and quantum machine
learning...



Quantum computers exist

Examples of quantum computers:

D-Wave IBMQ



Quantum bits

Examples of qubits:

• Particle with spin 1/2;

• Polarized Photons;

• Controlled superconducting circuits.



Quantum bits

Qubit as a superconducting circuit:



Qubits

Quantum state superposition
The state of a qubit is a unit vector in C2:

|ψ〉 = α|0〉+ β|1〉 α, β ∈ C , |α|2 + |β|2 = 1

{|0〉, |1〉} computational basis.

A measurement process affects the qubit state
Measurement of a qubit (e.g. we measure the polarization of a photon)

P(0) = |α|2 P(1) = |β|2

The qubit state after the measurement is |i〉 if the outcome is i = 0, 1.

Remark:
The vectors |ψ〉 and e iθ|ψ〉 with θ ∈ R represent the same physical state.



Qubits

Tensor product

|ψ〉 =
(
α
β

)
∈ C2 |ϕ〉 =

(
γ
δ

)
∈ C2

|ψ〉 ⊗ |ϕ〉 =


αγ
αδ
βγ
βδ

 ∈ C4

2 qubits (as a composite system) are described in:

C2 ⊗ C2 := span{|ψ〉 ⊗ |ϕ〉 : |ψ〉, |ϕ〉 ∈ C2} = C4.

n qubits (as a composite system) are described in:

(C2)⊗n = C2n

.



Entangled qubits

Let |Ψ〉 ∈ C2 ⊗ C2 be the state of a qubit pair.

|Ψ〉 is said to be:
• separable if it has form |Ψ〉 = |ψ〉 ⊗ |ϕ〉 ≡ |ψϕ〉;
• entangled otherwise.

Example
Entangled state:

|Ψ〉 =
1√
2

(|00〉+ |11〉)

Measure the first qubit:
• The probability of measuring 0 is 1

2 .
• If the outcome is 0 then the post-measurement state is |Ψ0〉 = |00〉.
• Non-local action on the second qubit (quantum correlation).

EPR paradox: inconsistency with QM and Einstein’s locality.



A new kind of information

Empirical evidence:
Quantum randomness, state superpositions, entanglement are
physical phenomena not simply theoretical interpretations.

⇓

Encoding information into qubits (or more general quantum objects)
allows completely new kinds of:

• information storing and processing

• data representation

• telecommunication

• cybersecurity

• ...

In particular we are interested in machine learning!



Quantum gates

Let {|0〉, |1〉} be the computational basis
• Hadamard gate:

|x〉 H
1√
2

(|0〉+ (−1)x |1〉)

• Phase gate:

α|0〉+ β|1〉 Pφ α|0〉+ e iφβ|1〉

• CNOT gate:
|x〉 • |x〉

|y〉 |x ⊕ y〉

Theorem: {H,Pπ/4,CNOT} is a universal set for quantum computation.



Machine learning with quantum computers?

Achievements in Quantum Machine Learning (since 2013)

Algorithm Quantum speedup
K -medians Quadratic/Exponential

Hierarchical clustering Quadratic
K -means Exponential

Principal component analysis Exponential
Support vector machines Exponential

Nearest neighbors Quadratic / Exponential
Neural networks ?

General observation
Quantum architectures enable new paradigms of data representation and
information processing.

Current challenge
Devising quantum learning mechanisms for available or near-term quantum
machines.



A quantum binary classifier

The model
Let {(xi , yi )}i=0,...,N−1 be a training set where:
xi ∈ Rd and yi ∈ {−1, 1} for any i = 0, ...,N − 1

y(x) := sgn

(
N−1∑
i=0

yi cos(xi , x)

)
cos(x, z) :=

x · z
‖ x ‖‖ z ‖ x, z ∈ Rd .

Quantum implementation on the IBM ibmq_melbourne

• Quantum superposition of training vectors;
• Test instance in quantum superposition of the two classes;
• Cosine similarities computed by SWAP test.

Classical complexity: O(Nd)
Quantum complexity: O(log(Nd))



A quantum binary classifier

Training set stored in a n-qubit register (n = log d).
logN-qubit register, with Hilbert space Hindex ' (C2)⊗ log N , to encode the
indexes of training data vectors.

We can construct the state:

|X 〉 =
1√
N

N−1∑
i=0

|i〉|xi 〉|bi 〉 ∈ Hindex ⊗Hn ⊗Hl ,

where Hl is a 1-qubit register encoding the labels with bi = 1−yi
2 ∈ {0, 1}.

We can construct also:

|ψx〉 =
1√
N

N−1∑
i=0

|i〉|x〉|−〉 ∈ Hindex ⊗Hn ⊗Hl ,

where |−〉 = |0〉−|1〉√
2

.



A quantum binary classifier
Add 1 ancillary qubit to the registers and construct:

|Ψ〉 1√
2

(|X 〉|0〉+ |ψx〉|1〉) ∈ Hindex ⊗Hn ⊗Hl ⊗Ha,

that can be retrieved from the QRAM in time O(log(Nd)).

Perform the SWAP test:
c H • H P(1)

b ×

a ×

where qubit b is prepared in |+〉 = |0〉+|1〉√
2

and qubit c is prepared in |0〉.
The model:

y(x) := sgn

(
N−1∑
i=0

yi cos(xi , x)

)
,

Quantum implementation of the model based on:

y(x) = sgn [1− 4P(1)] .



A quantum binary classifier

Input: training set X = {xi , yi}i=0,...,N−1, unclassified instance x.
Result: label y of x.

1 repeat
2 initialize the register Hindex ⊗Hn ⊗Hl and an ancillary qubit a in the

state |Ψ〉;
3 initialize a qubit b in the state |−〉;
4 perform the SWAP test on a and b with control qubit c prepared in |0〉;
5 measure qubit c;
6 until desired accuracy on the estimation of P(1);
7 Estimate P(1) as the relative frequency P̂ of outcome 1;
8 if P̂ > 0.25 then
9 return y = −1

10 else
11 return y = 1
12 end

Overall complexity within an error ε in the estimation of P(1): O(ε−2 log (Nd))



Quantum clustering
Qdist is a quantum algorithm based on the SWAP test to calculate Euclidean
distance in logarithmic time.

Grover is a quantum search algorithm with quadratic speedup.

Example: K-medians clustering
Input: Data set {x1, · · · , xN}, number of clusters K
Result: Partition of {x1, · · · , xN} into K clusters

1 initialize K centroids C1, ...,CK from the elements of the dataset V ;
2 repeat
3 foreach i ← 1, ...,N do
4 Qdist (xi ,Cj) ∀j = 1, ...,K ;
5 find argminj ‖ xi − Cj ‖ with Grover;
6 end
7 construct the cluster Pj = {xi : Cj is the nearest centroid} for all

j = 1, ...,K ;
8 foreach j ← 1, ...,K do
9 use Qdist and Grover for centroid calculation;

10 end
11 until convergence;
12 return P1, ...,PK



Some QML schemes designed for universal quantum computers

• Quantum divisive clustering
W. Aïmeur et al. Quantum clustering algorithms ICML ’07: Proceedings
of the 24th international conference on Machine learning (2007)

• Quantum principal component analysis
S. Lloyd, et al. Quantum principal component analysis Nature Physics 10,
631 (2014)

• Quantum support vector machine
P. Rebentrost et al. Quantum support vector machine for big data
classification Phys. Rev. Lett. 113, 130503 (2014)

• Quantum nearest neighbor
N. Wiebe et al. Quantum Algorithms for Nearest-Neighbor Methods for
Supervised and Unsupervised Learning Quantum Information and
Computation 15(3,4): 0318- 0358 (2015)

• Quantum perceptron M. Schuld Simulating a perceptron on a quantum
computer Physics Letters A, 379, pp. 660-663 (2015)

• Quantum meta-learning M. Wilson et al. Optimizing quantum heuristic
with meta-learning Quantum Machine Intelligence 3 (2021)



Quantum Annealing
Quantum Annealers
The hardware is a quantum spin glass, i.e. a collection of qubits arranged
in the vertices of a graph (V ,E ) where edges represent the interactions
between neighbors.

Example: D-Wave Chimera topology



Quantum Annealing
Annealing process (annealing time 20µs)
By energy dissipation the quantum system evolves in the ground state
(the less energetic state) corresponding to the solution of a given
optimization problem.



Quantum Annealing

Shortcoming
Representing a given problem into the quantum hardware architecture is
difficult in general and can destroy the efficiency of the quantum
computation.

Proposed solution
Quantum Annealing Learning Search (QALS):

A hybrid quantum-classical algorithm enabling a learning mechanism so
that the quantum machine learns the representation of the problem on its
own without an expensive classical pre-processing.

References:
-) D.P., E. Blanzieri. Quantum Annealing Learning Search for solving QUBO
problems. Quantum Information Processing 18: 303 (2019)
-) A. Bonomi, T. De Min, E. Zardini, E. Blanzieri, Valter Cavecchia, D. P.
Quantum annealing learning search implementations in Quantum Information
and Computation, v. 22, n. 3&4 (2022)



ML with quantum annealers

• Boltzmann machine implementation
M.H. Amin Quantum Boltzmann machine Phys. Rev. X 8, 021050 (2018)

• Classification
N. T. Nguyen et al. Image classification using quantum inference on the
D-wave 2X. In: 2018 IEEE International Conference on Rebooting
Computing (ICRC), pp. 1-7. IEEE (2018)

• Clustering
V. Kumar et al. Quantum Annealing for Combinatorial Clustering
Quantum Inf Process (2018) 17: 39

• Training of a SVM
D. Willsch et al. Support vector machines on the D-wave quantum
annealer Computer Physics Communications 248, 107006 (2020)



Quantum-inspired ML

Using quantum formalism to devise classical ML algorithms
Quantum-inspired classifiers:
• Data encoding into density operators (quantum states);
• Construction of the centroids in the space of quantum states;
• Application of discrimination of quantum states to attach a new data

instance to the most similar centroid.

Example:

Quantum-inspired classifier SVM with linear kernel

Ref.: R. Leporini and D. P.. Support vector machines with quantum state
discrimination. Quantum Reports vol. 3, n. 3 (2021)



Some concluding remarks

• Quantum architectures enable new kinds of data processing.

• There is a bottleneck about the efficient data representation into
quantum hardware (QRAM are not feasible yet).

• The era of quantum machine learning is just started but it is maybe
the most promising road for putting forward the frontiers of
quantum computing.

• The quantum-classical hybrid approach is the best way to use the
existing quantum machines.

• Providing efficient quantum algorithms is a very difficult task.
So we have to devise learning mechanisms of new quantum
algorithms towards a "quantum meta-learning"...

In other words, quantum computers must learn how to solve
problems on their own...



Thanks for your attention!

Credit: IBM


