
Scientific Programming

Lecture A05 - Designing programs

Andrea Passerini

Università degli Studi di Trento

2019/06/26

Acknowledgments: Alberto Montresor

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

references

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Table of contents

1 Modules and packages
2 Input-Output

Modules and packages

Definitions

Module

A module is a file containing Python definitions and statements.
The file name is the module name with the suffix .py appended.

Package

A package is a collection of multiple modules and potentially other
packages.

Andrea Passerini (UniTN) SP - Programs 2019/06/26 1 / 30

Modules and packages

Python Standard Library

Python Standard Library

The Python Standard Library is installed by default together with
Python 2 and 3. It provides a lot of packages for dealing with many
different tasks.
https://docs.python.org/2/library/

Andrea Passerini (UniTN) SP - Programs 2019/06/26 2 / 30

https://docs.python.org/2/library/

Modules and packages

Python Package Index

Python Package Index

The Python Package Index is a repository of software for the Python
programming language, containing more than 100k packages. The
packages and modules that are not included in the standard library
need to be installed. More on that in the lab lessons.
https://pypi.python.org/pypi

Andrea Passerini (UniTN) SP - Programs 2019/06/26 3 / 30

https://pypi.python.org/pypi

Modules and packages

Importing a module/package

In order to make use of a package, you have to first import it:

import numpy

Once imported, you can use its definitions (functions, variables, etc.)
by prefixing them with the name of the module and a dot .

print(numpy.arccos(0))

If you try to import a package and get an error, it means that the
module is not installed in your machine.

import iamnotinstalled

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ImportError: No module named iamnotinstalled

Andrea Passerini (UniTN) SP - Programs 2019/06/26 4 / 30

Modules and packages

Importing a module/package

Sub-modules

You can import specific sub-modules using the notation import
module.submodule; then, you can call functions included in it by
prefixing it with module.submodule

import numpy
import numpy.linalg
A = numpy.matrix([[1,2], [3,4]])
print(numpy.linalg.eig(A))

(array([-0.37228132, 5.37228132]),
matrix([[-0.82456484, -0.41597356],

[0.56576746, -0.90937671]]))

Andrea Passerini (UniTN) SP - Programs 2019/06/26 5 / 30

Modules and packages

Importing a module/package

Abbreviations

You can also abbreviate the name of the package with a shorthand,
as follows:

import numpy as np
import numpy.linalg as la
A = np.matrix([[1,2], [3,4]])
print(la.eig(A))

Andrea Passerini (UniTN) SP - Programs 2019/06/26 6 / 30

Modules and packages

Importing individual functions

Abbreviations

You can also import individual functions, as follows.

from numpy import arccos, arcsin
print(arccos(0))
print(arcsin(0))

1.57079632679
0.0

Andrea Passerini (UniTN) SP - Programs 2019/06/26 7 / 30

Modules and packages

Importing all the functions functions

Abbreviations

You can also import all individual functions, as follows.

from math import *
print(factorial(5))
print(floor(3.45))
print(ceil(3.45))
print(sqrt(16))
print(pi)

120
3
4
4.0
3.141592653589793

Andrea Passerini (UniTN) SP - Programs 2019/06/26 8 / 30

Modules and packages

Some comments

import package [as alias]: reads the file package.py all
attributes and inserts them in the namespace package (or alias, if
present)

from package import attribute: imports (some) attributes from
file package.py and insert them in the current namespace

When using from, you may have overlapping between attribute
names. The last to be imported wins!

Andrea Passerini (UniTN) SP - Programs 2019/06/26 9 / 30

Modules and packages

__future__ module

The __future__ “module” is a special module used to import Python 3
functionality into Python 2 programs. It can be useful for writing code
compatible with both Python 2 and Python 3.

Python 2.7
from __future__ import print_function
from __future__ import division
print(2/3)

0.666666666667

Andrea Passerini (UniTN) SP - Programs 2019/06/26 10 / 30

Modules and packages

Defining modules

Writing (basic) Python modules is very simple. To create a module of
your own, simply create a new .py file with the module name, and then
import it using the Python file name (without the .py extension) using
the import command.

Notes

Each module has its own global scope

The global scope spans a single file only

Andrea Passerini (UniTN) SP - Programs 2019/06/26 11 / 30

Input-Output

Input and output

Reading and Writing Text Files

In order to access the contents of a file (let’s assume a text file for
simplicity), we need to first create a handle to it. This can be done
with the open() function.

Handle

A handle is simply an object that refers to a given file. It does not
contain any of the file data, but it can be used together with other
methods, to read and write from the file it refers to.

Andrea Passerini (UniTN) SP - Programs 2019/06/26 12 / 30

Input-Output

Built-in functions and methods

Result Built-in function Meaning
file open(str, [str]) Get a handle to a file

Result Method Meaning
str file.read() Read all the file as a single string
list
of str

file.readlines() Read all lines of the file as a list of
strings

str file.readline() Read one line of the file as a string
None file.write(str) Write one string to the file
None file.close() Close the file (i.e. flushes changes

to disk)

Andrea Passerini (UniTN) SP - Programs 2019/06/26 13 / 30

Input-Output

Opening files

open function arguments

The first argument to open() is the path of the file to be open
The second argument is optional. It tells open() how we
intend to use the file: for reading, for writing, etc.

Access modes

"r": we want to read from the file. This is the default mode.
"w": we want to write to the file, overwriting its contents.
"a": we want to append to the existing contents.
"b": the file will be read in binary mode

Andrea Passerini (UniTN) SP - Programs 2019/06/26 14 / 30

Input-Output

Opening files

Mode flags can be combined

"rw": we want to read and write (in “overwrite” mode).
"ra": we want to read and write (in “append” mode).

Andrea Passerini (UniTN) SP - Programs 2019/06/26 15 / 30

Input-Output

Opening files

Opening a file returns a specific object type.

f = open("data/table.csv", "r")
print(type(f))
print(f)

<class ’_io.TextIOWrapper’>
<_io.TextIOWrapper name=’data/table.csv’ mode=’r’

encoding=’US-ASCII’>

Andrea Passerini (UniTN) SP - Programs 2019/06/26 16 / 30

Input-Output

Closing files

Once you are done with a file (either reading or writing), make sure to
call the close() method to finalize your operations.

file.close()

Once the file is closed, you cannot read or write on it anymore.

print(file.readlines())

Traceback (most recent call last):
File "data/table.csv", line 3, in <module>

print(file.readlines())
ValueError: I/O operation on closed file.

Andrea Passerini (UniTN) SP - Programs 2019/06/26 17 / 30

Input-Output

Opening and closing

with open("data") as f:
print(f.readlines())

It is good practice to use the with keyword when dealing with file
objects. The advantage is that the file is properly closed after its suite
finishes, even if an exception is raised at some point.

Andrea Passerini (UniTN) SP - Programs 2019/06/26 18 / 30

Input-Output

Reading files – Method 1

As a single, big string

contents = file.read()
print(contents)

surname,name,email address
passerini,andrea,andrea.passerini@unitn.it
bianco,luca,luca.bianco@fmach.it
leoni,david,david.leoni@unitn.it

read() makes sense if your file is small enough (i.e. it fits into the
RAM) and it is not structured as a sequence of lines separated by
newline characters.

Andrea Passerini (UniTN) SP - Programs 2019/06/26 19 / 30

Input-Output

Reading files – Method 2

As a list of lines (represented as strings)

lines = f.readlines()
print(lines)

[’surname,name,email address\n’,
’passerini,andrea,andrea.passerini@unitn.it\n’,
’bianco,luca,luca.bianco@fmach.it\n’,
’leoni,david,david.leoni@unitn.it\n’]

readlines() makes sense if your file is small enough and it is
structured as a collection of lines.

Andrea Passerini (UniTN) SP - Programs 2019/06/26 20 / 30

Input-Output

Reading files – Method 3

One line at a time, sequentially, from the first onwards, using me-
thod readline()

f = open("table.csv")
line = f.readline() # skip first line
line = f.readline()
while (line != ""):

print(line, end="")
line = f.readline()

passerini,andrea,andrea.passerini@unitn.it
bianco,luca,luca.bianco@fmach.it
leoni,david,david.leoni@unitn.it

readline() makes sense for very large files, because you can read one
line at a time, without saturating the machine.

Andrea Passerini (UniTN) SP - Programs 2019/06/26 21 / 30

Input-Output

Reading files – Method 4

Using the iterator associated with the file object

f = open("table.csv")
line = f.readline() # skip first line
for line in f:

print(line, end="")

passerini,andrea,andrea.passerini@unitn.it
bianco,luca,luca.bianco@fmach.it
leoni,david,david.leoni@unitn.it

This approach makes sense for very large files, because you can read
one line at a time, without saturating the machine.

Andrea Passerini (UniTN) SP - Programs 2019/06/26 22 / 30

Input-Output

Reading through the file as a stream

Warning

Internally, Python keeps track of which lines of a file have already
been read.

Once a line has been read, it can not be read from the same file
handle.

This limitation affects all four methods.

f = open("table.csv")
lines = f.readlines() # read entire file
for line in f:

print(line, end="")

This code does not print anything.
Andrea Passerini (UniTN) SP - Programs 2019/06/26 23 / 30

Input-Output

Writing files

Open a file for writing
f = open("result.txt", "w")

TODO: write a complex calculation whose result is 42
result = 42

Convert the result into a string, write a newline
f.write(str(result))
f.write("\n")

Make sure that our writes are written to disk.
f.close()

Andrea Passerini (UniTN) SP - Programs 2019/06/26 24 / 30

Input-Output

Writing files

Forgetting to close a file opened in read-only mode is not too
harmful (you may exceed the maximum number of open files)

Forgetting to close files opened in write mode can have serious
consequences

Why?

Writes to files are not immediately written to disk, for efficiency.
Instead, they are stored in memory until Python decides to flush
them. close() is a way to tell Python to flush the changes.

Intuitively, this means that if you don’t call close() and the program
quits (because of an error, for instance), then your changes are not
written to the file.

Andrea Passerini (UniTN) SP - Programs 2019/06/26 25 / 30

Input-Output

Some fancy ways to format strings

print(’{0} and {1}’.format(’spam’, ’eggs’))
print(’{1} and {0}’.format(’spam’, ’eggs’))
print(’This {food} is {adjective}.’.format(

food=’spam’, adjective=’absolutely horrible’))
print(’The value of PI is approximately {0:.3f}.’.format(3.141592653589793))

spam and eggs
eggs and spam
This spam is absolutely horrible.
The value of PI is approximately 3.142.

Andrea Passerini (UniTN) SP - Programs 2019/06/26 26 / 30

Input-Output

Some fancy ways to format strings

for x in range(1, 11):
print(’{0:2d} {1:3d} {2:4d}’.format(x, x*x, x*x*x))

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

Andrea Passerini (UniTN) SP - Programs 2019/06/26 27 / 30

Input-Output

Exercise

f1 = open("result.txt", "w")
f1.write("Text 1\n")
f2 = open("result.txt", "w")
f2.write("Text 2\n")
f2.close()
f1.close()

Text 1

Andrea Passerini (UniTN) SP - Programs 2019/06/26 28 / 30

Input-Output

Exercise

f1 = open("result.txt", "w")
f1.write("Text 1\n")
f2 = open("result.txt", "a")
f2.write("Text 2\n")
f2.close()
f1.close()

Text 1

Andrea Passerini (UniTN) SP - Programs 2019/06/26 29 / 30

Input-Output

Exercise

f1 = open("result.txt", "w")
f1.write("Text 1\n")
f1.close()
f2 = open("result.txt", "a")
f2.write("Text 2\n")
f2.close()

Text 1
Text 2

Andrea Passerini (UniTN) SP - Programs 2019/06/26 30 / 30

	Modules and packages
	Input-Output

