
Reinforcement learning

Learning setting

• The learner is provided a set of possible states S, and for each state, a set of possible actions, A moving it to a
next state.

• In performing action a from state s, the learner is provided an immediate reward r(s, a).

• The task is to learn a policy allowing to choose for each state s the action a maximizing the overall reward
(including future moves).

• The learner has to deal with problems of delayed reward coming from future moves, and trade-off between
exploitation and exploration.

• Typical applications include moving policies for robots and sequential scheduling problems in general.

Reinforcement learning: overview

Image from Sean Devlin

Reinforcement learning: applications

1

Robotics

Game Playing

Sequential Decision Making

Setting

• An agent needs to take a sequence of decisions (e.g. moves in a maze)

• The agent should maximize some utility function (e.g. avoiding holes, exiting the maze)

• There is uncertainty in the result of a decision (e.g. the floor could be slippery)

Formalization

Markov Decision Process (MDP)

• A set of states S in which the agent can be at each time instant

• A (possibly empty) set of terminal states SG ⊂ S

• A set of actions A the agent can make

2

• A transition model providing the probability of going to a state s′ with action a from state s

P (s′|s, a) s, s′ ∈ S, a ∈ A

• A reward R(s, a, s′) for making action a in state s and reaching state s′

MDP: Example

646 Chapter 17. Making Complex Decisions

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

Figure 17.1 (a) A simple 4 ×3 environment that presents the agent with a sequential
decision problem. (b) Illustration of the transition model of the environment: the “intended”
outcome occurs with probability 0.8, but with probability 0.2 the agent moves at right angles
to the intended direction. A collision with a wall results in no movement. The two terminal
states have reward +1 and –1, respectively, and all other states have a reward of –0.04.

If the environment were deterministic, a solution would be easy: [Up, Up, Right, Right,
Right]. Unfortunately, the environment won’t always go along with this solution, because the
actions are unreliable. The particular model of stochastic motion that we adopt is illustrated
in Figure 17.1(b). Each action achieves the intended effect with probability 0.8, but the rest
of the time, the action moves the agent at right angles to the intended direction. Furthermore,
if the agent bumps into a wall, it stays in the same square. For example, from the start square
(1,1), the action Up moves the agent to (1,2) with probability 0.8, but with probability 0.1, it
moves right to (2,1), and with probability 0.1, it moves left, bumps into the wall, and stays in
(1,1). In such an environment, the sequence [Up,Up,Right ,Right ,Right] goes up around
the barrier and reaches the goal state at (4,3) with probability 0.8 5 = 0.32768 . There is also a
small chance of accidentally reaching the goal by going the other way around with probability
0.1 4 × 0.8 , for a grand total of 0.32776. (See also Exercise 17.1.)

As in Chapter 3, the transition model (or just “model,” whenever no confusion can
arise) describes the outcome of each action in each state. Here, the outcome is stochastic,
so we write P (s′ | s, a) to denote the probability of reaching state s′ if action a is done in
state s. We will assume that transitions are Markovian in the sense of Chapter 15, that is, the
probability of reaching s′ from s depends only on s and not on the history of earlier states. For
now, you can think of P (s′ | s, a) as a big three-dimensional table containing probabilities.
Later, in Section 17.4.3, we will see that the transition model can be represented as a dynamic
Bayesian network, just as in Chapter 15.

To complete the definition of the task environment, we must specify the utility function
for the agent. Because the decision problem is sequential, the utility function will depend
on a sequence of states—an environment history—rather than on a single state. Later in
this section, we investigate how such utility functions can be specified in general; for now,
we simply stipulate that in each state s, the agent receives a reward R(s), which may beREWARD

positive or negative, but must be bounded. For our particular example, the reward is −0.04
in all states except the terminal states (which have rewards +1 and –1). The utility of an

Agent moving in room

• State: occupied cell

• Terminal states (row,column): (4,2), (4,3)

• Actions: UP,DOWN,LEFT,RIGHT

• Transitions probabilities: 0.8 in direction of action, 0.1 in each orthogonal direction (see figure)

• Rewards: R((4,2)) = -1, R((4,3)) = +1, all other rewards = r

Image from Russell & Norvig, 2010

Defining Utilities

Utilities over time

• An environment history is a sequence of states

• Utilities are defined over environment histories

• We assume an infinite horizon (no constraint on the number of time steps)

• We assume stationary preferences (if one history is preferred to another at time t, the same should hold at time
t′ provided they start from the same state)

3

Defining Utilities

Utilities over time
Two sensible ways to define utilities under previous conditions

• Additive rewards
U([s0, s1, s2,]̇) = R(s0) +R(s1) +R(s2) + · · ·

• Discounted rewards
U([s0, s1, s2,]̇) = R(s0) + γR(s1) + γ2R(s2) + · · ·

for γ ∈ [0, 1]

Note
We consider rewards that only depend on the (destination) state. In the more general case each reward should be

written as R(st, at, st+1).

MDP: taking decisions

Optimal Policy

• A policy π is a full specification of what action to take at each state.

• The expected utility of a policy is the utility of an environment history, taken in expectation over all possible
histories generated with that policy

• An optimal policy π∗ is a policy maximizing expected utility

• For infinite horizons, optimal policies are stationary, i.e. they only depend on the current state

Optimal policy: examples
648 Chapter 17. Making Complex Decisions

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)

– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

Figure 17.2 (a) An optimal policy for the stochastic environment with R(s)= − 0.04 in
the nonterminal states. (b) Optimal policies for four different ranges of R(s).

and (3,3) are as shown, every policy is optimal, and the agent obtains infinite total reward be-
cause it never enters a terminal state. Surprisingly, it turns out that there are six other optimal
policies for various ranges of R(s); Exercise 17.5 asks you to find them.

The careful balancing of risk and reward is a characteristic of MDPs that does not
arise in deterministic search problems; moreover, it is a characteristic of many real-world
decision problems. For this reason, MDPs have been studied in several fields, including
AI, operations research, economics, and control theory. Dozens of algorithms have been
proposed for calculating optimal policies. In sections 17.2 and 17.3 we describe two of the
most important algorithm families. First, however, we must complete our investigation of
utilities and policies for sequential decision problems.

17.1.1 Utilities over time

In the MDP example in Figure 17.1, the performance of the agent was measured by a sum of
rewards for the states visited. This choice of performance measure is not arbitrary, but it is
not the only possibility for the utility function on environment histories, which we write as
Uh([s0, s1, . . . , sn]). Our analysis draws on multiattribute utility theory (Section 16.4) and
is somewhat technical; the impatient reader may wish to skip to the next section.

The first question to answer is whether there is a finite horizon or an infinite horizonFINITE HORIZON

INFINITE HORIZON for decision making. A finite horizon means that there is a fixed time N after which nothing
matters—the game is over, so to speak. Thus, Uh([s0, s1, . . . , sN+k])= Uh([s0, s1, . . . , sN])
for all k > 0. For example, suppose an agent starts at (3,1) in the 4× 3 world of Figure 17.1,
and suppose that N = 3. Then, to have any chance of reaching the +1 state, the agent must
head directly for it, and the optimal action is to go Up. On the other hand, if N = 100,
then there is plenty of time to take the safe route by going Left. So, with a finite horizon,

r = - 0.04

r < - 1.6284 - 0.4278 < r < - 0.0850

- 0.0221 < r < 0 r > 0

Optimal policies varying r

• utility is made with additive rewards

• r is the reward of non-terminal states

• Arrows indicate the best action to take

• Star indicates all actions are equally optimal

Image from Russell & Norvig, 2010

4

Optimal policy: examples
648 Chapter 17. Making Complex Decisions

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)

– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

Figure 17.2 (a) An optimal policy for the stochastic environment with R(s)= − 0.04 in
the nonterminal states. (b) Optimal policies for four different ranges of R(s).

and (3,3) are as shown, every policy is optimal, and the agent obtains infinite total reward be-
cause it never enters a terminal state. Surprisingly, it turns out that there are six other optimal
policies for various ranges of R(s); Exercise 17.5 asks you to find them.

The careful balancing of risk and reward is a characteristic of MDPs that does not
arise in deterministic search problems; moreover, it is a characteristic of many real-world
decision problems. For this reason, MDPs have been studied in several fields, including
AI, operations research, economics, and control theory. Dozens of algorithms have been
proposed for calculating optimal policies. In sections 17.2 and 17.3 we describe two of the
most important algorithm families. First, however, we must complete our investigation of
utilities and policies for sequential decision problems.

17.1.1 Utilities over time

In the MDP example in Figure 17.1, the performance of the agent was measured by a sum of
rewards for the states visited. This choice of performance measure is not arbitrary, but it is
not the only possibility for the utility function on environment histories, which we write as
Uh([s0, s1, . . . , sn]). Our analysis draws on multiattribute utility theory (Section 16.4) and
is somewhat technical; the impatient reader may wish to skip to the next section.

The first question to answer is whether there is a finite horizon or an infinite horizonFINITE HORIZON

INFINITE HORIZON for decision making. A finite horizon means that there is a fixed time N after which nothing
matters—the game is over, so to speak. Thus, Uh([s0, s1, . . . , sN+k])= Uh([s0, s1, . . . , sN])
for all k > 0. For example, suppose an agent starts at (3,1) in the 4× 3 world of Figure 17.1,
and suppose that N = 3. Then, to have any chance of reaching the +1 state, the agent must
head directly for it, and the optimal action is to go Up. On the other hand, if N = 100,
then there is plenty of time to take the safe route by going Left. So, with a finite horizon,

r = - 0.04

r < - 1.6284 - 0.4278 < r < - 0.0850

- 0.0221 < r < 0 r > 0

Discussion

• If moving is very expensive, optimal policy is to reach any terminal state asap

• If moving is very cheap, optimal policy is avioding the bad terminal state at all costs

• If moving gives positive reward, optimal policy is to stay away of terminal states!! (usefulness of discounted
rewards)

Optimal policy: utilities

Utility of states

• The utility of a state given a policy π is:

Uπ(s) = Eπ

[∞∑
t=0

γtR(St)
∣∣∣S0 = s

]

where St is the state reached after t steps using policy π starting from S0 = s.

• The true utility of a state is its utility under an optimal policy:

U(s) = Uπ
∗
(s)

• Given the true utility, an optimal policy is as follows:

π∗(s) = argmax
a∈A

∑
s′∈S

p(s′|s, a)U(s′)

Computing an optimal policy

The utility of a state is its immediate reward plus the expected discounted utility of the next state, assuming
that the agent chooses and optimal action

Bellman equation

U(s) = R(s) + γ ∗max
a∈A

∑
s′∈S

p(s′|s, a)U(s′)

5

• There is a Bellman equation for each state s ∈ S

• Utilities of states are solutions of the set of Bellman equations

• The solutions to the set of Bellman equations are unique

• Directly solving the set of equations is hard (non-linearities because of the max)

Computing an optimal policy
Value iteration

1. Initialize U0(s) to zero for all s

2. Repeat

(a) do Bellman update for each state s:

Ui+1(s)← R(s) + γ ∗max
a∈A

∑
s′∈S

p(s′|s, a)Ui(s′)

(b) i← i+ 1

3. Until max utility difference below a threshold

4. return U

Optimal policy
The optimal policy can be set as:

π∗(s) = argmax
a∈A

∑
s′∈S

p(s′|s, a)U(s′)

Computing an optimal policy

Policy iteration

1. Initialize π0 randomly

2. Repeat

(a) policy evaluation, solve set of linear equations:

Ui(s) = R(s) + γ
∑
s′∈S

p(s′|s, πi(s))Ui(s′) ∀s ∈ S

where πi(s) is the action that policy πi prescribes for state s.

(b) policy improvement
πi+1(s)← argmax

a∈A

∑
s′∈S

p(s′|s, a)Ui(s′) ∀s ∈ S

(c) i← i+ 1

3. Until no policy improvement

4. return π

6

Reinforcement learning

Dealing with partial knowledge

• Value iteration and policy iteration assume perfect knowledge (environment, transition model,rewards)

• In most cases, some of these aspects are not known

• Reinforcement learning aims at learning policies by space exploration

• policy evaluation: policy is given, environment is learned (passive agent)

• policy improvement: both policy and environment are learned (active agent)

Policy evaluation in unknown environment

Adaptive Dynamic Programming (ADP): algorithm

1. Loop

(a) Initialize s

(b) Repeat

i. Receive reward r, set R(s) = r

ii. Choose next action a← π(s)

iii. Take action a, reach step s′

iv. Update counts
Nsa ← Nsa + 1; Ns′|sa ← Ns′|sa + 1

v. Update transition model
p(s′′|s, a)← Ns′′|sa/Nsa ∀s′′ ∈ S

vi. Update utility estimate
U ← POLICYEVALUATION(π, U, p,R, γ)

(c) Until s is terminal

Policy evaluation in unknown environment

ADP: characteristics

• The algorithm performs maximum likelihood estimation of transition probabilities

• Upon updating the transition model, it calls standard policy evaluation to update the utility estimate (U is
initially empty)

• Each step is expensive as it runs policy evaluation

7

Policy evaluation in unknown environment

Temporal-difference (TD) policy evaluation: rationale

• Avoid running policy evaluation at each iteration

• Locally update utility.

• If transition from s to s′ is observed:

– If s′ was always the successor of s, the utility of s should be

U(s) = R(s) + γU(s′)

– The temporal-difference update rule updates the utility to get closer to that situation:

U(s)← U(s) + α(R(s) + γU(s′)− U(s))

where α is a learning rate (possibly decreasing over time)

Policy evaluation in unknown environment

TD policy evaluation: algorithm

1. Loop

(a) Initialize s

(b) Repeat

i. Receive reward r
ii. Choose next action a← π(s)

iii. Take action a, reach step s′

iv. Update local utility estimate

U(s)← U(s) + α(r + γU(s′)− U(s))

(c) Until s is terminal

Policy evaluation in unknown environment

TD policy evaluation: characteristics

• No need for a transition model for utility update

• Each step is much faster than ADP

• Same as ADP on the long run

• Takes longer to converge

• Can be seen as a rough efficient approximation of ADP

8

Policy learning in unknown environment

Setting

• policy learning requires combining learning the environment and learning the optimal policy for the environment

• A simple option consists of replacing policy evaluation in ADP with optimal policy computation (given current
knowledge of the environment, greedy agent):

U(s) = R(s) + γmax
a∈A

∑
s′∈S

p(s′|s, a)U(s′)

Problem
The knowledge of the environment is incomplete. A greedy agent usually learns a suboptimal policy (lack of

exploration).

Suboptimal policy: example

840 Chapter 21. Reinforcement Learning

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350 400 450 500

R
M

S
er

ro
r,

po
lic

y
lo

ss

Number of trials

RMS error
Policy loss

1 2 3

1

2

3

–1

+1

4

(a) (b)

Figure 21.6 Performance of a greedy ADP agent that executes the action recommended
by the optimal policy for the learned model. (a) RMS error in the utility estimates averaged
over the nine nonterminal squares. (b) The suboptimal policy to which the greedy agent
converges in this particular sequence of trials.

mize its long-term well-being. Pure exploitation risks getting stuck in a rut. Pure exploration
to improve one’s knowledge is of no use if one never puts that knowledge into practice. In the
real world, one constantly has to decide between continuing in a comfortable existence and
striking out into the unknown in the hopes of discovering a new and better life. With greater
understanding, less exploration is necessary.

Can we be a little more precise than this? Is there an optimal exploration policy? This
question has been studied in depth in the subfield of statistical decision theory that deals with
so-called bandit problems. (See sidebar.)BANDIT PROBLEM

Although bandit problems are extremely difficult to solve exactly to obtain an optimal
exploration method, it is nonetheless possible to come up with a reasonable scheme that
will eventually lead to optimal behavior by the agent. Technically, any such scheme needs
to be greedy in the limit of infinite exploration, or GLIE. A GLIE scheme must try eachGLIE

action in each state an unbounded number of times to avoid having a finite probability that
an optimal action is missed because of an unusually bad series of outcomes. An ADP agent
using such a scheme will eventually learn the true environment model. A GLIE scheme must
also eventually become greedy, so that the agent’s actions become optimal with respect to the
learned (and hence the true) model.

There are several GLIE schemes; one of the simplest is to have the agent choose a ran-
dom action a fraction 1/t of the time and to follow the greedy policy otherwise. While this
does eventually converge to an optimal policy, it can be extremely slow. A more sensible
approach would give some weight to actions that the agent has not tried very often, while
tending to avoid actions that are believed to be of low utility. This can be implemented by
altering the constraint equation (21.4) so that it assigns a higher utility estimate to relatively

Discussion

• The algorithm finds a policy reaching the +1 terminal state along the lower route (2,1), (3,1), (3,2), and (3,3)

• It never learns the utilities of the other states

• It fails to discover the optimal route (1,2), (1,3), and (2,3).

Learning optimal policies

Exploration-exploitation trade-off

• Exploitation consists in following promising directions given current knowledge

• Exploration consists in trying novel directions looking for better (unknown) alternatives

• A reasonable trade-off should be used in defining the search scheme:

– ε-greedy strategy: choose a random move with probability ε, be greedy otherwise

9

– assign higher utility estimates to (relatively) unexplored state-action pairs:

U+(s) = R(s) + γmax
a∈A

f

(∑
s′∈S

p(s′|s, a)U+(s′), Nsa

)

with f increasing over the first argument and decreasing over the second.

Learning optimal policies

TD learning: learning utilities of actions

• TD policy evaluation can also be adapted to learn an optimal policy

• If TD is used to learn a state utility function, it needs to estimate a transition model to derive a policy

• TD can instead be applied to learn an action utility function Q(s, a)

• The optimal policy corresponds to:
π∗(s) = argmax

a∈A
Q(s, a)

Learning optimal policies

SARSA: on-policy TD learning

1. Loop

(a) Initialize s

(b) Repeat

i. Receive reward r
ii. Choose next action a← πε(s)

iii. Take action a, reach step s′

iv. Choose action a′ ← πε(s′)

v. Update local utility estimate

Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a))

(c) Until s is terminal

Note
πε is an ε-greedy (or some other form of non-greedy) policy based on Q.

Learning optimal policies

Q-learning: off-policy TD learning

1. Loop

(a) Initialize s

(b) Repeat

i. Receive reward r
ii. Choose next action a← πε(s)

10

iii. Take action a, reach step s′

iv. Choose action a′ ← πε(s′)

v. Update local utility estimate

Q(s, a)← Q(s, a) + α(r + γmax
a′∈A

Q(s′, a′)−Q(s, a))

(c) Until s is terminal

Learning optimal policies
SARSA vs Q-learning

• SARSA is on-policy: it updates Q using the current policy’s action

• Q-learning is off-policy: it updates Q using the greedy policy’s action (which is NOT the policy it uses to
search)

• Off-policy methods are more flexible: they can even learn from traces generated with an unknown policy

• On-policy methods tend to converge faster, and are easier to use for continuous-state spaces and linear function
approximators (see following slides)

Scaling to large state spaces
Function approximation

• All techniques seen so far assume a tabular representation of utility functions (of states or actions)

• Tabular representations do not scale to large state spaces (e.g. Backgammon has an order of 1020 states)

• The solution is to rely on function approximation: approximate U(s) orQ(s, a) with a parameterized function.

• The function takes a state representation as input (e.g. x,y coordinates for the maze)

• The function allows to generalize to unseen states

Example: State utility function approximation

Lectures on Reinforcement Learning, Ngo Anh Vien—February 18, 2014 10

• random policies! games take up to thousands of steps. Skilled
players ⇠ 50� 60 steps.

• TD(�) learning (gradient-based update of NN weights)
3:21

TD-Gammon input features

• first only raw position inputs (number of pieces at each place)

! as good as previous computer programs

• using previous computer program’s expert features

! world-class player
3:22

4 Function Approximation

Continuous state/action space, mean-square error, gradient temporal
difference learning, least-square temporal difference, least squares
policy iteration

Outline

• Function Approximation

– Gradient Descent Methods.

– Least-Square Temporal Difference.

4:1

Value Iteration in Continuous MDP

V (s) = sup
a

⇥
r(s, a) + �

Z
P (s0|s, a)V (s0)dx0⇤

4:2

Continuous state/actions in model-free RL

• All of this is fine in small finite state & action spaces.

Q(s, a) is a |S|⇥ |A|-matrix of numbers.

⇡(a|s) is a |S|⇥ |A|-matrix of numbers.

• In the following: two examples for handling continuous
states/actions

– use function approximation to estimate Q(s, a): Gradient de-
scent (TD with FA), LSPI.

– optimize a parameterized ⇡(a|s) (policy search - next lecture).
4:3

Value Function Approximation

(from Satinder Singh, RL: A tutorial at videolectures.net)

• Estimate of the value function

Vt(s) = V (s, ✓t)

4:4

Performance Measure

• Minimizing the mean-squared error (MSE) over some distribu-
tion, P , of the states

MSE(�t) =
X

s2S

P (s)
⇥
V ⇡(s)� Vt(s)

⇤2

where V ⇡(s) is the true value function of the policy ⇡.

• Set P to the stationary distribution of policy ⇡ in on-policy learn-
ing methods (e.g. SARSA).

4:5

Value Function Approximation

• The estimate value function:

V (s,�t) = �>
t �(s)

where � 2 <d is a vector of parameters, � : S 7! <d is a mapping
from states to d-dimensional spaces.

– Examples: polynomial, RBF, fourier, wavelet basis, tile-coding. (suffer from the

curse of dimensionality)

• Nonparametric methods: k-nearest neighbor, nonparametric
kernel smoothing, spline smoothers, Gaussian process regres-
sion,...

4:6

Value Function Approximation

11

Image from Ngo Anh Vien’s lectures

Example: Action utility function approximation

Image from Praphul Sing’s blog

Learning the approximation function

TD learning: state utility

• TD error
E(s, s′) =

1

2
(R(s) + γUθ(s

′)− Uθ(s))2

• Error gradient wrt function parameters

∇θE(s, s′) = (R(s) + γUθ(s
′)− Uθ(s))(−∇θUθ(s))

• Stochastic gradient update rule

θ = θ − α∇θE(s, s′)

= θ + α(R(s) + γUθ(s
′)− Uθ(s))(∇θUθ(s))

Learning the approximation function

TD learning: action utility (Q-learning)

12

• TD error
E((s, a), s′) =

1

2
(R(s) + γmax

a′∈A
Qθ(s

′, a′)−Qθ(s, a))2

• Error gradient wrt function parameters

∇θE((s, a), s′) = (R(s) + γmax
a′∈A

Qθ(s
′, a′)−Qθ(s, a))

(−∇θQθ(s, a))

• Stochastic gradient update rule

θ = θ − α∇θE((s, a), s′)

= θ + α(R(s) + γmax
a′∈A

Qθ(s
′, a′)−Qθ(s, a))(∇θQθ(s, a))

Bibliography

• Russell, S. J., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach (3rd edition). Prentice Hall.
Chapters 17 and 21.

• Sutton, R. S. & Barto, A. G. (2018). Reinforcement Learning: an Introduction (2nd edition), The MIT PRESS.

13

