Reinforcement learning

Learning setting

* The learner is provided a set of possible states S, and for each state, a set of possible actions, .A moving it to a

next state.

¢ In performing action a from state s, the learner is provided an immediate reward r(s, a).

* The task is to learn a policy allowing to choose for each state s the action ¢ maximizing the overall reward

(including future moves).

* The learner has to deal with problems of delayed reward coming from future moves, and trade-off between

exploitation and exploration.

* Typical applications include moving policies for robots and sequential scheduling problems in general.

Reinforcement learning: overview

Reinforcement learning: applications
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Robotics

Game Playing

Sequential Decision Making

Setting

* An agent needs to take a sequence of decisions (e.g. moves in a maze)
* The agent should maximize some utility function (e.g. avoiding holes, exiting the maze)

* There is uncertainty in the result of a decision (e.g. the floor could be slippery)

Formalization

Markov Decision Process (MDP)
* A set of states S in which the agent can be at each time instant
* A (possibly empty) set of terminal states S¢ C S

* A set of actions A the agent can make



« A transition model providing the probability of going to a state s’ with action @ from state s

P(s'|s,a)

5,5 €8, ac A

» Areward R(s,a,s’) for making action a in state s and reaching state s’

MDP: Example
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Agent moving in room

State: occupied cell
Terminal states (row,column): (4,2), (4,3)

Actions: UPDOWN,LEFT,RIGHT
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Transitions probabilities: 0.8 in direction of action, 0.1 in each orthogonal direction (see figure)

Rewards: R((4,2)) = -1, R((4,3)) = +1, all other rewards = r

Defining Utilities

Utilities over time

An environment history is a sequence of states

Utilities are defined over environment histories

Image from Russell & Norvig, 2010

We assume an infinite horizon (no constraint on the number of time steps)

We assume stationary preferences (if one history is preferred to another at time ¢, the same should hold at time

t’ provided they start from the same state)



Defining Utilities

Utilities over time
Two sensible ways to define utilities under previous conditions

¢ Additive rewards

U([So, 51, 52,]) = R(S()) + R(Sl) —+ R(s2) + .-

¢ Discounted rewards

U([So, S1, 82,]) = R(So) + ")/R(Sl) + ’72R(82) + -
fory € [0,1]

Note
We consider rewards that only depend on the (destination) state. In the more general case each reward should be
written as R(s;, at, Sty1)-

MDP: taking decisions
Optimal Policy
* A policy 7 is a full specification of what action to take at each state.

* The expected utility of a policy is the utility of an environment history, taken in expectation over all possible
histories generated with that policy

¢ An optimal policy 7* is a policy maximizing expected utility

* For infinite horizons, optimal policies are stationary, i.e. they only depend on the current state

Optimal policy: examples
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Optimal policies varying r
« utility is made with additive rewards
e 1 is the reward of non-terminal states
* Arrows indicate the best action to take

* Star indicates all actions are equally optimal

Image from Russell & Norvig, 2010



Optimal policy: examples
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Discussion

 If moving is very expensive, optimal policy is to reach any terminal state asap
* If moving is very cheap, optimal policy is avioding the bad terminal state at all costs

* If moving gives positive reward, optimal policy is to stay away of terminal states!! (usefulness of discounted
rewards)

Optimal policy: utilities
Utility of states

* The utility of a state given a policy 7 is:

U™(s) = Ex

ZVtR(SHkH)‘St = 8]
k=0

where Sy 41 is the state reached after k steps using policy 7 starting from S; = s.

* The true utility of a state is its utility under an optimal policy:
U(s)=UT (s)

 Given the true utility, an optimal policy is as follows:

Computing an optimal policy

The utility of a state is its immediate reward plus the expected discounted utility of the next state, assuming
that the agent chooses and optimal action

Bellman equation



* There is a Bellman equation for each state s € S
« Utilities of states are solutions of the set of Bellman equations
* The solutions to the set of Bellman equations are unique

* Directly solving the set of equations is hard (non-linearities because of the max)

Computing an optimal policy
Value iteration

1. Initialize Up(s) to zero for all s
2. Repeat

(a) do Bellman update for each state s:

Uir1(s) < R(s) y*maxz (s'|s,a)Us(s")
s'€S

(b) i+i+1
3. Until max utility difference below a threshold

4. return U

Optimal policy
The optimal policy can be set as:

Computing an optimal policy
Policy iteration
1. Initialize 7y randomly
2. Repeat
(a) policy evaluation, solve set of linear equations:
Ui(s) —&—72 s, mi(s)Ui(s") Vs e S
s'€S

where 7;(s) is the action that policy ; prescribes for state s.
(b) policy improvement

mir1(s) < argmax Z s'|s,a)U;(s") VseS
acA s

() i+i+1
3. Until no policy improvement

4. return 7w



Reinforcement learning

Dealing with partial knowledge
* Value iteration and policy iteration assume perfect knowledge (environment, transition model,rewards)
 In most cases, some of these aspects are not known
» Reinforcement learning aims at learning policies by space exploration
* policy evaluation: policy is given, environment is learned (passive agent)

* policy improvement: both policy and environment are learned (active agent)

Policy evaluation in unknown environment

Adaptive Dynamic Programming (ADP): algorithm

1. Loop
(a) Initialize s
(b) Repeat
i. Receive reward r, set R(s) =r
ii. Choose next action a < 7(s)

iii. Take action a, reach step s’

iv. Update counts
Ngq < Noo + 15 Ns’|sa<_Ns/|sa+1

v. Update transition model
p(s"[s,a) <= Nyrjsa/Nsa Vs" €8

vi. Update utility estimate
U < POLICYEVALUATION(7, U, p, R, ")

(c) Until s is terminal

Policy evaluation in unknown environment
ADP: characteristics
* The algorithm performs maximum likelihood estimation of transition probabilities

» Upon updating the transition model, it calls standard policy evaluation to update the utility estimate (U is
initially empty)

 Each step is expensive as it runs policy evaluation



Policy evaluation in unknown environment
Temporal-difference (TD) policy evaluation: rationale
* Avoid running policy evaluation at each iteration
* Locally update utility.
o If transition from s to s’ is observed:
— If s’ was always the successor of s, the utility of s should be
U(s) = R(s) +yU(s")
— The temporal-difference update rule updates the utility to get closer to that situation:
U(s) < U(s) + a(R(s) +~U(s") — U(s))

where « is a learning rate (possibly decreasing over time)

Policy evaluation in unknown environment
TD policy evaluation: algorithm
1. Loop

(a) Initialize s
(b) Repeat
i. Receive reward r
ii. Choose next action a < 7(s)
iii. Take action a, reach step s’
iv. Update local utility estimate

U(s) < U(s) +alr+~yU(s") = U(s))

(c) Until s is terminal

Policy evaluation in unknown environment
TD policy evaluation: characteristics
* No need for a transition model for utility update
¢ Each step is much faster than ADP
e Same as ADP on the long run
* Takes longer to converge

* Can be seen as a rough efficient approximation of ADP



Policy learning in unknown environment

Setting
* policy learning requires combining learning the environment and learning the optimal policy for the environment
* A simple option consists of replacing policy evaluation in ADP with optimal policy computation (given current

knowledge of the environment, greedy agent):

U(s) = R(s) +ymax > p(s']s,a)U(s")

s'eS

Problem
The knowledge of the environment is incomplete. A greedy agent usually learns a suboptimal policy (lack of

exploration).

Suboptimal policy: example
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Discussion
* The algorithm finds a policy reaching the +1 terminal state along the lower route (2,1), (3,1), (3,2), and (3,3)
¢ It never learns the utilities of the other states

* It fails to discover the optimal route (1,2), (1,3), and (2,3).

Learning optimal policies

Exploration-exploitation trade-off
» Exploitation consists in following promising directions given current knowledge
» Exploration consists in trying novel directions looking for better (unknown) alternatives
* A reasonable trade-off should be used in defining the search scheme:

— e-greedy strategy: choose a random move with probability ¢, be greedy otherwise



— assign higher utility estimates to (relatively) unexplored state-action pairs:

Ut (s) = R(s) —|—’yr;1€aj<f (Z p(s/s,a)U'F(s/)?Nsa)

s'eS

with f increasing over the first argument and decreasing over the second.

Learning optimal policies
TD learning: learning utilities of actions
* TD policy evaluation can also be adapted to learn an optimal policy
» If TD is used to learn a state utility function, it needs to estimate a transition model to derive a policy
 TD can instead be applied to learn an action utility function Q(s, a)
* The optimal policy corresponds to:
7 (s) = argmax Q(s, a)
acA
Learning optimal policies
SARSA: on-policy TD learning
1. Loop

(a) Initialize s
(b) Repeat
i. Receive reward r
ii. Choose next action a «— 7¢(s)
iii. Take action a, reach step s’
iv. Choose action a’ < m¢(s’)
v. Update local utility estimate

Q(s,a) < Q(s,a) + ar + 7@(5I7 al) —Q(s,a))

(c) Until s is terminal

Note

7€ is an e-greedy (or some other form of non-greedy) policy based on Q.
Learning optimal policies
Q-learning: off-policy TD learning

1. Loop

(a) Initialize s
(b) Repeat
i. Receive reward r
ii. Choose next action a + 7¢(s)

10



iii. Take action a, reach step s’

iV. !/ € /

v. Update local utility estimate
Q(s,0)  Q(s.) + alr + ymax Q(s', @) — Q(s,))

(c) Until s is terminal

Learning optimal policies
SARSA vs Q-learning
* SARSA is on-policy: it updates () using the current policy’s action

¢ Q-learning is off-policy: it updates () using the greedy policy’s action (which is NOT the policy it uses to
search)

* Off-policy methods are more flexible: they can even learn from traces generated with an unknown policy

* On-policy methods tend to converge faster, and are easier to use for continuous-state spaces and linear function
approximators (see following slides)

Scaling to large state spaces
Function approximation
* All techniques seen so far assume a tabular representation of utility functions (of states or actions)

* Tabular representations do not scale to large state spaces (e.g. Backgammon has an order of 102°

states)
* The solution is to rely on function approximation: approximate U (s) or (s, a) with a parameterized function.
» The function takes a state representation as input (e.g. X,y coordinates for the maze)

* The function allows to generalize to unseen states

Example: State utility function approximation
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Image from Ngo Anh Vien’s lectures

Example: Action utility function approximation

Q Table
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Q Learning

State »

Deep Q Learning

Image from Praphul Sing’s blog
Learning the approximation function
TD learning: state utility

e TD error 1
E(s,s') = 5(R(s) +7Us(s") — Us(s))?

* Error gradient wrt function parameters
VoE(s,s") = (R(s) + 1Us(s") = Us(s))(=VeUs(s))
* Stochastic gradient update rule

0 = 0—aVyE(s,s)
= 0+ a(R(s) +vUp(s") = Ug(s))(VoUs(s))

Learning the approximation function

TD learning: action utility (Q-learning)

12



¢ TD error 1
B((s,a),5') = 3(R(s) + 7y max Qo(s',a') = Qals, ))?

* Error gradient wrt function parameters

VoE((s,a),s") = (R(S)Jrvaﬂ}gﬁQe(S/aa')—Qe(s»a))
(=VoQo(s,a))

* Stochastic gradient update rule

0 = 0—aVeE((s,a),s)
= 0+ a(R(s) +ymax Qo(s',a") — Qa(s,a))(VeQo(s,a))
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