Unsupervised Learning

Setting
* Supervised learning requires the availability of labelled examples
* Labelling examples can be an extremely expensive process
* Sometimes we don’t even know how to label examples

» Unsupervised techniques can be employed to group examples into clusters

k-means clustering
Setting
¢ Assumes examples should be grouped into k clusters

 Each cluster ¢ is represented by its mean g,

Algorithm
1. Initialize cluster means ptq, ...,
2. Iterate until no mean changes:

(a) Assign each example to cluster with nearest mean

(b) Update cluster means according to assigned examples

How can we define (dis)similarity between examples ?

(Dis)similarity measures

« Standard Euclidean distance in IR%:

* Generic Minkowski metric for p > 1:
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* Cosine similarity (cosine of the angle between vectors):

Tz

N
(@) =



How can we define quality of obtained clusters ?

Sum-of-squared error criterion

* Let n; be the number of samples in cluster D;

* Let p; be the cluster sample mean:

1
;= — €T
T mzé;%

* The sum-of-squared errors is defined as:
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* Measures the squared error incurred in representing each example with its cluster mean

Gaussian Mixture Model (GMM)
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Setting
* Cluster examples using a mixture of Gaussian distributions
* Assume number of Gaussians is given

» Estimate mean and possibly variance of each Gaussian



Gaussian Mixture Model (GMM)

Parameter Estimation

¢ Maximum likelihood estimation cannot be applied as cluster assignment of examples is unknown

» Expectation-Maximization approach:

1. Compute expected cluster assignment given current parameter setting
2. Estimate parameters given cluster assignment

3. Iterate

Example: estimating means of & univariate Gaussians

Setting
* A dataset of x1, ..., x, examples is observed
* For each example x;, cluster assignment is modelled as z;1, . . ., z;; binary latent (i.e. unknown) variables

* z;; = 1if Gaussian j generated z;, 0 otherwise.
* Parameters to be estimated are the p1, . . .,y Gaussians means

+ All Gaussians are assumed to have the same (known) variance o2

Example: estimating means of k univariate Gaussians

Algorithm
1. Initialize h = {u1, ..., px)

2. Iterate until difference in maximum likelihood (ML) is below a certain threshold:

E-step Calculate expected value E[z;;] of each latent variable assuming current hypothesis h = (1, ..., tg)
holds
M-step Calculate a new ML hypothesis b’ = (i}, ..., u},) assuming values of latent variables are their ex-

pected values just computed. Replace h < b/

Example: estimating means of & univariate Gaussians
Algorithm
E-step The expected value of z;; is the probability that x; is generated by Gaussian j assuming hypothesis h =
(1, - .., pi) holds: )
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M-step The maximum-likelihood mean f1; is the weighted sample mean, each instance being weighted by its proba-
bility of being generated by Gaussian j:
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Expectation-Maximization (EM)

Formal setting

* We are given a dataset made of an observed part X and an unobserved part Z

* We wish to estimate the hypothesis maximizing the expected log-likelihood for the data, with expectation taken
over unobserved data:
h* = argmax,Ez[lnp(X, Z|h)]

Problem
The unobserved data Z should be treated as random variables governed by the distribution depending on X and h

Expectation-Maximization (EM)
Generic algorithm

1. Initialize hypothesis h

2. Iterate until convergence

E-step Compute the expected likelihood of an hypothesis A’ for the full data, where the unobserved data distri-
bution is modelled according to the current hypothesis £ and the observed data:

Q(NW;h) =Ez[lnp(X, Z|h')|h, X]
M-step replace the current hypothesis with the one maximizing Q(h'; h)

h + argmax,, Q(h'; h)

Example: estimating means of & univariate Gaussians

Derivation

* the likelihood of an example is:
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* the dataset log-likelihood is:
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Example: estimating means of & univariate Gaussians
E-step
* the expected log-likelihood (remember linearity of the expectation operator):
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* The expectation given current hypothesis h and observed data X is computed as:
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Example: estimating means of & univariate Gaussians
M-step

* The likelihood maximization gives:
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* zeroing the derivative wrt to each mean we get:
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How to choose the number of clusters?

Elbow method: idea
* Increasing number of clusters allows for better modeling of data
» Needs to trade-off quality of clusters with quantity

* Stop increasing number of clusters when advantage is limited



How to choose the number of clusters?

Optimal number of clusters
Elbow method
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Elbow method: approach

1. Run clustering algorithm for increasing number of clusters

2. Plot clustering evaluation metric (e.g.

sum of squared errors) for different &

3. Choose k when there is an angle (making an elbow) in the plot (drop in gain)

How to choose the number of clusters?
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Elbow method: problem

The Elbow method can be ambiguous, with multiple candidate points (e.g. k=2 and k=4 in the figure).

How to choose the number of clusters?

Average silhouette method: idea

* Increasing the numbers of clusters makes each cluster more homogeneuous

* Increasing the number of clusters can make different clusters more similar

» Use quality metric that trades-off intra-cluster similarity and inter-cluster dissimilarity



How to choose the number of clusters?
Silhouette coefficient for example i

1. Compute the average dissimilarity between ¢ and examples of its cluster C":

ai = d(i,C) = — 5" d(i, )
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2. Compute the average dissimilarity between i and examples of each cluster C’ # C, take the minimum:

b; = min d(i,C")

C'+C
3. The silhouette coefficient is:
o bi — a;
~ max(ay, b;)

How to choose the number of clusters?
Optimal number of clusters

Silhouette method
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Average silhouette method: approach
1. Run clustering algorithm for increasing number of clusters
2. Plot average (over examples) silhouette coefficient for different &

3. Choose k where the average silhouette coefficient is maximal

Hierarchical clustering
Setting

* Clustering does not need to be flat

 Natural grouping of data is often hierarchical (e.g. biological taxonomy, topic taxonomy, etc.)
* A hierarchy of clusters can be built on examples

* Top-down approach:



— start from a single cluster with all examples

— recursively split clusters into subclusters
* Bottom-up approach:

— start with n clusters of individual examples (singletons)

— recursively aggregate pairs of clusters
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Agglomerative hierarchical clustering

Algorithm

1. Initialize:

* Final cluster number k (e.g. k=1)
« Initial cluster number k = n

o Initial clusters D; = {x;},7 € 1,...,n
2. while & > k:

(a) find pairwise nearest clusters D;, D;
(b) merge D; and D;
(©) updatel% =k-1

Note
Stopping criterion can be threshold on pairwise similarity
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Measuring cluster similarities
Similarity measures

» Nearest-neighbour
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¢ Farthest-neighbour ,
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* Average distance
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¢ Distance between means
dmean(Di7Dj> = Hﬂi - Nj”

* dpin and d,,.. are more sensitive to outliers

Stepwise optimal hierachical clustering
Algorithm
1. Initialize:

* Final cluster number k (e.g. k=1)
« Tnitial cluster number k& = n

e Initial clusters D; = {x;},i € 1,...,n
2. while k > k:

(a) find best clusters D;, D; to merge according to evaluation criterion
(b) merge D; and D;
(©) updatel% =k—1
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