Learning in Graphical Models

Andrea Passerini
passerini@disi.unitn.it

Machine Learning

Learning graphical models

Parameter estimation

- We assume the structure of the model is given
- We are given a dataset of examples $\mathcal{D}=\{\mathbf{x}(1), \ldots, \mathbf{x}(N)\}$
- Each example $\mathbf{x}(i)$ is a configuration for all (complete data) or some (incomplete data) variables in the model
- We need to estimate the parameters of the model (conditional probability distributions) from the data
- The simplest approach consists of learning the parameters maximizing the likelihood of the data:

$$
\boldsymbol{\theta}^{\max }=\operatorname{argmax}_{\boldsymbol{\theta}} p(\mathcal{D} \mid \boldsymbol{\theta})=\operatorname{argmax}_{\boldsymbol{\theta}} \mathcal{L}(\mathcal{D}, \boldsymbol{\theta})
$$

Learning Bayesian Networks

Maximum likelihood estimation, complete data

$$
\begin{aligned}
p(\mathcal{D} \mid \boldsymbol{\theta}) & =\prod_{i=1}^{N} p(\mathbf{x}(i) \mid \boldsymbol{\theta}) & & \text { examples independer } \\
& =\prod_{i=1}^{N} \prod_{j=1}^{m} p\left(\mathbf{x}_{j}(i) \mid \mathrm{pa}_{j}(i), \boldsymbol{\theta}\right) & & \text { factorization for } \mathrm{BN}
\end{aligned}
$$

Learning Bayesian Networks

Maximum likelihood estimation, complete data

$$
\begin{array}{rlr}
p(\mathcal{D} \mid \boldsymbol{\theta}) & =\prod_{i=1}^{N} \prod_{j=1}^{m} p\left(\mathbf{x}_{j}(i) \mid \mathrm{pa}_{j}(i), \boldsymbol{\theta}\right) & \text { factorization for BN } \\
& =\prod_{i=1}^{N} \prod_{j=1}^{m} p\left(\mathbf{x}_{j}(i) \mid \mathrm{pa}_{j}(i), \boldsymbol{\theta}_{X_{j} \mid \mathrm{pa}_{j}}\right) & \text { disjoint CPD parameters }
\end{array}
$$

Learning graphical models

Maximum likelihood estimation, complete data

- The parameters of each CPD can be estimated independently:

$$
\boldsymbol{\theta}_{X_{j} \mid \mathrm{Pa}_{j}}^{\max ^{2}} \operatorname{argmax}_{\boldsymbol{\theta}_{X_{j} \mid \mathrm{Pa}_{j}}}^{\underbrace{\prod_{i=1}^{N} p\left(\mathbf{x}_{j}(i) \mid \mathrm{pa}_{j}(i), \boldsymbol{\theta}_{X_{j} \mid \mathrm{Pa}_{j}}\right)}_{\mathcal{L}\left(\boldsymbol{\theta}_{X_{j} \mid \mathrm{Pa}_{j}}, \mathcal{D}\right)}}
$$

- A discrete CPD $P(X \mid \boldsymbol{U})$, can be represented as a table, with:
- a number of rows equal to the number $\operatorname{Val}(X)$ of configurations for X
- a number of columns equal to the number $\operatorname{Val}(\boldsymbol{U})$ of configurations for its parents \boldsymbol{U}
- each table entry $\theta_{x \mid \mathbf{u}}$ indicating the probability of a specific configuration of $X=x$ and its parents $\boldsymbol{U}=\mathbf{u}$

Learning graphical models

Maximum likelihood estimation, complete data

- Replacing $p(x(i) \mid \mathrm{pa}(i))$ with $\theta_{x(i) \mid \mathbf{u}(i)}$, the local likelihood of a single CPD becames:

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{\theta}_{X \mid \mathrm{Pa}}, \mathcal{D}\right) & =\prod_{i=1}^{N} p\left(x(i) \mid \mathrm{pa}(i), \boldsymbol{\theta}_{X \mid \mathrm{Pa}_{j}}\right) \\
& =\prod_{i=1}^{N} \theta_{x(i) \mid \mathbf{u}(i)} \\
& =\prod_{\mathbf{u} \in \operatorname{Val}(\boldsymbol{U})}\left[\prod_{x \in \operatorname{Val}(X)} \theta_{x \mid \mathbf{u}}^{N_{\mathrm{u}, x}}\right]
\end{aligned}
$$

where $N_{\mathrm{u}, x}$ is the number of times the specific configuration $X=x, \boldsymbol{U}=\mathbf{u}$ was found in the data

Learning graphical models

Maximum likelihood estimation, complete data

- A column in the CPD table contains a multinomial distribution over values of X for a certain configuration of the parents \boldsymbol{U}
- Thus each column should sum to one: $\sum_{x} \theta_{x \mid \mathbf{u}}=1$
- Parameters of different columns can be estimated independently
- For each multinomial distribution, zeroing the gradient of the maximum likelihood and considering the normalization constraint, we obtain:

$$
\theta_{x \mid \mathbf{u}}^{\max }=\frac{N_{\mathbf{u}, x}}{\sum_{x} N_{\mathbf{u}, x}}
$$

- The maximum likelihood parameters are simply the fraction of times in which the specific configuration was observed in the data

Learning graphical models

Adding priors

- ML estimation tends to overfit the training set
- Configuration not appearing in the training set will receive zero probability
- A common approach consists of combining ML with a prior probability on the parameters, achieving a maximum-a-posteriori estimate:

$$
\boldsymbol{\theta}^{\max }=\operatorname{argmax}_{\boldsymbol{\theta}} p(\mathcal{D} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})
$$

Learning graphical models

Dirichlet priors

- The conjugate (read natural) prior for a multinomial distribution is a Dirichlet distribution with parameters $\alpha_{x \mid \mathbf{u}}$ for each possible value of x
- The resulting maximum-a-posteriori estimate is:

$$
\theta_{x \mid \mathbf{u}}^{\max }=\frac{N_{\mathbf{u}, x}+\alpha_{x \mid \mathbf{u}}}{\sum_{x}\left(N_{\mathbf{u}, x}+\alpha_{x \mid \mathbf{u}}\right)}
$$

- The prior is like having observed $\alpha_{x \mid \mathbf{u}}$ imaginary samples with configuration $X=x, \boldsymbol{U}=\mathbf{u}$

Learning graphical models

Incomplete data

- With incomplete data, some of the examples miss evidence on some of the variables
- Counts of occurrences of different configurations cannot be computed if not all data are observed
- The full Bayesian approach of integrating over missing variables is often intractable in practice
- We need approximate methods to deal with the problem

Learning with missing data: Expectation-Maximization

E-M for Bayesian nets in a nutshell

- Sufficient statistics (counts) cannot be computed (missing data)
- Fill-in missing data inferring them using current parameters (solve inference problem to get expected counts)
- Compute parameters maximizing likelihood (or posterior) of such expected counts
- Iterate the procedure to improve quality of parameters

Learning with missing data: Expectation-Maximization

Expectation-Maximization algorithm

e-step Compute the expected sufficient statistics for the complete dataset, with expectation taken wrt the joint distribution for \boldsymbol{X} conditioned of the current value of θ and the known data \mathcal{D} :

$$
\mathrm{E}_{p(\boldsymbol{X} \mid \mathcal{D}, \boldsymbol{\theta})}\left[N_{i j k}\right]=\sum_{l=1}^{n} p\left(X_{i}(I)=x_{k}, \mathrm{~Pa}_{i}(I)=\mathrm{pa}_{j} \mid \boldsymbol{X}, \boldsymbol{\theta}\right)
$$

- If $X_{i}(I)$ and $\mathrm{Pa}_{i}(I)$ are observed for \boldsymbol{X}_{l}, it is either zero or one
- Otherwise, run Bayesian inference to compute probabilities from observed variables

Learning with missing data: Expectation-Maximization

Expectation-Maximization algorithm
m-step compute parameters maximizing likelihood of the complete dataset D_{C} (using expected counts):

$$
\boldsymbol{\theta}^{*}=\operatorname{argmax}_{\boldsymbol{\theta}} p\left(D_{c} \mid \boldsymbol{\theta}\right)
$$

which for each multinomial parameter evaluates to:

$$
\theta_{i j k}^{*}=\frac{\mathrm{E}_{p(\boldsymbol{X} \mid \mathcal{D}, \boldsymbol{\theta})}\left[N_{i j k}\right]}{\sum_{k=1}^{r_{i}} \mathrm{E}_{p(\boldsymbol{X} \mid \mathcal{D}, \boldsymbol{\theta})}\left[N_{i j k}\right]}
$$

Note

ML estimation can be replaced by maximum a-posteriori (MAP) estimation giving:

$$
\theta_{i j k}^{*}=\frac{\alpha_{i j k}+\mathrm{E}_{p(\boldsymbol{X} \mid \mathcal{D}, \boldsymbol{\theta}, s)}\left[N_{i j k}\right]}{\sum_{k=1}^{r_{i}}\left(\alpha_{i j k}+\mathrm{E}_{p(\boldsymbol{X} \mid \mathcal{D}, \boldsymbol{\theta}, S)}\left[N_{i j k}\right]\right)}
$$

Learning structure of graphical models

Approaches

constraint-based test conditional independencies on the data and construct a model satisfying them
score-based assign a score to each possible structure, define a search procedure looking for the structure maximizing the score
model-averaging assign a prior probability to each structure, and average prediction over all possible structures weighted by their probabilities (full Bayesian, intractable)

Appendix: Learning the structure

Bayesian approach

- Let \mathcal{S} be the space of possible structures (DAGS) for the domain \boldsymbol{X}.
- Let \mathcal{D} be a dataset of observations
- Predictions for a new instance are computed marginalizing over both structures and parameters:

$$
\begin{aligned}
p\left(\boldsymbol{X}_{N+1} \mid \mathcal{D}\right) & =\sum_{S \in \mathcal{S}} \int_{\boldsymbol{\theta}} P\left(\boldsymbol{X}_{N+1}, S, \boldsymbol{\theta} \mid \mathcal{D}\right) d \boldsymbol{\theta} \\
& =\sum_{S \in \mathcal{S}} \int_{\boldsymbol{\theta}} P\left(\boldsymbol{X}_{N+1} \mid S, \boldsymbol{\theta}, \mathcal{D}\right) P(S, \boldsymbol{\theta} \mid \mathcal{D}) d \boldsymbol{\theta} \\
& =\sum_{S \in \mathcal{S}} \int_{\boldsymbol{\theta}} P\left(\boldsymbol{X}_{N+1} \mid S, \boldsymbol{\theta}\right) P(\boldsymbol{\theta} \mid S, \mathcal{D}) P(S \mid \mathcal{D}) d \boldsymbol{\theta} \\
& =\sum_{S \in \mathcal{S}} P(S \mid \mathcal{D}) \int_{\boldsymbol{\theta}} P\left(\boldsymbol{X}_{N+1} \mid S, \boldsymbol{\theta}\right) P(\boldsymbol{\theta} \mid S, \mathcal{D}) d \boldsymbol{\theta}
\end{aligned}
$$

Learning the structure

Problem

Averaging over all possible structures is too expensive

Model selection

- Choose a best structure S^{*} and assume $P\left(S^{*} \mid \mathcal{D}\right)=1$
- Approaches:
- Score-based:
- Assign a score to each structure
- Choose S^{*} to maximize the score
- Constraint-based:
- Test conditional independencies on data
- Choose S^{*} that satifies these independencies

Score-based model selection

Structure scores

- Maximum-likelihood score:

$$
S^{*}=\operatorname{argmax}_{S \in \mathcal{S}} p(\mathcal{D} \mid S)
$$

- Maximum-a-posteriori score:

$$
S^{*}=\operatorname{argmax}_{S \in \mathcal{S}} p(\mathcal{D} \mid S) p(S)
$$

Computing $P(\mathcal{D} \mid S)$

Maximum likelihood approximation

- The easiest solution is to approximate $P(\mathcal{D} \mid S)$ with the maximum-likelihood score over the parameters:

$$
P(\mathcal{D} \mid S) \approx \max _{\theta} P(\mathcal{D} \mid S, \theta)
$$

- Unfortunately, this boils down to adding a connection between two variables if their empirical mutual information over the training set is non-zero (proof omitted)
- Because of noise, empirical mutual information between any two variables is almost never exactly zero \Rightarrow fully connected network

Computing $P(\mathcal{D} \mid S) \equiv P_{S}(\mathcal{D})$: Bayesian-Dirichlet scoring

Simple case: setting

- X is a single variable with r possible realizations (r-faced die)
- S is a single node
- Probability distribution is a multinomial with Dirichlet priors $\alpha_{1}, \ldots, \alpha_{r}$.
- \mathcal{D} is a sequence of N realizations (die tosses)

Computing $P_{S}(\mathcal{D})$: Bayesian-Dirichlet scoring

Simple case: approach

- Sort \mathcal{D} according to outcome:

$$
\mathcal{D}=\left\{x^{1}, x^{1}, \ldots, x^{1}, x^{2}, \ldots, x^{2}, \ldots, x^{r}, \ldots, x^{r}\right\}
$$

- Its probability can be decomposed as:

$$
P_{S}(\mathcal{D})=\prod_{t=1}^{N} P_{S}(X(t) \mid \underbrace{X(t-1), \ldots, X(1)}_{\mathcal{D}(t-1)})
$$

- The prediction for a new event given the past is:

$$
P_{S}\left(X(t+1)=x^{k} \mid \mathcal{D}(t)\right)=\mathrm{E}_{p_{S}(\boldsymbol{\theta} \mid \mathcal{D}(t))}\left[\theta_{k}\right]=\frac{\alpha_{k}+N_{k}(t)}{\alpha+t}
$$

where $N_{k}(t)$ is the number of times we have $X=x^{k}$ in the first t examples in \mathcal{D}

Computing $P_{S}(\mathcal{D})$: Bayesian-Dirichlet scoring

Simple case: approach

$$
\begin{aligned}
P_{S}(\mathcal{D}) & =\frac{\alpha_{1}}{\alpha} \frac{\alpha_{1}+1}{\alpha+1} \cdots \frac{\alpha_{1}+N_{1}-1}{\alpha+N_{1}-1} \\
& \cdot \frac{\alpha_{2}}{\alpha+N_{1}} \frac{\alpha_{2}+1}{\alpha+N_{1}+1} \cdots \frac{\alpha_{2}+N_{2}-1}{\alpha+N_{1}+N_{2}-1} \cdots \\
& \cdot \frac{\alpha_{r}}{\alpha+N_{1}+\cdots+N_{r-1}} \cdots \frac{\alpha_{r}+N_{r}-1}{\alpha+N-1} \\
& =\frac{\Gamma(\alpha)}{\Gamma(\alpha+N)} \prod_{k=1}^{r} \frac{\Gamma\left(\alpha_{k}+N_{k}\right)}{\Gamma\left(\alpha_{k}\right)}
\end{aligned}
$$

where we used the Gamma function $(\Gamma(x+1)=x \Gamma(x))$:

$$
\alpha(1+\alpha) \ldots(N-1+\alpha)=\frac{\Gamma(N+\alpha)}{\Gamma(\alpha)}
$$

Computing $P_{S}(\mathcal{D})$: Bayesian-Dirichlet scoring

General case

$$
P_{S}(\mathcal{D})=\prod_{i} \prod_{j} \frac{\Gamma\left(\alpha_{i j}\right)}{\Gamma\left(\alpha_{i j}+N_{i j}\right)} \prod_{k=1}^{r} \frac{\Gamma\left(\alpha_{i j k}+N_{i j k}\right)}{\Gamma\left(\alpha_{i j k}\right)}
$$

where

- $i \in\{1, \ldots, n\}$ ranges over nodes in the network
- $j \in\left\{1, q_{i}\right\}$ ranges over configurations of X_{i} 's parents
- $k \in\left\{1, r_{i}\right\}$ ranges over states of X_{i}

Note

The score is decomposable: it is the product of independent scores associated with the distribution of each node in the net

Search strategy

Approach

- Discrete search problem: NP-hard for nets whose nodes have at most $k>1$ parents.
- Heuristic search strategies employed:
- Search space: set of DAGs
- Operators: add, remove, reverse one arc
- Initial structure: e.g. random, fully disconnected, ...
- Strategies: hill climbing, best first, simulated annealing

Note

Decomposable scores allow to recompute local scores only for a single move

