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Vector space

Definition (over reals)
A set X is called a vector space over IR if addition and scalar
multiplication are defined and satisfy for all x, y, z 2 X and
�, µ 2 IR:

Addition:

associative x + (y + z) = (x + y) + z

commutative x + y = y + x

identity element 90 2 X : x + 0 = x

inverse element 8x 2 X 9x0 2 X : x + x

0 = 0

Scalar multiplication:

distributive over elements �(x + y) = �x + �y

distributive over scalars (� + µ)x = �x + µx

associative over scalars �(µx) = (�µ)x
identity element 91 2 IR : 1x = x
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Properties and operations in vector spaces

subspace Any non-empty subset of X being itself a vector
space (E.g. projection)

linear combination given �
i

2 IR, x

i

2 X

nX

i=1

�
i

x

i

span The span of vectors x1, . . . , x

n

is defined as the set
of their linear combinations

(
nX

i=1

�
i

x

i

, �
i

2 IR

)
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Basis in vector space

Linear independency
A set of vectors x

i

is linearly independent if none of them can
be written as a linear combination of the others

Basis
A set of vectors x

i

is a basis for X if any element in X can
be uniquely written as a linear combination of vectors x

i

.
Necessary condition is that vectors x

i

are linearly
independent
All bases of X have the same number of elements, called
the dimension of the vector space.
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Linear maps

Definition
Given two vector spaces X , Z, a function f : X ! Z is a linear

map if for all x, y 2 X , � 2 IR:

f (x + y) = f (x) + f (y)

f (�x) = �f (x)
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Linear maps as matrices

A linear map between two finite-dimensional spaces X , Z of
dimensions n, m can always be written as a matrix:

Let {x1, . . . , x

n

} and {z1, . . . , z

m

} be some bases for X and
Z respectively.
For any x 2 X we have:

f (x) = f (
nX

i=1

�
i

x

i

) =
nX

i=1

�
i

f (x
i

)

f (x
i

) =
mX

j=1

a

ji

z

j

f (x) =
nX

i=1

mX

j=1

�
i

a

ji

z

j

=
mX

j=1

(
nX

i=1

�
i

a

ji

)z
j

=
mX

j=1

µ
j

z

j
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Linear maps as matrices

Matrix of basis transformation

M 2 IR

m⇥n =

2

64
a11 . . . a1n

...
...

...
a

m1 . . . a

mn

3

75

Mapping from basis coefficients to basis coefficients

M� = µ
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Change of Coordinate Matrix

2D example

let B =

⇢
1
0

�
,


0
1

��
be the standard basis in IR

2

let B

0 =

⇢
3
1

�
,


�2

1

��
be an alternative basis

The change of coordinate matrix from B

0 to B is:

P =


3 �2
1 1

�

So that:

[v]
B

= P · [v]
B

0
and [v]

B

0 = P

�1 · [v]
B

Note
For arbitrary B and B

0, P ’s columns must be the B

0 vectors
written in terms of the B ones (straightforward here)
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Matrix properties

transpose Matrix obtained exchanging rows with columns
(indicated with M

T ). Properties:

(MN)T = N

T

M

T

trace Sum of diagonal elements of a matrix

tr(M) =
nX

i=1

M

ii

inverse The matrix which multiplied with the original matrix
gives the identity

MM

�1 = I

rank The rank of an n ⇥m matrix is the dimension of
the space spanned by its columns
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Matrix derivatives

@Mx

@x

= M

@y

T

Mx

@x

= M

T

y

@x

T

Mx

@x

= (MT + M)x

@x

T

Mx

@x

= 2Mx if M is symmetric

@x

T

x

@x

= 2x

Note
Results are column vectors. Transpose them if row vectors are
needed instead.
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Metric structure

Norm

A function || · || : X ! IR

+
0 is a norm if for all x, y 2 X , � 2 IR:

||x + y||  ||x|| + ||y||
||�x|| = |�| ||x||
||x|| > 0 if x 6= 0

Metric

A norm defines a metric d : X ⇥ X ! IR

+
0 :

d(x, y) = ||x� y||

Note
The concept of norm is stronger than that of metric: not any
metric gives rise to a norm
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Dot product

Bilinear form
A function Q : X ⇥ X ! IR is a bilinear form if for all
x, y, z 2 X , �, µ 2 IR:

Q(�x + µy, z) = �Q(x, z) + µQ(y, z)

Q(x, �y + µz) = �Q(x, y) + µQ(x, z)

A bilinear form is symmetric if for all x, y 2 X :

Q(x, y) = Q(y, x)
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Dot product

Dot product

A dot product h·, ·i : X ⇥ X ! IR is a symmetric bilinear form
which is positive semi-definite:

hx, xi � 0 8 x 2 X

A positive definite dot product satisfies

hx, xi = 0 iff x = 0

Norm
Any dot product defines a corresponding norm via:

||x|| =
p
hx, xi
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Properties of dot product

angle The angle ✓ between two vectors is defined as:

cos✓ =
hx, zi

||x|| ||z||

orthogonal Two vectors are orthogonal if hx, yi = 0
orthonormal A set of vectors {x1, . . . , x

n

} is orthonormal if

hx
i

, x

j

i = �
ij

where �
ij

= 1 if i = j , 0 otherwise.

Note
If x and y are n-dimensional column vectors, their dot product is
computed as:

hx, yi = x

T

y =
nX

i=1

x

i

y

i
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Eigenvalues and eigenvectors

Definition
Given an n ⇥ n matrix M, the real value � and (non-zero) vector
x are an eigenvalue and corresponding eigenvector of M if

Mx = �x

Cardinality
An n ⇥ n matrix has n eigenvalues (roots of characteristic
polynomial)
An n ⇥ n matrix can have less than n distinct eigenvalues
An n ⇥ n matrix can have less than n linear independent

eigenvectors (also fewer then the number of distinct
eigenvalues)

Linear algebrea



Eigenvalues and eigenvectors

Singular matrices
A matrix is singular if it has a zero eigenvalue

Mx = 0x = 0

A singular matrix has linearly dependent columns:

⇥
M1 . . . M

n�1 M

n

⇤

2

6664

x1
...

x

n�1
x

n

3

7775
= 0
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Eigenvalues and eigenvectors

Singular matrices
A matrix is singular if it has a zero eigenvalue

Mx = 0x = 0

A singular matrix has linearly dependent columns:

M1x1 + · · · + M

n�1x

n�1 + M

n

x

n

= 0
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Eigenvalues and eigenvectors

Singular matrices
A matrix is singular if it has a zero eigenvalue

Mx = 0x = 0

A singular matrix has linearly dependent columns:

M

n

= M1
�x1

x

n

+ · · · + M

n�1
�x

n�1

x

n
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Eigenvalues and eigenvectors

Singular matrices
A matrix is singular if it has a zero eigenvalue

Mx = 0x = 0

A singular matrix has linearly dependent columns:

M

n

= M1
�x1

x

n

+ · · · + M

n�1
�x

n�1

x

n

Determinant
The determinant |M| of a n ⇥ n matrix M is the product of
its eigenvalues
A matrix is invertible if its determinant is not zero (i.e. it is
not singular)
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Eigenvalues and eigenvectors

Symmetric matrices
Eigenvectors corresponding to distinct eigenvalues are
orthogonal:

�hx, zi = hAx, zi
= (Ax)T

z

= x

T

A

T

z

= x

T

Az

= hx, Azi
= µhx, zi
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Eigen-decomposition

Raleigh quotient

Ax = �x

x

T

Ax

x

T

x

= �
x

T

x

x

T

x

= �

Finding eigenvector
1 Maximize eigenvalue:

x = max

v

v

T

Av

v

T

v

2 Normalize eigenvector (solution is invariant to rescaling)

x x

||x||
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Eigen-decomposition

Deflating matrix

Ã = A� �xx

T

Deflation turns x into a zero-eigenvalue eigenvector:

Ãx = Ax� �xx

T

x (x is normalized)

= Ax� �x = 0

Other eigenvalues are unchanged as eigenvectors with
distinct eigenvalues are orthogonal (symmetric matrix):

Ãz = Az� �xx

T

z (x and z orthonormal)

Ãz = Az
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Eigen-decomposition

Iterating
The maximization procedure is repeated on the deflated
matrix (until solution is zero)
Minimization is iterated to get eigenvectors with negative
eigevalues
Eigenvectors with zero eigenvalues are obtained extending
the obtained set to an orthonormal basis
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Eigen-decomposition

Eigen-decomposition

Let V = [v1 . . . v

n

] be a matrix with orthonormal
eigenvectors as columns
Let ⇤ be the diagonal matrix of corresponding eigenvalues
A square simmetric matrix can be diagonalized as:

V

T

AV = ⇤

proof follows..

Note
A diagonalized matrix is much simpler to manage and has
the same properties as the original one (e.g. same
eigen-decomposition)
E.g. change of coordinate system
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Eigen-decomposition

Proof

A [v1 . . . v

n

] = [v1 . . . v

n

]

2

64
�1 0

. . .

0 �
n

3

75

AV = V⇤

V

�1
AV = V

�1
V⇤

V

T

AV = ⇤

Note
V is a unitary matrix (orthonormal columns), for which:

V

�1 = V

T
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Positive semi-definite matrix

Definition
An n ⇥ n symmetrix matrix M is positive semi-definite if all its
eigenvalues are non-negative.

Alternative sufficient and necessary conditions

for all x 2 IR

n

x

T

Mx � 0

there exists a real matrix B s.t.

M = B

T

B
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Understanding eigendecomposition

3x1

6x2

x1

x2

A =


2 0
0 6

�

1

3x1

6x2

x1

x2

A =


2 0
0 6

�

1

x
3x1

6x2

x1

x2

A =


3 0
0 6

�

1

x
Ax
3x1

6x2

x1

x2

A =


3 0
0 6

�

1

x
Ax
5x1

15x2

x1

x2

A =


3 0
0 6

�

1

x
Ax
5x1

15x2

x1

x2

A =


3 0
0 6

�

1

x
Ax
5x1

15x2

x1

x2

A =


5 0
0 15

�

1

Scaling transformation in standard basis

let x1 = [1, 0], x2 = [0, 1] be the standard orthonormal
basis in IR

2

let x = [x1, x2] be an arbitrary vector in IR

2

A linear transformation is a scaling transformation if it only
stretches x along its directions
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Understanding eigendecomposition

v1

v2

v
5v1

15v2

Av
x
Ax
5x1

15x2

x1

x2

A =


5 0
0 15

�

1

v1

v2

v
5v1

15v2

Av
x
Ax
5x1

15x2

x1

x2

A =


5 0
0 15

�

1

v1

v2

v
5v1

15v2

Av
x
Ax
5x1

15x2

x1

x2

A =


5 0
0 15

�

1

v1

v2

v
5v1

15v2

Av
x
Ax
5x1

15x2

x1

x2

A =


5 0
0 15

�

1

v1

v2

v
5v1

15v2

Av
x
Ax
5x1

15x2

x1

x2

A =


5 0
0 15

�

1

v1

v2

v
5v1

15v2

Av
x
Ax
5x1

15x2

x1

x2

A =


5 0
0 15

�

1

v1

v2

v
5v1

15v2

Av

A =


13 �4
�4 7

�

x
Ax
5x1

15x2

x1

x2

A =


5 0
0 15

�

1

v1 =


1
2

�

v2 =


�2

1

�

Av1 =


13 � 8

�4 + 14

�
=


5

10

�
= 5v1

Av2 =


�26 � 4

8 + 7

�
=


�30

15

�
= 15v2

v1

v2

v
5v1

15v2

Av

A =


13 �4
�4 7

�

x
Ax
5x1

15x2

x1

x2

A =


5 0
0 15

�

1

Scaling transformation in eigenbasis

let A be a non-scaling linear transformation in IR

2.
let {v1, v2} be an eigenbasis for A.
By representing vectors in IR

2 in terms of the {v1, v2} basis
(instead of the standard {x1, x2}), A becomes a scaling

transformation
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Principal Component Analysis (PCA)

Description
Let X be a data matrix with correlated coordinates.
PCA is a linear transformation mapping data to a system of
uncorrelated coordinates.
It corresponds to fitting an ellipsoid to the data, whose
axes are the coordinates of the new space.
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Principal Component Analysis (PCA)

Procedure (1)

Given a dataset X 2 IR

n⇥d in d dimensions.

1 Compute the mean of the data (X
i

is ith row vector of X ):

x̄ =
1
n

nX

i=1

X

i

2 Center the data into the origin:

X �

2

64
x̄

...
x̄

3

75

3 Compute the data covariance: C = 1
n

X

T

X
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Principal Component Analysis (PCA)

Procedure (2)
4 Compute the (orthonormal) eigendecomposition of C:

V

T

CV = ⇤

5 Use it as the new coordinate system:

x

0 = V

�1
x = V

T

x

( V

�1 = V

T as V is unitary)

Warning

It assumes linear correlations (and Gaussian distributions)
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Principal Component Analysis (PCA)

Dimensionality reduction
Each eigenvalue corresponds to the amount of variance in
that direction
Select only the k eigenvectors with largest eigenvalues for
dimensionality reduction (e.g. visualization)

Procedure
1 W = [v1, . . . , v

k

]

2 x

0 = W

T

x
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