Vector space

Definition (over reals)
A set X is called a vector space over IR if addition and scalar multiplication are defined and satisfy forall x,y,z €
X and A\, p € R:

e Addition:

associative x+ (y+2z)=(x+y)+z
commutative x +y =y +x
identity element 30 € X : x+0=x

inverse element Vx e X Ix' ¢ X :x+x' =0
* Scalar multiplication:

distributive over elements \(x +y) = Ax + Ay
distributive over scalars (A + p)x = Ax + ux
associative over scalars \(ux) = (Au)x

identity element 31 € IR : 1x = x

Properties and operations in vector spaces

subspace Any non-empty subset of X" being itself a vector space (E.g. projection)

linear combination given \; € IR, x; € X
n

>

i=1
span The span of vectors x1, ..., X, is defined as the set of their linear combinations

n
{Z Aixi, A € IR}
i=1

Basis in vector space

Linear independency
A set of vectors x; is linearly independent if none of them can be written as a linear combination of the others

Basis

* A set of vectors x; is a basis for X if any element in X can be uniquely written as a linear combination of vectors
X;.

» Necessary condition is that vectors x; are linearly independent

» All bases of X have the same number of elements, called the dimension of the vector space.



Linear maps

Definition
Given two vector spaces X', Z, a function f : X — Z is a linear map if forall x,y € &', A € IR:

s fx+y)=f(x)+ f(y)
s f(Ax) = Af(x)

Linear maps as matrices

A linear map between two finite-dimensional spaces X, Z of dimensions n, m can always be written as a matrix:

o Let {x1,...,%,}and {z1,...,2,,} be some bases for X’ and Z respectively.

* For any x € X we have:
£ = FO-hxi) = D A ()
i=1 i=1
Foa) = ajz

=1
F) =D Najizg = > (O i)z =Y 25
i=1 j=1 j=1

j=1 i=1

Linear maps as matrices

e Matrix of basis transformation

a1 RPN QA1p
M c ]Ran —
am1  --- OGmn
* Mapping from basis coefficients to basis coefficients
MX=p

Change of Coordinate Matrix
2D example

st = { |

e let B = {{ 3 } , [ -2 ]}be an alternative basis

O =

} , [ (1) } } be the standard basis in IR?

1 1

¢ The change of coordinate matrix from B’ to B is:

e[t



* So that:
[Vlp=P-[v]gr and [v]gr=P ' [v]p

Note

* For arbitrary B and B’, P’s columns must be the B’ vectors written in terms of the B ones (straightforward
here)

Matrix properties
transpose Matrix obtained exchanging rows with columns (indicated with M 7). Properties:
(MN)T = NTMT
trace Sum of diagonal elements of a matrix
tr(M) = Z M;;
inverse The matrix which multiplied with the original matrix gives the identity
MMt =1
rank The rank of an n X m matrix is the dimension of the space spanned by its columns

Matrix derivatives

OMx
=M
ox
8yTMX T
- =M
ox Y
oxTM
ok~ 1T+
T
M
8)(87)( = 2Mx if M is symmetric
X
oxTx
=2
0x *

Note
Results are column vectors. Transpose them if row vectors are needed instead.

Metric structure

Norm
A function || - || : X — R is a norm if for all x,y € X, A € IR:

o I+ yll < [Ix]] + Iyl
[Pl = Al
“ x| > 0if x #0



Metric
A norm defines a metricd : X x X — IRS':

d(x,y) =[x -yl

Note
The concept of norm is stronger than that of metric: not any metric gives rise to a norm

Dot product

Bilinear form
A function @ : X x X — R is a bilinear form if for all x,y,z € X, A\, u € R:

* QOAx + py,z) = MQ(x,2) + pQ(y,2)
* Q(x, Ay + pz) = AQ(x,y) + nQ(x,2z)
A bilinear form is symmetric if for all x,y € X:

¢ Q<Xay> = Q(y,x)

Dot product

Dot product
A dot product (-, ) : X x X — IR is a symmetric bilinear form which is positive semi-definite:

(x,x) >0Vxe X
A positive definite dot product satisfies

(x,x) =0iffx=0

Norm
Any dot product defines a corresponding norm via:

[l = v/ {x, %)

Properties of dot product

angle The angle 6 between two vectors is defined as:

(x,2)

cos) = ———
[ |||
orthogonal Two vectors are orthogonal if (x,y) =0
orthonormal A set of vectors {x1,...,X,} is orthonormal if

(xi, %) = 0ij
where 0;; = 1if i = j, 0 otherwise.

Note
If x and y are n-dimensional column vectors, their dot product is computed as:

n
(xy)=x"y= Z XiYi
i=1



Eigenvalues and eigenvectors

Definition
Given an n X n matrix M, the real value A and (non-zero) vector x are an eigenvalue and corresponding eigenvector
of M if

Mx = \x

Cardinality
* Ann X n matrix has n eigenvalues (roots of characteristic polynomial)
* Ann X n matrix can have less than n distinct eigenvalues

* Ann X n matrix can have less than n linear independent eigenvectors (also fewer then the number of distinct
eigenvalues)

Eigenvalues and eigenvectors

Singular matrices
* A matrix is singular if it has a zero eigenvalue

Mx=0x=0

* A singular matrix has linearly dependent columns:

Eigenvalues and eigenvectors
Symmetric matrices
Eigenvectors corresponding to distinct eigenvalues are orthogonal:
Ax,z) = (Ax,z)

(Ax)Tz
TAT

=x
=xT Az

= (x, Az)
= u(x,2)

Z

Eigen-decomposition

Raleigh quotient

Ax = Mx
zT Ax xTx
X

X X X

Finding eigenvector



1. Maximize eigenvalue:
vl Av
vy

X = mazy

2. Normalize eigenvector (solution is invariant to rescaling)

X
X — —
1]
Eigen-decomposition
Deflating matrix R
A=A xxT

» Deflation turns x into a zero-eigenvalue eigenvector:
Ax = Ax — A\xxTx  (x is normalized)
=Ax—-AXx=0
 Other eigenvalues are unchanged as eigenvectors with distinct eigenvalues are orthogonal (symmetric matrix):

Az = Az — \xxTz (x and z orthonormal)

Az = Az

Eigen-decomposition

Iterating
* The maximization procedure is repeated on the deflated matrix (until solution is zero)
¢ Minimization is iterated to get eigenvectors with negative eigevalues

* Eigenvectors with zero eigenvalues are obtained extending the obtained set to an orthonormal basis

Eigen-decomposition

Eigen-decomposition
e Let V = [vy...v,] be a matrix with orthonormal eigenvectors as columns
* Let A be the diagonal matrix of corresponding eigenvalues

* A square simmetric matrix can be diagonalized as:

VTAV = A

proof follows..

Note

* A diagonalized matrix is much simpler to manage and has the same properties as the original one (e.g. same
eigen-decomposition)

* E.g. change of coordinate system



Eigen-decomposition

Proof

)\1 0

A [Vl Vn] = [Vl Vn]
0 An
AV =VA
VAV = VTlva
VITAV = A
Note
V is a unitary matrix (orthonormal columns), for which:
V—l _ VT

Positive semi-definite matrix

Definition
An n x n symmetrix matrix M is positive semi-definite if all its eigenvalues are non-negative.

Alternative sufficient and necessary conditions

e forallx € R"”

xT Mx >0
* there exists a real matrix B s.t.
M =B"B
Understanding eigendecomposition
X2 4
| R5% 2 Ax

S Ot
—

o @
[ E—

Scaling transformation in standard basis



* let x; = [1,0], %2 = [0, 1] be the standard orthonormal basis in IR?
* let x = [x1, 2] be an arbitrary vector in IR?

* A linear transformation is a scaling transformation if it only stretches x along its directions

Understanding eigendecomposition

(1
V1—-2
[ 9
V2—_ 1
[ 13-8 5
A"l__—4+14]_[10]_5"1
[ 26 —4 —30
o AVQ__ 8+7}_{ 15}_15"2

Scaling transformation in eigenbasis
* let A be a non-scaling linear transformation in IR?.
o let {vy,Vva} be an eigenbasis for A.

* By representing vectors in IR? in terms of the {v1,Vva} basis (instead of the standard {x;,x2}), A becomes a
scaling transformation

Principal Component Analysis (PCA)
iy

de & ks

Description

e Let X be a data matrix with correlated coordinates.



e PCA is a linear transformation mapping data to a system of uncorrelated coordinates.

* It corresponds to fitting an ellipsoid to the data, whose axes are the coordinates of the new space.

Principal Component Analysis (PCA)

Procedure (1)
Given a dataset X € IR™*? in d dimensions.

1 Compute the mean of the data (X; is i*” row vector of X):

__1¢
1=1
2 Center the data into the origin:
X
X
X
3 Compute the data covariance: C' = %X Tx
Principal Component Analysis (PCA)
Procedure (2)
4 Compute the (orthonormal) eigendecomposition of C":
vicy = A

5 Use it as the new coordinate system:
X' =V ilx=VTx

(V=1 = V7T as V is unitary)

Warning

e It assumes linear correlations (and Gaussian distributions)

Principal Component Analysis (PCA)
Dimensionality reduction
 Each eigenvalue corresponds to the amount of variance in that direction

* Select only the k eigenvectors with largest eigenvalues for dimensionality reduction (e.g. visualization)

Procedure
1 W=][vy,...,vi]
2 x' =WTx



