Statistical Relational Al

Andrea Passerini
andrea.passerini@unitn.it

Advanced Topics in Machine Learning and Optimization

Combining logic with probability

@ First-order logic is a powerful language to represent
complex relational information

@ Probability is the standard way to represent uncertainty in
knowledge

@ Combining the two would allow to model complex
probabilistic relationships in the domain of interest

Combining logic with probability

@ In most real world scenarios, logic formulas are typically
but not always true

@ For instance:

e “Every bird flies” : what about an ostrich (or Charlie Parker)
?

e “Every predator of a bird is a bird”: what about lions with
ostriches (or heroin with Parker) ?
e “Every prey has a predator”: predators can be extinct
@ A world failing to satisfy even a single formula would not be
possible

@ there could be no possible world satisfying all formulas

Combining logic with probability

@ We can relax the hard constraint assumption on satisfying
all formulas

@ A possible world not satisfying a certain formula will simply
be less likely

@ The more formula a possible world satisfies, the more
likely it is

@ Each formula can have a weight indicating how strong a
constraint it should be for possible worlds

@ Higher weight indicates higher probability of a world
satisfying the formula wrt one not satisfying it

Example: probabilistic relational robotics

YA ~ Freebase
// ‘ ‘ 's -
VEECh a

0.98 : graspable(Obj) IF glass(Obj) t
0.87 : kitchen(p1)
0.05 : diningRoom(p1)

<>

o'

0.98 : grasp(Obj) IF atLoc(p1) ',4‘/?“:
b 4

0.08 : grasp(Obj) IF atLoc(p3)

Observation System

Image from De Raedt et al., 2016

Combining logic with probability

logic graphical models

@ Graphical models are a mean to represent joint
probabilities highlighting the relational structure among
variables

@ A compressed representation of such models can be
obtained using templates, cliques in the graphs sharing
common parameters (e.g. as in HMM for BN or CRF for
MN)

@ Logic can be seen as a language to build templates for
graphical models

@ Logic based versions of HMM, BN and MN have been
defined

Relational Probabilistic Models (RPM)

@ Extend probabilistic models to include relations

@ Exploit exchangeability: all individuals with the same
properties are treated the same

@ Template-based models: nodes contain random variables,
model can be grounded over instantiation of variables
(individuals)

@ Alphabetic soup of relational probabilistic models

Image from Getoor et al., 2007

Representative Relational Probabilistic Models (RPM)

Markov Logic ProbLog

@ First-order logic version of @ Probabilistic version of the
Markov Networks Prolog language

@ Undirected RPM @ Directed RPM

@ Extend probabilistic @ Extend logic programming
graphical model with logic) language with probabilities)

Markov Networks (MN) or Markov random fields

Undirected graphical models

@ Graphically model the joint ¢
probability of a set of variables
encoding independency A B

assumptions (as BN)

@ Do not assign a directionality to
pairwise interactions
D
@ Do not assume that local interactions are proper
conditional probabilities (more freedom in
parametrizing them)

Markov Networks (MN)

Factorization properties

@ We need to decompose the joint probability in
factors (like P(x;|pa;) in BN) in a way consistent
with the independency assumptions.

@ Two nodes x; and x; not connected by a link are
independent given the rest of the network (any
path between them contains at least another
node) = they should stay in separate factors

@ Factors are associated with
cliques in the network (i.e. fully
connected subnetworks)

@ A possible option is to associate
factors only with maximal cliques

Markov Networks (MN)

Joint probability (1)

p(x) = 2 T Ve(xo)

c

@ Vq(xc): Val(x;) — RT is a positive function of the value
of the variables in clique x. (called clique potential)

@ The joint probability is the (normalized) product of clique
potentials for all (maximal) cliques in the network

@ The partition function Z is a normalization constant
assuring that the result is a probability (i.e. Yy p(x) = 1):

Z=> T velxc)
X ¢

Markov Networks (MN)

Joint probability (2)
@ In order to guarantee that potential functions are positive,
they are typically represented as exponentials:

Ve(xc) = exp (—E(xc))

@ E(x¢) is called energy function: low energy means highly
probable configuration

@ The joint probability becames a sum of exponentials:

plx) = S exp (— > E(xc)>

c

Markov Networks (MN)

Comparison to BN

@ Advantage:

e More freedom in defining the clique potentials as they don’t
need to represent a probability distribution

@ Problem:

e The partition function Z has to be computed summing over
all possible values of the variables

@ Solutions:

e Intractable in general

o Efficient algorithms exists for certain types of models (e.g.
linear chains)

o Otherwise Z is approximated

Learning in Markov Networks
Maximum likelihood estimation

@ For general MN, the likelihood function cannot be
decomposed into independent pieces for each potential (as
happens for BN) because of the global normalization (2)

N

1 ,

L(E,D) = H = &Xp <— Z Ec(xc(’))>

i=1 G

@ However the likelihood is concave in Eg, the energy
functionals whose parameters have to be estimated

@ The problem is an unconstrained concave maximization
problem solved by gradient ascent (or second order
methods)

Learning in Markov Networks
Maximum likelihood estimation

@ For each configuration u; € Val(x;) we have a parameter
Ecu, € R (ignoring parameter tying)

@ The partial derivative of the log-likelihood wrt E¢ , is:

dlog L(E, D)
8E—cuc 2[5 Xc(/ — Pp(Xc = uc|E)]

- NuC - Np(Xc = UC’E)

@ The derivative is zero when the counts of the data
correspond to the expected counts predicted by the model

@ In order to compute p(X; = u¢|E), inference has to be
performed on the Markov network, making learning quite
expensive

Markov Logic networks

@ A Markov Logic Network (MLN) L is a set of pairs (F;, w;)
where:

e F;is aformula in first-order logic
e w; is a real number (the weight of the formula)

@ Applied to a finite set of constants C = {¢y,...,C¢/} it
defines a Markov network M, ¢:

e M, ¢ has one binary node for each possible grounding of
each atom in L. The value of the node is 1 if the ground
atom is true, 0 otherwise.

@ M, ¢ has one feature for each possible grounding of each
formula F; in L. The value of the feature is 1 if the ground
formula is true, 0 otherwise. The weight of the feature is the
weight w; of the corresponding formula

Markov Logic networks

@ A MLN is a template for Markov Networks, based on logical
descriptions

@ Single atoms in the template will generate nodes in the
network

@ Formulas in the template will be generate cliques in the
network

@ There is an edge between two nodes iff the corresponding

ground atoms appear together in at least one grounding of
a formulain L

Markov Logic networks: example

Predates(Eagle, Eagle) Bird(Eagle)

Flies(Eagle)

Predates(Eagle, Sparrow) Predates(Sparrow,Eagle)
Predates(Sparrow, Sparrow) Bird(Sparrow)

Flies(Sparrow)

Ground network
@ A MLN with two (weighted) formulas:

wi VX (bird(X) = flies (X))
wo VX,Y (predates (X,Y) Abird(Y) = bird (X))

@ applied to a set of two constants {sparrow,eagle}
@ generates the Markov Network shown in figure

v

Markov Logic networks

Joint probability
@ A ground MLN specifies a joint probability distribution over

possible worlds (i.e. truth value assignments to all ground
atoms)

@ The probability of a possible world x is:

F
plx) = 2 exp (Z w,-n,-<x>>
i=1

where:

e the sum ranges over formulas in the MLN (i.e. clique
templates in the Markov Network)

@ nj(x) is the number of true groundings of formula F; in x
@ The partition function Z sums over all possible worlds (i.e.
all possible combination of truth assignments to ground

atoms)

Markov Logic networks

Adding evidence

@ Evidence is usually available for a subset of the ground
atoms (as their truth value assignment)

@ The MLN can be used to compute the conditional
probability of a possible world x (consistent with the
evidence) given evidence e:

F
p(x|e) = Z(16) exp (Z Wini(x)>
s

@ where the partition function Z(e) sums over all possible
worlds consistent with the evidence.

Example: evidence

Predates(Eagle, Eagle) Bird(Eagle) Flies(Eagle)

I:‘ = true (evidence)
Predates(Eagle, Sparrow) Predates(Sparrow,Eagle)
Predates(Sparrow, Sparrow Bird(Sparrow) Flies(Sparrow)

Including evidence

@ Suppose that we have (true) evidence e given by these two
facts:

bird (sparrow)
predates (eagle, sparrow)

Example: assignment 1

Predates(Eagle, Eagle) Bird(Eagle) Flies(Eagle)

|:| = true (evidence)
Predates(Eagle, Sparrow) Predates(Sparrow,Eagle)
Predates(Sparrow, Sparrow) Bird(Sparrow) Flies(Sparrow)

Computing probability

1
p(x) = > exp(wy + 3wy)

@ The probability of a world with only evidence atoms set as
true violates two ground formulas:

bird(sparrow) = flies (sparrow)

predates (eagle, sparrow) Abird(sparrow) = bird(eagle)

v

Example: assignment 2

Predates(Eagle, Eagle) Bird(Eagle) Flies(Eagle)
I:] = true (evidence)
Predates(Eagle, Sparrow) Predates(Sparrow,Eagle)

D = true (inferred)
Predates(Sparrow, Sparrow. Bird(Sparrow) Flies(Sparrow)

Computing probability

.
P(x) = < exp(2ws + 4wz)

@ This possible world is the most likely among all possible
worlds as it satisfies all constraints.

Example: assignment 3

Predates(Eagle, Eagle) Bird(Eagle) Flies(Eagle)
D = true (evidence)
Predates(Eagle, Sparrow) Predates(Sparrow,Eagle)

D = true (inferred)
Predates(Sparrow, Sparrow. Bird(Sparrow) Flies(Sparrow)

Computing probability

1
P(x) = = exp(2ws + 4wz)
@ This possible world has also highest probability.

@ The problem is that we did not encode constraints saying
that:

e A bird is not likely to be predator of itself
o A prey is not likely to be predator of its predator

Hard constraints
Impossible worlds

@ |t is always possible to make certain worlds impossible by
adding constraints with infinite weight

@ Infinite weight constraints behave like pure logic formulas:
any possible world has to satisfy them, otherwise it
receives zero probability

@ Let’s add the infinite weight constraint:

“Nobody can be a self-predator”
ws VX —predates (X, X)

to the previous example

Hard constraint: assignment 3

Predates(Eagle, Eagle) Bird(Eagle) Flies(Eagle)
I:] = true (evidence)
Predates(Eagle, Sparrow) Predates(Sparrow,Eagle)

[:] = true (inferred)
Predates(Sparrow, Sparrow. Bird(Sparrow) Flies(Sparrow)

Computing joint probability

1
p(x) = > exp(2wy +4w,) =0

@ The numerator does not contain ws, as the
no-self-predator constraint is never satified

@ However the partition function Z sums over all possible
worlds, including those in which the constraint is satisfied.

@ As ws = oo, the partition function takes infinite value and
the possible worlds gets zero probability.

Hard constraint: assignment 2

Predates(Eagle, Eagle) Bird(Eagle) Flies(Eagle)
|:| = true (evidence)
Predates(Eagle, Sparrow) Predates(Sparrow,Eagle)

[:] = true (inferred)
Predates(Sparrow, Sparrow. Bird(Sparrow) Flies(Sparrow)

Computing joint probability

:
p(x) = = exp(2ws + 4w + 2ws) # 0

@ The only non-zero probability possible worlds are those
always satisying hard constraints

@ Infinite weight features cancel out between numerator and
possible worlds at denominator which also satisfy the
constraints, while those which do not become zero

Inference

@ For simplicity of presentation, we will consider MLN in form:

e function-free (only predicates)
o clausal

@ However the methods can be applied to other forms as well

@ We will use general first-order logic form when describing
applications

Inference

MPE inference

@ One of the basic tasks consists of predicting the most
probable state of the world given some evidence (the most
probable explanation)

@ The problem is a special case of MAP inference (maximum
a posteriori inference), in which we are interested in the
state of a subset of variables which do not necessarily
include all those without evidence.

Inference

MPE inference in MLN

@ MPE inference in MLN reduces to finding the truth
assignment for variables (i.e. nodes) without evidence
maximizing the weighted sum of satisfied clauses (i.e.
features)

@ The problem can be addressed with any weighted
satisfiability solver

@ MaxWalkSAT has been successfully used for MPE
inference in MLN.

MaxWalkSAT

@ Weighted version of WalkSAT
@ Stochastic local search algorithm:

@ Pick an unsatisfied clause at random
@ Flip the truth value of an atom in the clause

@ The atom to flip is chosen in one of two possible ways with
a certain probability:
e randomly

@ in order to maximize the weighted sum of the clauses
satisfied with the flip

@ The stochastic behaviour (hopefully) allows to escape local
minima

MaxWalkSAT pseudocode

1:
2
3
4
5
6:
7:
8:
9:
10
11
12

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

procedure MAXWALKSAT (weighted_clauses,max _flips,max _tries,target,p)
vars <+ variables in weighted_clauses
for i < 1 to max_tries do

soln < a random truth assignment to vars
cost « sum of weights of unsatisfied clauses in soln
for j < 1to max_flips do
if cost < target then
return “Success, solution is”, soln
end if
¢ + a randomly chosen unsatisfied clause
if Uniform(0,1) < p then
v¢ < a randomly chosen variable from ¢
else
for all variable v in c do
compute DeltaCost(v)
end for
v¢ < v with lowest DeltaCost(v)
end if
soln < soln with v flipped
cost + cost+ DeltaCost(vy)
end for
end for
return “Failure, best assignment is”, best soln found

24: end procedure

MaxWalkSAT

Ingredients

@ farget is the maximum cost considered acceptable for a
solution

@ max_tries is the number of walk restarts

@ max_flips is the number of flips in a single walk

@ pis the probability of flipping a random variable

@ Uniform(0,1) picks a number uniformly at random from [0,1]

@ DeltaCost(v) computes the change in cost obtained by
flipping variable v in the current solution

Inference

Marginal and conditional probabilities

@ Another basic inference task is that of computing the
marginal probability that a formula holds, possibly given
some evidence on the truth value of other formulas

@ Exact inference in generic MLN is intractable (as it is for
the generic MN obtained by the grounding)

@ MCMC sampling techniques have been used as an
approximate alternative

Inference

Constructing the ground MN

@ In order to perform a specific inference task, it is not
necessary in general to ground the whole network, as
parts of it could have no influence on the computation of
the desired probability

@ Grounding only the needed part of the network can allow
significant savings both in memory and in time to run the
inference

Inference

Partial grounding: intuition

@ A standard inference task is that of computing the
probability that F; holds given that F» does.

@ We will focus on the common simple case in which Fq, F>
are conjunctions of ground literals:

@ All atoms in F; are added to the network one after the other

Q@ If an atom is also in F, (has evidence), nothing more is
needed for it

© Otherwise, its Markov blanket is added, and each atom in
the blanket is checked in the same way

Partial grounding: pseudocode

1: procedure CONSTRUCTNETWORK(Fj,F2,L,C)
inputs:
F1 a set of query ground atoms
F> a set of evidence ground atoms
L a Markov Logic Network
C a set of constants
output: M a ground Markov Network
calls: MB(q) the Markov blanket of g in M, ¢
G+ F1
while F; # () do
forall g € F; do
if g ¢ F> then
Fi1 + F1U(MB(qg)\ G)
G+ GUMB(q)
end if
Fi + F\{aq}
end for
end while
12: return M the ground MN composed of all nodes in G and all arcs between
them in M, ¢, with features and weights of the corresponding cliques
13: end procedure

LooeNoOORWN

Inference

@ Inference in the partial ground network is done by Gibbs
sampling.

@ The basic step consists of sampling a ground atom given
its Markov blanket

@ The probability of X; given that its Markov blanket has state
B/ = b/ is p(X/ = X/|B/ = b/) =

exp Zf,-el—'/ W,‘f,'()(/ = X, B/ = b/)

exp Dt Wifi(Xi=0,B,= b)) +exp) . Wifi(X =1,B, = b))

where:

e F,isthe set of ground formulas containing X;
e fi(X; = x;, B = b)) is the truth value of the ith formula when
X/ = X and B/ = b/
@ The probability of the conjuction of literals is the fraction of
samples (at chain convergence) in which all literals are true

Inference

Multimodal distributions

@ As the distribution is likely to have many modes, multiple
independently initialized chains are run
@ Efficiency in modeling the multimodal distribution can be

obtained starting each chain from a mode reached using
MaxWalkSAT

Inference

Handling hard constraints

@ Hard constraints break the space of possible worlds into
separate regions

@ This violate the MCMC assumption of reachability

@ Very strong constraints create areas of very low probability
difficult to traverse

@ The problem can be addressed by slice sampling MCMC, a
technique aimed at sampling from slices of the distribution
with a frequency proportional to the probability of the slice

Learning

Maximum likelihood parameter estimation

@ Parameter estimation amounts at learning weights of
formulas
@ We can learn weights from training examples as possible
worlds.
@ Let’s consider a single possible world as training example,
made of:
e a set of constants C defining a specific MN from the MLN
e a truth value for each ground atom in the resulting MN

@ We usually make a closed world assumption, where we
only specify the true ground atoms, while all others are
assumed to be false.

@ As all groundings of the same formula will share the same
weight, learning can be also done on a single possible
world

Learning
Maximum likelihood parameter estimation

@ Weights of formulas can be learned maximizing the
likelihood of the possible world:

ma.

F
w™® = argmax,, pw(X) = argmaxw% 2 <Z Wini(x))

i=1

@ As usual we will equivalenty maximize the log-likelihood:

F
log(pw(x)) = _ wini(x) — log(Z)
i=1

Priors

@ In order to combat overfitting Gaussian priors can be
added to the weights as usual (see CRF)

Learning

Maximum likelihood parameter estimation

@ The gradient of the log-likelihood wrt weights becomes:

)
T 109 Pw(x) = ni(x pr

where the sum is over all possible worlds x’, i.e. all
possible truth assignments for ground atoms in the MN

@ Note that py(x’) is computed using the current parameter
values w

@ The i-th component of the gradient is the difference

between number of true grounding of the i-th formula, and
its expectation according to the current model

Logic Programming

As disjunction As implication In Prolog
- bird(X) V flies (X) bird(X) = flies (X) flies(X) -bird(X).
- predates(X,Y) V predates (X,Y) A bird(X) :-
—bird(Y) Vbird(X) bird(Y) = bird(X) predates (X,Y),
bird(Y) .

Horn clauses

@ Clauses (disjunctions of literals) with at most one positive
literal

@ Variables are implicitly universally quantified

@ Can be written as implications (the head of the implication
is a single atom)

@ Amenable to efficient inference by SLD resolution (Prolog
programming language)

ProbLog

bird(sparrow) .

bird(eagle).

bird(ostrich) .

predates (eagle, sparrow) .
predates (cheetah, ostrich).

9 :: flies(X) :—= bird(X).
8 :: bird(X) :- predates(X,Y), bird(Y).

0.
0.
Probabilistic Logic Programming

@ rules: definite clauses h :- by, ..., b, where his the head
and by, ..., b, is the body of the rule.
@ facts: atoms a representing deterministic outcomes.

@ probabilistic rules: definite clauses p:: h:- by, ..., b,
where p € [0, 1] is the probability of the rule.

@ probabilistic facts: p :: a representing probabilistic
outcomes.

v

ProbLog

bird(sparrow) .

bird(eagle) .

bird(ostrich).

predates (eagle, sparrow) .
predates (cheetah, ostrich).

0.9 :: flies(X) :- bird(X).
0.8 :: bird(X) :- predates(X,Y), bird(Y).

query (flies (cheetah)) .

Probabilistic Queries

P(flies (cheetah))=0.72

ProbLog: probabilistic inference

bird(sparrow) .

bird(eagle) .

bird(ostrich).

predates (eagle, sparrow) .
predates (cheetah, ostrich).

0.9 :: bird_fly(X).

flies(X) :- bird(X), bird_fly(X).

0.8 :: bird_predator_is_bird(X,Y).

bird(X) :- predates(X,Y), bird(Y), bird predator_is_bird(X,Y).

Take probabilities out of rules

probabilistic rules can be made deterministic by introducing
auxhiliary probabilistic facts.

@ probabilisticrule: p:: h:- by,..., by
@ deterministic version of the rule: h :- by,...,bp, a

@ auxhiliary probabilistic fact: p :: a (a must be
parameterized by the logical variables in the rule)

ProbLog: probabilistic inference

Pwy= [o J] (01-p

p:acF, p:aerF,
acAw) aéAw)

Probability of a possible world

@ F is the set of ground instances of the probabilistic facts in
the logic program.

@ w is a possible world, i.e., a truth assignments to the
elements of F.

@ A(w) is the set of ground instances in F that are true
according to w.

ProbLog: probabilistic inference

Pw=] o JI (0-»

p:aceF, p:acr,
acAw) ad¢Aw)

bird(sparrow) .
bird(eagle) .
bird(ostrich).

0.9 :: bird_fly(X).
flies(X) :- bird(X), bird_fly(X).

Probability of a possible world: example

o .F = {bird,fly (sparrow), bird_-fly(eagle), bird_fly (ostrich)}
o A(w) = {bird,fly (sparrow), bird_fly (eagle)}

® P(w)=0.9-0.9-(1—0.9) = 0.081

ProbLog: probabilistic inference

Probability of a formula (query)

The probability of a formula ¢ is the sum of the probabilities of
the possible worlds where the formula holds.

ProbLog: probabilistic inference

bird(sparrow) .

bird(eagle) .

bird(ostrich).

predates (eagle, sparrow) .
predates (cheetah, ostrich).

0.9 :: flies(X) :- bird(X).

0.8 :: bird(X) :- predates(X,Y), bird(Y).

Probability of a query: example
P(flies (cheetah))=0.9*0.8=0.72

@ In all possible worlds where flies (cheetah) holds,
bird (ceetach) also holds (it's the only way to prove
flies (cheetah)).

@ The probabilities associated to the other ground instances
sum to one as all combinations are present in the possible
worlds where flies (cheetah) holds.

v

Bayesian Logic Networks in ProbLog

@ earthquake

0.1 :: burglary.

0.2 earthquake.

0.7 hears_alarm(john) .

0.7 hears_alarm(mary) .

alarm :- burglary. { hears_alarm(X)
alarm :- earthquake.

calls(X) :—- alarm, hears_alarm(X). @

ProbLog: efficient probabilistic inference

Probablistic inference as Weighted Model Counting (WMC)

P(¢) = WMC(¢) = >] w(®)
wE¢ wE=l

@ The logic program + the query (and/or evidence) are
grounded (instanting variables to constants) and converted
into a format amenabile to efficient computation (Clark’s
completion).

@ Ground probabilistic facts (and their negation) are given as
weights the probability of the fact (or 1 minus it if negated).

@ All other literals have weight equal to 1.

ProbLog: efficient probabilistic inference

WMC by knowledge compilation (d-DNNF)

The ground weighted program (+ query/evidence) is compiled
into a compact graphical representation, like a d-DNNF:

@ NNF: each leaf is a literal, each internal node is AND or OR
@ DNNF: decomposable NNF, no two children of an AND
node share any atom (can multiply)

@ d-DNNF: deterministic DNNF, for any OR node, each pair
of children should represent logically inconsistent
alternatives (can sum)

@ smooth d-DNNF: all children of an OR node should use
exactly the same set of atoms.

Knowledge compilation example: d-DNNF

0.1 :: burglary.

0.2 earthquake.

0.7 hears_alarm(john) . calisgohn)
0.7 hears_alarm(mary) .

alarm :- burglary.

alarm :- earthquake.

calls(X) :- alarm,

not burglary
burglary

hears_alarm(X) .

not
earthquake

query (calls (john)) . earthquake

ProbLog: efficient probabilistic inference

WMC by knowledge compilation (d-DNNF)

The d-DNNF is converted into an Algebraic Circuit (AC):

@ AND are replaced by products
@ OR are replaced by sums
@ Literals are replaced by their weight

Knowledge compilation example: d-DNNF to AC

o O O O

~N N

~J

:: burglary.

:: earthquake.

: hears_alarm(john) .
:: hears_alarm(mary) .

alarm :- burglary.
alarm :- earthquake.
calls(X) :- alarm, hears_alarm(X).

query (calls (john)) .

ProbLog: efficient probabilistic inference

Further improvements

@ Lifted inference: exploit symmetries (individuals behaving
the same) to avoid full grounding (sets of individuals
grouped together).

@ Approximate inference: using e.g. sampling techniques

(as in MLN), possibly combined with decomposition
strategies (hashing functions).

ProbLog: parameter learning

wl :: burglary. alarm :- burglary.
w2 :: earthquake. alarm :- earthquake.
w3 :: hears_alarm(X). calls(X) :—- alarm, hears_alarm(X).

Maximum likelihood parameter learning

W* = argmax H P(w; w)

w
weT

@ Probabilities associated to probabilistic facts are unknown
(parameters)

@ There exists a training set 7 of (possibly partial)
intepretations (i.e., possible worlds)

@ Learning amounts at finding parameters maximizing the
likelihood of T

ProbLog: parameter learning

wl :: burglary. alarm :- burglary.
w2 :: earthquake. alarm :- earthquake.
w3 :: hears_alarm(X). calls(X) :— alarm, hears_alarm(X).

Complete interpretations: fractional counts

e ey M(A))
K S e W F @)

@ The parameter of a probabilistic fact is estimated as the
fraction of its groundings that hold in the training set over
the total number of its possibile groundings (same as for
BN).

@ nk(A(w)) is the number of groundings of the k-th
probabilistic fact that hold in possible world w.

@ nk(F(w)) is the total number of groundings of the k-th
probabilistic fact for possible world w (true and false).

ProbLog: parameter learning

wl :: burglary. alarm :- burglary.
w2 :: earthquake. alarm :- earthquake.
w3 :: hears_alarm(X). calls(X) :— alarm, hears_alarm(X).

Partial interpretations: Expectation-Maximization

et Siere) PULEW) = e(w); w))

w,’;“ _
> et Mk(F(w))
@ E(w) are the observed groundings in w, and e(w) their
values.

@ Fi(w) is the subset of F(w) containing groundings of the
k-th probabilistic fact.

@ f; ranges over these groundings.

o P(f/|E(w) = e(w); w') is the probability that f, holds in w
given the observed facts and the current estimate of the
parameters (initialized randomly).

References

Bibliography

@ Luc De Raedt, Kristian Kersting, Sriraam Natarajan, David
Poole, Statistical Relational Artificial Intelligence: Logic,
Probability, and Computation , Morgan & Claypool, 2016.

@ Domingos, Pedro and Kok, Stanley and Lowd, Daniel and
Poon, Hoifung and Richardson, Matthew and Singla,
Parag, Markov Logic. In Probabilistic Inductive Logic
Programming. New York: Springer, 2007.

@ Daan Fierens, Guy Van den Broeck, Joris Renkens,
Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda
Janssens and Luc De Raedt, Inference and Learning in
Probabilistic Logic Programs using Weighted Boolean
Formulas, In Theory and Practice of Logic Programming,
volume 15, 2015.

References

@ Markov Logic Networks (Alchemy)
[http://alchemy.cs.washington.edu/]

@ Problog [https://dtai.cs.kuleuven.be/problog/]

http://alchemy.cs.washington.edu/
https://dtai.cs.kuleuven.be/problog/

