
Statistical Relational AI

Andrea Passerini
andrea.passerini@unitn.it

Advanced Topics in Machine Learning and Optimization

starAI

Combining logic with probability

Motivation
First-order logic is a powerful language to represent
complex relational information
Probability is the standard way to represent uncertainty in
knowledge
Combining the two would allow to model complex
probabilistic relationships in the domain of interest

starAI

Combining logic with probability

Problem of uncertainty
In most real world scenarios, logic formulas are typically
but not always true
For instance:

“Every bird flies” : what about an ostrich (or Charlie Parker)
?
“Every predator of a bird is a bird”: what about lions with
ostriches (or heroin with Parker) ?
“Every prey has a predator”: predators can be extinct

A world failing to satisfy even a single formula would not be
possible
there could be no possible world satisfying all formulas

starAI

Combining logic with probability

Handling uncertainty
We can relax the hard constraint assumption on satisfying
all formulas
A possible world not satisfying a certain formula will simply
be less likely
The more formula a possible world satisfies, the more
likely it is
Each formula can have a weight indicating how strong a
constraint it should be for possible worlds
Higher weight indicates higher probability of a world
satisfying the formula wrt one not satisfying it

starAI

Example: probabilistic relational robotics

���� "11-*$"5*0/4 0' 45"3"* ��

0.98 : graspable(Obj) IF glass(Obj)
0.87 : kitchen(p1)
0.05 : diningRoom(p1)
 …

0.98 : grasp(Obj) IF atLoc(p1)
0.08 : grasp(Obj) IF atLoc(p3)
 …

...

'JHVSF ���� ɩF SPCPU�T SFMBUJPOBM QSPCBCJMJTUJD NPEFM JT QPQVMBUFE XJUI UIF EBUB QSPEVDFE CZ JUT QFS�
DFQUJPO BOE FYQFSJFODF 	SPCPU MPH EBUB
 IVNBO NPUJPO USBDLJOH
 FOWJSPONFOU JOGPSNBUJPO
 FUD�
 BT
XFMM BT XJUI GBDUT 	PS BTTFSUJPOT
 FYUSBDUFE GSPN PUIFS EBSL EBUB�

"OHVFMPW FU BM� <����> VTFE SFMBUJPOBM .BSLPW OFUXPSLT GPS TFHNFOUBUJPO PG �% TDBO EBUB� 3FMB�
UJPOBM .BSLPW OFUXPSLT IBWF BMTP CFFO VTFE UP DPNQBDUMZ SFQSFTFOU PCKFDU NBQT BOE UP FTUJNBUF
USBKFDUPSJFT PG QFPQMF CZ -JNLFULBJ FU BM� <����>� ,FSTUJOH FU BM� <����> FNQMPZFE SFMBUJPOBM IJEEFO
.BSLPW NPEFMT GPS QSPUFJO GPME SFDPHOJUJPO� 4JOHMB BOE %PNJOHPT <����> QSPQPTFE B .BSLPW
MPHJD NPEFM GPS FOUJUZ SFTPMVUJPO 	&3

 UIF QSPCMFN PG mOEJOH SFDPSET DPSSFTQPOEJOH UP UIF TBNF
SFBM�XPSME FOUJUZ� .BSLPW MPHJD IBT BMTP CFFO VTFE GPS KPJOU JOGFSFODF GPS FWFOU FYUSBDUJPO <1PPO
BOE %PNJOHPT
 ����
 3JFEFM BOE .D$BMMVN
 ����>� 1PPO BOE %PNJOHPT <����> TIPXOFE IPX
UP VTF .BSLPW MPHJD UP QFSGPSN KPJOU VOTVQFSWJTFE DPSFGFSFODF SFTPMVUJPO� /POQBSBNFUSJD SFMB�
UJPOBM NPEFMT IBWF CFFO VTFE GPS BOBMZ[JOH TPDJBM OFUXPSLT <9V FU BM�
 ����B>� ,FSTUJOH BOE 9V
<����> BOE 9V FU BM� <����> VTFE SFMBUJPOBM (BVTTJBO QSPDFTTFT GPS MFBSOJOH UP SBOL TFBSDI SF�
TVMUT� 1PPO BOE %PNJOHPT <����> TIPXOFE IPX UP QFSGPSN VOTVQFSWJTFE TFNBOUJD QBSTJOH VTJOH
.BSLPW MPHJD OFUXPSLT
 BOE %BWJT BOE %PNJOHPT <����> VTFE .-/T UP TVDDFTTGVMMZ USBOTGFS
MFBSOFE LOPXMFEHF BNPOH NPMFDVMBS CJPMPHZ
 TPDJBM OFUXPSL BOE 8FC EPNBJOT� :PTIJLBXB FU BM�
<����> VTFE.BSLPW MPHJD GPS JEFOUJGZJOH UFNQPSBM SFMBUJPOT JO UFYU
.F[B�3VÓ[BOE 3JFEFM <����>
GPS TFNBOUJD SPMF MBCFMJOH
 BOE ,JEEPO BOE %PNJOHPT <����> GPS CJPNPMFDVMBS FWFOU QSFEJDUJPO
UBTLT� /JFQFSU FU BM� <����> VTFE .BSLPW MPHJD GPS POUPMPHZ NBUDIJOH� 5FOFOCBVN FU BM� <����>
EFNPOTUSBUFE UIBU SFMBUJPOBM NPEFMT DBO BEESFTT TPNF PG UIF EFFQFTU RVFTUJPOT BCPVU UIF OBUVSF
BOE PSJHJOT PG IVNBO UIPVHIU� 7FSCFLF FU BM� <����> VTFE TUBUJTUJDBM SFMBUJPOBM MFBSOJOH GPS JEFO�
UJGZJOH FWJEFODF CBTFE NFEJDJOF DBUFHPSJFT� 4DIJFHH FU BM� <����> TFHNFOUFE NPUJPO DBQUVSF EBUB
VTJOH .BSLPW MPHJD NJYUVSF PG (BVTTJBO QSPDFTTFT NBLJOH VTF PG CPUI DPOUJOVPVT BOE EFDMBSBUJWF

Image from De Raedt et al., 2016

starAI

Combining logic with probability

logic graphical models

Graphical models are a mean to represent joint
probabilities highlighting the relational structure among
variables
A compressed representation of such models can be
obtained using templates, cliques in the graphs sharing
common parameters (e.g. as in HMM for BN or CRF for
MN)
Logic can be seen as a language to build templates for
graphical models
Logic based versions of HMM, BN and MN have been
defined

starAI

Relational Probabilistic Models (RPM)5.2 PRM Representation 133

Professor
Prof. Gump

Popularity
???

Teaching Ability
???

Course
Phil142

Difficulty
low

Rating
high

Course
Phil101

Difficulty
???

Rating
???

Registration
#5639

Grade
A

Satisfaction
3

Registration
#5639

Grade
A

Satisfaction
3

Registration
#5639

Grade
???

Satisfaction
???

Student
John Doe

Intelligence
high

Performance
average

Student
Jane Doe

Intelligence
???

Ranking
???

Popularity

Teaching-Ability

Difficulty

Rating Intelligence

Ranking

AVG

Grade

Satisfaction

AVG

(a) (b)

Figure 5.2 (a) The relational skeleton for the university domain. (b) The PRM

dependency structure for our university example.

each attribute of each object in the skeleton. A PRM then specifies a probability

distribution over completions I of the skeleton.

A PRM consists of two components: the qualitative dependency structure, S,

and the parameters associated with it, θS . The dependency structure is defined by

associating with each attribute X.A a set of parents Pa(X.A). These correspond

to formal parents; they will be instantiated in different ways for different objects

in X . Intuitively, the parents are attributes that are “direct influences” on X.A. In

figure 5.2(b), the arrows define the dependency structure.

We distinguish between two types of formal parents. The attribute X.A can de-

pend on another probabilistic attribute B of X . This formal dependence induces

a corresponding dependency for individual objects: for any object x in σr(X), x.A

will depend probabilistically on x.B. For example, in figure 5.2(b), a professor’s

Popularity depends on her Teaching-Ability. The attribute X.A can also depend

on attributes of related objects X.K.B, where K is a slot chain. In figure 5.2(b),

the grade of a student depends on Registration.Student .Intelligence and Registra-

tion.Course.Difficulty. Or we can have a longer slot chain, for example, the depen-

dence of student satisfaction on Registration.Course.Instructor .Teaching-Ability.

In addition, we can have a dependence of student ranking on Student.Registered-

In.Grade. To understand the semantics of this formal dependence for an individual

object x, recall that x.K represents the set of objects that are K-relatives of x.

Except in cases where the slot chain is guaranteed to be single-valued, we must

specify the probabilistic dependence of x.A on the multiset {y.B : y ∈ x.K}.

For example, a student’s rank depends on the grades in the courses in which he

or she are registered. However each student may be enrolled in a different number

of courses, and we will need a method of compactly representing these complex

dependencies.

The notion of aggregation from database theory gives us an appropriate tool to

address this issue: x.A will depend probabilistically on some aggregate property of

this multiset. There are many natural and useful notions of aggregation of a set: its

mode (most frequently occurring value); its mean value (if values are numerical);

Extend probabilistic models to include relations
Exploit exchangeability: all individuals with the same
properties are treated the same
Template-based models: nodes contain random variables,
model can be grounded over instantiation of variables
(individuals)
Alphabetic soup of relational probabilistic models

Image from Getoor et al., 2007

starAI

Representative Relational Probabilistic Models (RPM)

Markov Logic
First-order logic version of
Markov Networks
Undirected RPM
Extend probabilistic
graphical model with logic

ProbLog
Probabilistic version of the
Prolog language
Directed RPM
Extend logic programming
language with probabilities

starAI

Markov Networks (MN) or Markov random fields

Undirected graphical models

Graphically model the joint
probability of a set of variables
encoding independency
assumptions (as BN)
Do not assign a directionality to
pairwise interactions

A

C

B

D

Do not assume that local interactions are proper
conditional probabilities (more freedom in
parametrizing them)

starAI

Markov Networks (MN)

Factorization properties

We need to decompose the joint probability in
factors (like P(xi |pai) in BN) in a way consistent
with the independency assumptions.
Two nodes xi and xj not connected by a link are
independent given the rest of the network (any
path between them contains at least another
node)⇒ they should stay in separate factors

Factors are associated with
cliques in the network (i.e. fully
connected subnetworks)
A possible option is to associate
factors only with maximal cliques

x1

x2

x3

x4

starAI

Markov Networks (MN)

Joint probability (1)

p(x) =
1
Z

∏
C

ΨC(xC)

ΨC(xC) : Val(xc)→ IR+ is a positive function of the value
of the variables in clique xC (called clique potential)
The joint probability is the (normalized) product of clique
potentials for all (maximal) cliques in the network
The partition function Z is a normalization constant
assuring that the result is a probability (i.e.

∑
x p(x) = 1):

Z =
∑
x

∏
C

ΨC(xC)

starAI

Markov Networks (MN)

Joint probability (2)
In order to guarantee that potential functions are positive,
they are typically represented as exponentials:

ΨC(xC) = exp (−E(xc))

E(xc) is called energy function: low energy means highly
probable configuration
The joint probability becames a sum of exponentials:

p(x) =
1
Z

exp

(
−
∑

C

E(xc)

)

starAI

Markov Networks (MN)

Comparison to BN
Advantage:

More freedom in defining the clique potentials as they don’t
need to represent a probability distribution

Problem:

The partition function Z has to be computed summing over
all possible values of the variables

Solutions:

Intractable in general
Efficient algorithms exists for certain types of models (e.g.
linear chains)
Otherwise Z is approximated

starAI

Learning in Markov Networks

Maximum likelihood estimation
For general MN, the likelihood function cannot be
decomposed into independent pieces for each potential (as
happens for BN) because of the global normalization (Z)

L(E ,D) =
N∏

i=1

1
Z

exp

(
−
∑

C

Ec(xc(i))

)
However the likelihood is concave in EC , the energy
functionals whose parameters have to be estimated
The problem is an unconstrained concave maximization
problem solved by gradient ascent (or second order
methods)

starAI

Learning in Markov Networks

Maximum likelihood estimation
For each configuration uc ∈ Val(xc) we have a parameter
Ec,uc ∈ IR (ignoring parameter tying)
The partial derivative of the log-likelihood wrt Ec,uc is:

∂ logL(E ,D)

∂Ec,uc

=
N∑

i=1

[δ(xc(i),uc)− p(X c = uc |E)]

= Nuc − N p(X c = uc |E)

The derivative is zero when the counts of the data
correspond to the expected counts predicted by the model
In order to compute p(X c = uc |E), inference has to be
performed on the Markov network, making learning quite
expensive

starAI

Markov Logic networks

Definition
A Markov Logic Network (MLN) L is a set of pairs (Fi ,wi)
where:

Fi is a formula in first-order logic
wi is a real number (the weight of the formula)

Applied to a finite set of constants C = {c1, . . . , c|C|} it
defines a Markov network ML,C :

ML,C has one binary node for each possible grounding of
each atom in L. The value of the node is 1 if the ground
atom is true, 0 otherwise.
ML,C has one feature for each possible grounding of each
formula Fi in L. The value of the feature is 1 if the ground
formula is true, 0 otherwise. The weight of the feature is the
weight wi of the corresponding formula

starAI

Markov Logic networks

Intuition
A MLN is a template for Markov Networks, based on logical
descriptions
Single atoms in the template will generate nodes in the
network
Formulas in the template will be generate cliques in the
network
There is an edge between two nodes iff the corresponding
ground atoms appear together in at least one grounding of
a formula in L

starAI

Markov Logic networks: example

Bird(Eagle)

Bird(Sparrow)

Flies(Eagle)

Flies(Sparrow)

Predates(Eagle, Sparrow) Predates(Sparrow,Eagle)

Predates(Eagle, Eagle)

Predates(Sparrow, Sparrow)

Ground network
A MLN with two (weighted) formulas:

w1 ∀X (bird(X)⇒ flies(X))

w2 ∀X ,Y (predates(X,Y) ∧ bird(Y)⇒ bird(X))

applied to a set of two constants {sparrow,eagle}
generates the Markov Network shown in figure

starAI

Markov Logic networks

Joint probability
A ground MLN specifies a joint probability distribution over
possible worlds (i.e. truth value assignments to all ground
atoms)
The probability of a possible world x is:

p(x) =
1
Z

exp

(
F∑

i=1

wini(x)

)
where:

the sum ranges over formulas in the MLN (i.e. clique
templates in the Markov Network)
ni (x) is the number of true groundings of formula Fi in x
The partition function Z sums over all possible worlds (i.e.
all possible combination of truth assignments to ground
atoms)

starAI

Markov Logic networks

Adding evidence
Evidence is usually available for a subset of the ground
atoms (as their truth value assignment)
The MLN can be used to compute the conditional
probability of a possible world x (consistent with the
evidence) given evidence e:

p(x |e) =
1

Z (e)
exp

(
F∑

i=1

wini(x)

)
where the partition function Z (e) sums over all possible
worlds consistent with the evidence.

starAI

Example: evidence

Including evidence

Suppose that we have (true) evidence e given by these two
facts:

bird(sparrow)
predates(eagle,sparrow)

starAI

Example: assignment 1

Computing probability

p(x) =
1
Z

exp(w1 + 3w2)

The probability of a world with only evidence atoms set as
true violates two ground formulas:

bird(sparrow)⇒ flies(sparrow)

predates(eagle,sparrow) ∧ bird(sparrow)⇒ bird(eagle)

starAI

Example: assignment 2

Computing probability

p(x) =
1
Z

exp(2w1 + 4w2)

This possible world is the most likely among all possible
worlds as it satisfies all constraints.

starAI

Example: assignment 3

Computing probability

p(x) =
1
Z

exp(2w1 + 4w2)

This possible world has also highest probability.
The problem is that we did not encode constraints saying
that:

A bird is not likely to be predator of itself
A prey is not likely to be predator of its predator

starAI

Hard constraints

Impossible worlds
It is always possible to make certain worlds impossible by
adding constraints with infinite weight
Infinite weight constraints behave like pure logic formulas:
any possible world has to satisfy them, otherwise it
receives zero probability

Example
Let’s add the infinite weight constraint:

“Nobody can be a self-predator”
w3 ∀X ¬predates(X,X)

to the previous example

starAI

Hard constraint: assignment 3

Computing joint probability

p(x) =
1
Z

exp(2w1 + 4w2) = 0

The numerator does not contain w3, as the
no-self-predator constraint is never satified
However the partition function Z sums over all possible
worlds, including those in which the constraint is satisfied.
As w3 =∞, the partition function takes infinite value and
the possible worlds gets zero probability.

starAI

Hard constraint: assignment 2

Computing joint probability

p(x) =
1
Z

exp(2w1 + 4w2 + 2w3) 6= 0

The only non-zero probability possible worlds are those
always satisying hard constraints
Infinite weight features cancel out between numerator and
possible worlds at denominator which also satisfy the
constraints, while those which do not become zero

starAI

Inference

Assumptions
For simplicity of presentation, we will consider MLN in form:

function-free (only predicates)
clausal

However the methods can be applied to other forms as well
We will use general first-order logic form when describing
applications

starAI

Inference

MPE inference
One of the basic tasks consists of predicting the most
probable state of the world given some evidence (the most
probable explanation)
The problem is a special case of MAP inference (maximum
a posteriori inference), in which we are interested in the
state of a subset of variables which do not necessarily
include all those without evidence.

starAI

Inference

MPE inference in MLN
MPE inference in MLN reduces to finding the truth
assignment for variables (i.e. nodes) without evidence
maximizing the weighted sum of satisfied clauses (i.e.
features)
The problem can be addressed with any weighted
satisfiability solver
MaxWalkSAT has been successfully used for MPE
inference in MLN.

starAI

MaxWalkSAT

Description
Weighted version of WalkSAT
Stochastic local search algorithm:

1 Pick an unsatisfied clause at random
2 Flip the truth value of an atom in the clause

The atom to flip is chosen in one of two possible ways with
a certain probability:

randomly
in order to maximize the weighted sum of the clauses
satisfied with the flip

The stochastic behaviour (hopefully) allows to escape local
minima

starAI

MaxWalkSAT pseudocode
1: procedure MAXWALKSAT(weighted clauses,max flips,max tries,target ,p)
2: vars ← variables in weighted clauses
3: for i ← 1 to max tries do
4: soln← a random truth assignment to vars
5: cost ← sum of weights of unsatisfied clauses in soln
6: for j ← 1 to max flips do
7: if cost ≤ target then
8: return “Success, solution is”, soln
9: end if
10: c ← a randomly chosen unsatisfied clause
11: if Uniform(0,1) < p then
12: vf ← a randomly chosen variable from c
13: else
14: for all variable v in c do
15: compute DeltaCost(v)
16: end for
17: vf ← v with lowest DeltaCost(v)
18: end if
19: soln← soln with vf flipped
20: cost ← cost+ DeltaCost(vf)
21: end for
22: end for
23: return “Failure, best assignment is”, best soln found
24: end procedure

starAI

MaxWalkSAT

Ingredients
target is the maximum cost considered acceptable for a
solution
max tries is the number of walk restarts
max flips is the number of flips in a single walk
p is the probability of flipping a random variable
Uniform(0,1) picks a number uniformly at random from [0,1]
DeltaCost(v) computes the change in cost obtained by
flipping variable v in the current solution

starAI

Inference

Marginal and conditional probabilities
Another basic inference task is that of computing the
marginal probability that a formula holds, possibly given
some evidence on the truth value of other formulas
Exact inference in generic MLN is intractable (as it is for
the generic MN obtained by the grounding)
MCMC sampling techniques have been used as an
approximate alternative

starAI

Inference

Constructing the ground MN
In order to perform a specific inference task, it is not
necessary in general to ground the whole network, as
parts of it could have no influence on the computation of
the desired probability
Grounding only the needed part of the network can allow
significant savings both in memory and in time to run the
inference

starAI

Inference

Partial grounding: intuition
A standard inference task is that of computing the
probability that F1 holds given that F2 does.
We will focus on the common simple case in which F1,F2
are conjunctions of ground literals:

1 All atoms in F1 are added to the network one after the other
2 If an atom is also in F2 (has evidence), nothing more is

needed for it
3 Otherwise, its Markov blanket is added, and each atom in

the blanket is checked in the same way

starAI

Partial grounding: pseudocode

1: procedure CONSTRUCTNETWORK(F1,F2,L,C)
inputs:
F1 a set of query ground atoms
F2 a set of evidence ground atoms
L a Markov Logic Network
C a set of constants
output: M a ground Markov Network
calls: MB(q) the Markov blanket of q in ML,C

2: G← F1
3: while F1 6= ∅ do
4: for all q ∈ F1 do
5: if q /∈ F2 then
6: F1 ← F1 ∪ (MB(q) \ G)
7: G← G ∪MB(q)
8: end if
9: F1 ← F1 \ {q}
10: end for
11: end while
12: return M the ground MN composed of all nodes in G and all arcs between

them in ML,C , with features and weights of the corresponding cliques
13: end procedure

starAI

Inference
Gibbs sampling

Inference in the partial ground network is done by Gibbs
sampling.
The basic step consists of sampling a ground atom given
its Markov blanket
The probability of Xl given that its Markov blanket has state
Bl = bl is p(Xl = xl |Bl = bl) =

exp
∑

fi∈Fl
wi fi (Xl = xl ,Bl = bl)

exp
∑

fi∈Fl
wi fi (Xl = 0,Bl = bl) + exp

∑
fi∈Fl

wi fi (Xl = 1,Bl = bl)

where:

Fl is the set of ground formulas containing Xl
fi (Xl = xl ,Bl = bl) is the truth value of the i th formula when
Xl = xl and Bl = bl

The probability of the conjuction of literals is the fraction of
samples (at chain convergence) in which all literals are true

starAI

Inference

Multimodal distributions
As the distribution is likely to have many modes, multiple
independently initialized chains are run
Efficiency in modeling the multimodal distribution can be
obtained starting each chain from a mode reached using
MaxWalkSAT

starAI

Inference

Handling hard constraints
Hard constraints break the space of possible worlds into
separate regions
This violate the MCMC assumption of reachability
Very strong constraints create areas of very low probability
difficult to traverse
The problem can be addressed by slice sampling MCMC, a
technique aimed at sampling from slices of the distribution
with a frequency proportional to the probability of the slice

starAI

Learning

Maximum likelihood parameter estimation
Parameter estimation amounts at learning weights of
formulas
We can learn weights from training examples as possible
worlds.
Let’s consider a single possible world as training example,
made of:

a set of constants C defining a specific MN from the MLN
a truth value for each ground atom in the resulting MN

We usually make a closed world assumption, where we
only specify the true ground atoms, while all others are
assumed to be false.
As all groundings of the same formula will share the same
weight, learning can be also done on a single possible
world

starAI

Learning

Maximum likelihood parameter estimation
Weights of formulas can be learned maximizing the
likelihood of the possible world:

wmax = argmaxwpw (x) = argmaxw
1
Z

exp

(
F∑

i=1

wini(x)

)

As usual we will equivalenty maximize the log-likelihood:

log(pw (x)) =
F∑

i=1

wini(x)− log(Z)

Priors
In order to combat overfitting Gaussian priors can be
added to the weights as usual (see CRF)

starAI

Learning

Maximum likelihood parameter estimation
The gradient of the log-likelihood wrt weights becomes:

∂

∂wi
log pw (x) = ni(x)−

∑
x ′

pw (x ′)ni(x ′)

where the sum is over all possible worlds x ′, i.e. all
possible truth assignments for ground atoms in the MN
Note that pw (x ′) is computed using the current parameter
values w
The i-th component of the gradient is the difference
between number of true grounding of the i-th formula, and
its expectation according to the current model

starAI

Logic Programming

As disjunction As implication In Prolog

¬ bird(X) ∨ flies(X) bird(X)⇒ flies(X) flies(X) :- bird(X).

¬ predates(X,Y) ∨
¬ bird(Y) ∨ bird(X)

predates(X,Y) ∧
bird(Y)⇒ bird(X)

bird(X) :-
predates(X,Y),
bird(Y).

Horn clauses
Clauses (disjunctions of literals) with at most one positive
literal
Variables are implicitly universally quantified
Can be written as implications (the head of the implication
is a single atom)
Amenable to efficient inference by SLD resolution (Prolog
programming language)

starAI

ProbLog

bird(sparrow).
bird(eagle).
bird(ostrich).
predates(eagle,sparrow).
predates(cheetah, ostrich).

0.9 :: flies(X) :- bird(X).
0.8 :: bird(X) :- predates(X,Y), bird(Y).

Probabilistic Logic Programming
rules: definite clauses h :- b1, . . . ,bn where h is the head
and b1, . . . ,bn is the body of the rule.
facts: atoms a representing deterministic outcomes.
probabilistic rules: definite clauses p :: h :- b1, . . . ,bn
where p ∈ [0,1] is the probability of the rule.
probabilistic facts: p :: a representing probabilistic
outcomes.

starAI

ProbLog

bird(sparrow).
bird(eagle).
bird(ostrich).
predates(eagle,sparrow).
predates(cheetah, ostrich).

0.9 :: flies(X) :- bird(X).
0.8 :: bird(X) :- predates(X,Y), bird(Y).

query(flies(cheetah)).

Probabilistic Queries
P(flies(cheetah)) = 0.72

starAI

ProbLog: probabilistic inference

bird(sparrow).
bird(eagle).
bird(ostrich).
predates(eagle,sparrow).
predates(cheetah, ostrich).

0.9 :: bird_fly(X).
flies(X) :- bird(X), bird_fly(X).

0.8 :: bird_predator_is_bird(X,Y).
bird(X) :- predates(X,Y), bird(Y), bird_predator_is_bird(X,Y).

Take probabilities out of rules
probabilistic rules can be made deterministic by introducing
auxhiliary probabilistic facts.

probabilistic rule: p :: h :- b1, . . . ,bn

deterministic version of the rule: h :- b1, . . . ,bn,a
auxhiliary probabilistic fact: p :: a (a must be
parameterized by the logical variables in the rule)

starAI

ProbLog: probabilistic inference

P(ω) =
∏

p : a∈F ,
a∈A(ω)

p
∏

p : a∈F ,
a 6∈A(ω)

(1− p)

Probability of a possible world
F is the set of ground instances of the probabilistic facts in
the logic program.
ω is a possible world, i.e., a truth assignments to the
elements of F .
A(ω) is the set of ground instances in F that are true
according to ω.

starAI

ProbLog: probabilistic inference

P(ω) =
∏

p : a∈F ,
a∈A(ω)

p
∏

p : a∈F ,
a 6∈A(ω)

(1− p)

bird(sparrow).
bird(eagle).
bird(ostrich).

0.9 :: bird_fly(X).
flies(X) :- bird(X), bird_fly(X).

Probability of a possible world: example

F = {bird fly(sparrow), bird fly(eagle), bird fly(ostrich)}
A(ω) = {bird fly(sparrow), bird fly(eagle)}
P(ω) = 0.9 · 0.9 · (1− 0.9) = 0.081

starAI

ProbLog: probabilistic inference

P(φ) =
∑
ω|=φ

P(ω)

Probability of a formula (query)
The probability of a formula φ is the sum of the probabilities of
the possible worlds where the formula holds.

starAI

ProbLog: probabilistic inference

bird(sparrow).
bird(eagle).
bird(ostrich).
predates(eagle,sparrow).
predates(cheetah, ostrich).

0.9 :: flies(X) :- bird(X).

0.8 :: bird(X) :- predates(X,Y), bird(Y).

Probability of a query: example
P(flies(cheetah)) = 0.9 * 0.8 = 0.72

In all possible worlds where flies(cheetah) holds,
bird(ceetach) also holds (it’s the only way to prove
flies(cheetah)).
The probabilities associated to the other ground instances
sum to one as all combinations are present in the possible
worlds where flies(cheetah) holds.

starAI

Bayesian Logic Networks in ProbLog

0.1 :: burglary.
0.2 :: earthquake.
0.7 :: hears_alarm(john).
0.7 :: hears_alarm(mary).

alarm :- burglary.
alarm :- earthquake.
calls(X) :- alarm, hears_alarm(X).

burglary earthquake

alarm

hears_alarm(X)

calls(X)
X

starAI

ProbLog: efficient probabilistic inference

Probablistic inference as Weighted Model Counting (WMC)

P(φ) = WMC(φ) =
∑
ω|=φ

∏
ω|=`

w(`)

The logic program + the query (and/or evidence) are
grounded (instanting variables to constants) and converted
into a format amenable to efficient computation (Clark’s
completion).
Ground probabilistic facts (and their negation) are given as
weights the probability of the fact (or 1 minus it if negated).
All other literals have weight equal to 1.

starAI

ProbLog: efficient probabilistic inference

WMC by knowledge compilation (d-DNNF)

The ground weighted program (+ query/evidence) is compiled
into a compact graphical representation, like a d-DNNF:

NNF: each leaf is a literal, each internal node is AND or OR
DNNF: decomposable NNF, no two children of an AND
node share any atom (can multiply)
d-DNNF: deterministic DNNF, for any OR node, each pair
of children should represent logically inconsistent
alternatives (can sum)
smooth d-DNNF: all children of an OR node should use
exactly the same set of atoms.

starAI

Knowledge compilation example: d-DNNF

0.1 :: burglary.
0.2 :: earthquake.
0.7 :: hears_alarm(john).
0.7 :: hears_alarm(mary).

alarm :- burglary.
alarm :- earthquake.
calls(X) :- alarm,

hears_alarm(X).

query(calls(john)).

ANDAND

ANDOR

ANDOR

ANDAND ANDAND

not
earthquake

not
burglary

calls(john) alarm

burglary

hears_alarm(john)

earthquake

starAI

ProbLog: efficient probabilistic inference

WMC by knowledge compilation (d-DNNF)

The d-DNNF is converted into an Algebraic Circuit (AC):

AND are replaced by products
OR are replaced by sums
Literals are replaced by their weight

starAI

Knowledge compilation example: d-DNNF to AC

0.1 :: burglary. alarm :- burglary.
0.2 :: earthquake. alarm :- earthquake.
0.7 :: hears_alarm(john). calls(X) :- alarm, hears_alarm(X).
0.7 :: hears_alarm(mary). query(calls(john)).

ANDAND

ANDOR

ANDOR

ANDAND ANDAND

not
earthquake

not
burglary

calls(john) alarm

burglary

hears_alarm(john)

earthquake 0.8

AND*

AND+

AND+

AND* AND*

0.9

1.0 1.0

0.1

0.7

0.2

starAI

ProbLog: efficient probabilistic inference

Further improvements
Lifted inference: exploit symmetries (individuals behaving
the same) to avoid full grounding (sets of individuals
grouped together).
Approximate inference: using e.g. sampling techniques
(as in MLN), possibly combined with decomposition
strategies (hashing functions).

starAI

ProbLog: parameter learning

w1 :: burglary. alarm :- burglary.
w2 :: earthquake. alarm :- earthquake.
w3 :: hears_alarm(X). calls(X) :- alarm, hears_alarm(X).

Maximum likelihood parameter learning

w∗ = argmax
w

∏
ω∈T

P(ω; w)

Probabilities associated to probabilistic facts are unknown
(parameters)
There exists a training set T of (possibly partial)
intepretations (i.e., possible worlds)
Learning amounts at finding parameters maximizing the
likelihood of T

starAI

ProbLog: parameter learning

w1 :: burglary. alarm :- burglary.
w2 :: earthquake. alarm :- earthquake.
w3 :: hears_alarm(X). calls(X) :- alarm, hears_alarm(X).

Complete interpretations: fractional counts

w∗k =

∑
ω∈T nk (A(ω))∑
ω∈T nk (F(ω))

The parameter of a probabilistic fact is estimated as the
fraction of its groundings that hold in the training set over
the total number of its possibile groundings (same as for
BN).
nk (A(ω)) is the number of groundings of the k -th
probabilistic fact that hold in possible world ω.
nk (F(ω)) is the total number of groundings of the k -th
probabilistic fact for possible world ω (true and false).

starAI

ProbLog: parameter learning

w1 :: burglary. alarm :- burglary.
w2 :: earthquake. alarm :- earthquake.
w3 :: hears_alarm(X). calls(X) :- alarm, hears_alarm(X).

Partial interpretations: Expectation-Maximization

w i+1
k =

∑
ω∈T

∑
f ′k∈Fk (ω)

P(f ′k |E(ω) = e(ω); w i)∑
ω∈T nk (F(ω))

E(ω) are the observed groundings in ω, and e(ω) their
values.
Fk (ω) is the subset of F(ω) containing groundings of the
k -th probabilistic fact.
f ′k ranges over these groundings.
P(f ′k |E(ω) = e(ω); w i) is the probability that f ′k holds in ω
given the observed facts and the current estimate of the
parameters (initialized randomly).

starAI

References

Bibliography

Luc De Raedt, Kristian Kersting, Sriraam Natarajan, David
Poole, Statistical Relational Artificial Intelligence: Logic,
Probability, and Computation , Morgan & Claypool, 2016.
Domingos, Pedro and Kok, Stanley and Lowd, Daniel and
Poon, Hoifung and Richardson, Matthew and Singla,
Parag, Markov Logic. In Probabilistic Inductive Logic
Programming. New York: Springer, 2007.
Daan Fierens, Guy Van den Broeck, Joris Renkens,
Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda
Janssens and Luc De Raedt, Inference and Learning in
Probabilistic Logic Programs using Weighted Boolean
Formulas, In Theory and Practice of Logic Programming,
volume 15, 2015.

starAI

References

Software
Markov Logic Networks (Alchemy)
[http://alchemy.cs.washington.edu/]
Problog [https://dtai.cs.kuleuven.be/problog/]

starAI

http://alchemy.cs.washington.edu/
https://dtai.cs.kuleuven.be/problog/

