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Combining logic with probability

@ First-order logic is a powerful language to represent
complex relational information

@ Probability is the standard way to represent uncertainty in
knowledge

@ Combining the two would allow to model complex
probabilistic relationships in the domain of interest




Combining logic with probability

@ In most real world scenarios, logic formulas are typically
but not always true

@ For instance:

e “Every bird flies” : what about an ostrich (or Charlie Parker)
?

e “Every predator of a bird is a bird”: what about lions with
ostriches (or heroin with Parker) ?
e “Every prey has a predator”: predators can be extinct
@ A world failing to satisfy even a single formula would not be
possible

@ there could be no possible world satisfying all formulas




Combining logic with probability

@ We can relax the hard constraint assumption on satisfying
all formulas

@ A possible world not satisfying a certain formula will simply
be less likely

@ The more formula a possible world satisfies, the more
likely it is

@ Each formula can have a weight indicating how strong a
constraint it should be for possible worlds

@ Higher weight indicates higher probability of a world
satisfying the formula wrt one not satisfying it




Example: probabilistic relational robotics

YA ~ Freebase
// ‘ ‘ 's -
VEECh a

0.98 : graspable(Obj) IF glass(Obj) t
0.87 : kitchen(p1)
0.05 : diningRoom(p1)

<>
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0.98 : grasp(Obj) IF atLoc(p1) ',4‘/?“:
b 4

0.08 : grasp(Obj) IF atLoc(p3)

Observation System

Image from De Raedt et al., 2016




Combining logic with probability

logic graphical models

@ Graphical models are a mean to represent joint
probabilities highlighting the relational structure among
variables

@ A compressed representation of such models can be
obtained using templates, cliques in the graphs sharing
common parameters (e.g. as in HMM for BN or CRF for
MN)

@ Logic can be seen as a language to build templates for
graphical models

@ Logic based versions of HMM, BN and MN have been
defined




Relational Probabilistic Models (RPM)

@ Extend probabilistic models to include relations

@ Exploit exchangeability: all individuals with the same
properties are treated the same

@ Template-based models: nodes contain random variables,
model can be grounded over instantiation of variables
(individuals)

@ Alphabetic soup of relational probabilistic models

Image from Getoor et al., 2007




Representative Relational Probabilistic Models (RPM)

Markov Logic ProbLog

@ First-order logic version of @ Probabilistic version of the
Markov Networks Prolog language

@ Undirected RPM @ Directed RPM

@ Extend probabilistic @ Extend logic programming
graphical model with logic ) language with probabilities )




Markov Networks (MN) or Markov random fields

Undirected graphical models

@ Graphically model the joint ¢
probability of a set of variables
encoding independency A B

assumptions (as BN)

@ Do not assign a directionality to
pairwise interactions
D
@ Do not assume that local interactions are proper
conditional probabilities (more freedom in
parametrizing them)




Markov Networks (MN)

Factorization properties

@ We need to decompose the joint probability in
factors (like P(x;|pa;) in BN) in a way consistent
with the independency assumptions.

@ Two nodes x; and x; not connected by a link are
independent given the rest of the network (any
path between them contains at least another
node) = they should stay in separate factors

@ Factors are associated with
cliques in the network (i.e. fully
connected subnetworks)

@ A possible option is to associate
factors only with maximal cliques




Markov Networks (MN)

Joint probability (1)

p(x) = 2 T Ve(xo)

c

@ Vq(xc): Val(x;) — RT is a positive function of the value
of the variables in clique x. (called clique potential)

@ The joint probability is the (normalized) product of clique
potentials for all (maximal) cliques in the network

@ The partition function Z is a normalization constant
assuring that the result is a probability (i.e. Yy p(x) = 1):

Z=> T velxc)
X ¢




Markov Networks (MN)

Joint probability (2)
@ In order to guarantee that potential functions are positive,
they are typically represented as exponentials:

Ve(xc) = exp (—E(xc))

@ E(x¢) is called energy function: low energy means highly
probable configuration

@ The joint probability becames a sum of exponentials:

plx) = S exp (— > E(xc)>

c




Markov Networks (MN)

Comparison to BN

@ Advantage:

e More freedom in defining the clique potentials as they don’t
need to represent a probability distribution

@ Problem:

e The partition function Z has to be computed summing over
all possible values of the variables

@ Solutions:

e Intractable in general

o Efficient algorithms exists for certain types of models (e.g.
linear chains)

o Otherwise Z is approximated




Learning in Markov Networks
Maximum likelihood estimation

@ For general MN, the likelihood function cannot be
decomposed into independent pieces for each potential (as
happens for BN) because of the global normalization (2)

N

1 ,

L(E,D) = H = &Xp <— Z Ec(xc(’))>

i=1 G

@ However the likelihood is concave in Eg, the energy
functionals whose parameters have to be estimated

@ The problem is an unconstrained concave maximization
problem solved by gradient ascent (or second order
methods)




Learning in Markov Networks
Maximum likelihood estimation

@ For each configuration u; € Val(x;) we have a parameter
Ecu, € R (ignoring parameter tying)

@ The partial derivative of the log-likelihood wrt E¢ , is:

dlog L(E, D)
8E—cuc 2[5 Xc(/ — Pp(Xc = uc|E)]

- NuC - Np(Xc = UC’E)

@ The derivative is zero when the counts of the data
correspond to the expected counts predicted by the model

@ In order to compute p(X; = u¢|E), inference has to be
performed on the Markov network, making learning quite
expensive




Markov Logic networks

@ A Markov Logic Network (MLN) L is a set of pairs (F;, w;)
where:

e F;is aformula in first-order logic
e w; is a real number (the weight of the formula)

@ Applied to a finite set of constants C = {¢y,...,C¢/} it
defines a Markov network M, ¢:

e M, ¢ has one binary node for each possible grounding of
each atom in L. The value of the node is 1 if the ground
atom is true, 0 otherwise.

@ M, ¢ has one feature for each possible grounding of each
formula F; in L. The value of the feature is 1 if the ground
formula is true, 0 otherwise. The weight of the feature is the
weight w; of the corresponding formula




Markov Logic networks

@ A MLN is a template for Markov Networks, based on logical
descriptions

@ Single atoms in the template will generate nodes in the
network

@ Formulas in the template will be generate cliques in the
network

@ There is an edge between two nodes iff the corresponding

ground atoms appear together in at least one grounding of
a formulain L




Markov Logic networks: example

Predates(Eagle, Eagle) Bird(Eagle)

Flies(Eagle)

Predates(Eagle, Sparrow) Predates(Sparrow,Eagle)
Predates(Sparrow, Sparrow) Bird(Sparrow)

Flies(Sparrow)

Ground network
@ A MLN with two (weighted) formulas:

wi VX (bird(X) = flies (X))
wo VX,Y (predates (X,Y) Abird(Y) = bird (X))

@ applied to a set of two constants {sparrow,eagle}
@ generates the Markov Network shown in figure

v




Markov Logic networks

Joint probability
@ A ground MLN specifies a joint probability distribution over

possible worlds (i.e. truth value assignments to all ground
atoms)

@ The probability of a possible world x is:

F
plx) = 2 exp (Z w,-n,-<x>>
i=1

where:

e the sum ranges over formulas in the MLN (i.e. clique
templates in the Markov Network)

@ nj(x) is the number of true groundings of formula F; in x
@ The partition function Z sums over all possible worlds (i.e.
all possible combination of truth assignments to ground

atoms)




Markov Logic networks

Adding evidence

@ Evidence is usually available for a subset of the ground
atoms (as their truth value assignment)

@ The MLN can be used to compute the conditional
probability of a possible world x (consistent with the
evidence) given evidence e:

F
p(x|e) = Z(16) exp (Z Wini(x)>
s

@ where the partition function Z(e) sums over all possible
worlds consistent with the evidence.




Example: evidence

Predates(Eagle, Eagle) Bird(Eagle) Flies(Eagle)

I:‘ = true (evidence)
Predates(Eagle, Sparrow) Predates(Sparrow,Eagle)
Predates(Sparrow, Sparrow Bird(Sparrow) Flies(Sparrow)

Including evidence

@ Suppose that we have (true) evidence e given by these two
facts:

bird (sparrow)
predates (eagle, sparrow)




Example: assignment 1

Predates(Eagle, Eagle) Bird(Eagle) Flies(Eagle)

|:| = true (evidence)
Predates(Eagle, Sparrow) Predates(Sparrow,Eagle)
Predates(Sparrow, Sparrow) Bird(Sparrow) Flies(Sparrow)

Computing probability

1
p(x) = > exp(wy + 3wy)

@ The probability of a world with only evidence atoms set as
true violates two ground formulas:

bird(sparrow) = flies (sparrow)

predates (eagle, sparrow) Abird(sparrow) = bird(eagle)

v




Example: assignment 2

Predates(Eagle, Eagle) Bird(Eagle) Flies(Eagle)
I:] = true (evidence)
Predates(Eagle, Sparrow) Predates(Sparrow,Eagle)

D = true (inferred)
Predates(Sparrow, Sparrow. Bird(Sparrow) Flies(Sparrow)

Computing probability

.
P(x) = < exp(2ws + 4wz)

@ This possible world is the most likely among all possible
worlds as it satisfies all constraints.




Example: assignment 3

Predates(Eagle, Eagle) Bird(Eagle) Flies(Eagle)
D = true (evidence)
Predates(Eagle, Sparrow) Predates(Sparrow,Eagle)

D = true (inferred)
Predates(Sparrow, Sparrow. Bird(Sparrow) Flies(Sparrow)

Computing probability

1
P(x) = = exp(2ws + 4wz)
@ This possible world has also highest probability.

@ The problem is that we did not encode constraints saying
that:

e A bird is not likely to be predator of itself
o A prey is not likely to be predator of its predator




Hard constraints
Impossible worlds

@ |t is always possible to make certain worlds impossible by
adding constraints with infinite weight

@ Infinite weight constraints behave like pure logic formulas:
any possible world has to satisfy them, otherwise it
receives zero probability

@ Let’s add the infinite weight constraint:

“Nobody can be a self-predator”
ws VX —predates (X, X)

to the previous example




Hard constraint: assignment 3

Predates(Eagle, Eagle) Bird(Eagle) Flies(Eagle)
I:] = true (evidence)
Predates(Eagle, Sparrow) Predates(Sparrow,Eagle)

[:] = true (inferred)
Predates(Sparrow, Sparrow. Bird(Sparrow) Flies(Sparrow)

Computing joint probability

1
p(x) = > exp(2wy +4w,) =0

@ The numerator does not contain ws, as the
no-self-predator constraint is never satified

@ However the partition function Z sums over all possible
worlds, including those in which the constraint is satisfied.

@ As ws = oo, the partition function takes infinite value and
the possible worlds gets zero probability.




Hard constraint: assignment 2

Predates(Eagle, Eagle) Bird(Eagle) Flies(Eagle)
|:| = true (evidence)
Predates(Eagle, Sparrow) Predates(Sparrow,Eagle)

[:] = true (inferred)
Predates(Sparrow, Sparrow. Bird(Sparrow) Flies(Sparrow)

Computing joint probability

:
p(x) = = exp(2ws + 4w + 2ws) # 0

@ The only non-zero probability possible worlds are those
always satisying hard constraints

@ Infinite weight features cancel out between numerator and
possible worlds at denominator which also satisfy the
constraints, while those which do not become zero




Inference

@ For simplicity of presentation, we will consider MLN in form:

e function-free (only predicates)
o clausal

@ However the methods can be applied to other forms as well

@ We will use general first-order logic form when describing
applications




Inference

MPE inference

@ One of the basic tasks consists of predicting the most
probable state of the world given some evidence (the most
probable explanation)

@ The problem is a special case of MAP inference (maximum
a posteriori inference), in which we are interested in the
state of a subset of variables which do not necessarily
include all those without evidence.




Inference

MPE inference in MLN

@ MPE inference in MLN reduces to finding the truth
assignment for variables (i.e. nodes) without evidence
maximizing the weighted sum of satisfied clauses (i.e.
features)

@ The problem can be addressed with any weighted
satisfiability solver

@ MaxWalkSAT has been successfully used for MPE
inference in MLN.




MaxWalkSAT

@ Weighted version of WalkSAT
@ Stochastic local search algorithm:

@ Pick an unsatisfied clause at random
@ Flip the truth value of an atom in the clause

@ The atom to flip is chosen in one of two possible ways with
a certain probability:
e randomly

@ in order to maximize the weighted sum of the clauses
satisfied with the flip

@ The stochastic behaviour (hopefully) allows to escape local
minima




MaxWalkSAT pseudocode

1:
2
3
4
5
6:
7:
8:
9:
10
11
12

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

procedure MAXWALKSAT (weighted_clauses,max _flips,max _tries,target,p)
vars <+ variables in weighted_clauses
for i < 1 to max_tries do

soln < a random truth assignment to vars
cost « sum of weights of unsatisfied clauses in soln
for j < 1to max_flips do
if cost < target then
return “Success, solution is”, soln
end if
¢ + a randomly chosen unsatisfied clause
if Uniform(0,1) < p then
v¢ < a randomly chosen variable from ¢
else
for all variable v in c do
compute DeltaCost(v)
end for
v¢ < v with lowest DeltaCost(v)
end if
soln < soln with v flipped
cost + cost+ DeltaCost(vy)
end for
end for
return “Failure, best assignment is”, best soln found

24: end procedure



MaxWalkSAT

Ingredients

@ farget is the maximum cost considered acceptable for a
solution

@ max_tries is the number of walk restarts

@ max_flips is the number of flips in a single walk

@ pis the probability of flipping a random variable

@ Uniform(0,1) picks a number uniformly at random from [0,1]

@ DeltaCost(v) computes the change in cost obtained by
flipping variable v in the current solution




Inference

Marginal and conditional probabilities

@ Another basic inference task is that of computing the
marginal probability that a formula holds, possibly given
some evidence on the truth value of other formulas

@ Exact inference in generic MLN is intractable (as it is for
the generic MN obtained by the grounding)

@ MCMC sampling techniques have been used as an
approximate alternative




Inference

Constructing the ground MN

@ In order to perform a specific inference task, it is not
necessary in general to ground the whole network, as
parts of it could have no influence on the computation of
the desired probability

@ Grounding only the needed part of the network can allow
significant savings both in memory and in time to run the
inference




Inference

Partial grounding: intuition

@ A standard inference task is that of computing the
probability that F; holds given that F» does.

@ We will focus on the common simple case in which Fq, F>
are conjunctions of ground literals:

@ All atoms in F; are added to the network one after the other

Q@ If an atom is also in F, (has evidence), nothing more is
needed for it

© Otherwise, its Markov blanket is added, and each atom in
the blanket is checked in the same way




Partial grounding: pseudocode

1: procedure CONSTRUCTNETWORK(Fj,F2,L,C)
inputs:
F1 a set of query ground atoms
F> a set of evidence ground atoms
L a Markov Logic Network
C a set of constants
output: M a ground Markov Network
calls: MB(q) the Markov blanket of g in M, ¢
G+ F1
while F; # () do
forall g € F; do
if g ¢ F> then
Fi1 + F1U(MB(qg)\ G)
G+ GUMB(q)
end if
Fi + F\{aq}
end for
end while
12: return M the ground MN composed of all nodes in G and all arcs between
them in M, ¢, with features and weights of the corresponding cliques
13: end procedure

LooeNoOORWN



Inference

@ Inference in the partial ground network is done by Gibbs
sampling.

@ The basic step consists of sampling a ground atom given
its Markov blanket

@ The probability of X; given that its Markov blanket has state
B/ = b/ is p(X/ = X/|B/ = b/) =

exp Zf,-el—'/ W,‘f,'()(/ = X, B/ = b/)

exp Dt Wifi(Xi=0,B,= b)) +exp) . Wifi( X =1,B, = b))

where:

e F,isthe set of ground formulas containing X;
e fi(X; = x;, B = b)) is the truth value of the ith formula when
X/ = X and B/ = b/
@ The probability of the conjuction of literals is the fraction of
samples (at chain convergence) in which all literals are true




Inference

Multimodal distributions

@ As the distribution is likely to have many modes, multiple
independently initialized chains are run
@ Efficiency in modeling the multimodal distribution can be

obtained starting each chain from a mode reached using
MaxWalkSAT




Inference

Handling hard constraints

@ Hard constraints break the space of possible worlds into
separate regions

@ This violate the MCMC assumption of reachability

@ Very strong constraints create areas of very low probability
difficult to traverse

@ The problem can be addressed by slice sampling MCMC, a
technique aimed at sampling from slices of the distribution
with a frequency proportional to the probability of the slice




Learning

Maximum likelihood parameter estimation

@ Parameter estimation amounts at learning weights of
formulas
@ We can learn weights from training examples as possible
worlds.
@ Let’s consider a single possible world as training example,
made of:
e a set of constants C defining a specific MN from the MLN
e a truth value for each ground atom in the resulting MN

@ We usually make a closed world assumption, where we
only specify the true ground atoms, while all others are
assumed to be false.

@ As all groundings of the same formula will share the same
weight, learning can be also done on a single possible
world




Learning
Maximum likelihood parameter estimation

@ Weights of formulas can be learned maximizing the
likelihood of the possible world:

ma.

F
w™® = argmax,, pw(X) = argmaxw% 2 <Z Wini(x))

i=1

@ As usual we will equivalenty maximize the log-likelihood:

F
log(pw(x)) = _ wini(x) — log(Z)
i=1

Priors

@ In order to combat overfitting Gaussian priors can be
added to the weights as usual (see CRF)




Learning

Maximum likelihood parameter estimation

@ The gradient of the log-likelihood wrt weights becomes:

)
T 109 Pw(x) = ni(x pr

where the sum is over all possible worlds x’, i.e. all
possible truth assignments for ground atoms in the MN

@ Note that py(x’) is computed using the current parameter
values w

@ The i-th component of the gradient is the difference

between number of true grounding of the i-th formula, and
its expectation according to the current model




Logic Programming

As disjunction As implication In Prolog
- bird(X) V flies (X) bird(X) = flies (X) flies(X) -bird(X).
- predates(X,Y) V predates (X,Y) A bird(X) :-
—bird(Y) Vbird(X) bird(Y) = bird(X) predates (X,Y),
bird(Y) .

Horn clauses

@ Clauses (disjunctions of literals) with at most one positive
literal

@ Variables are implicitly universally quantified

@ Can be written as implications (the head of the implication
is a single atom)

@ Amenable to efficient inference by SLD resolution (Prolog
programming language)




ProbLog

bird(sparrow) .

bird(eagle).

bird(ostrich) .

predates (eagle, sparrow) .
predates (cheetah, ostrich).

9 :: flies(X) :—= bird(X).
8 :: bird(X) :- predates(X,Y), bird(Y).

0.
0.
Probabilistic Logic Programming

@ rules: definite clauses h :- by, ..., b, where his the head
and by, ..., b, is the body of the rule.
@ facts: atoms a representing deterministic outcomes.

@ probabilistic rules: definite clauses p:: h:- by, ..., b,
where p € [0, 1] is the probability of the rule.

@ probabilistic facts: p :: a representing probabilistic
outcomes.

v



ProbLog

bird(sparrow) .

bird(eagle) .

bird(ostrich).

predates (eagle, sparrow) .
predates (cheetah, ostrich).

0.9 :: flies(X) :- bird(X).
0.8 :: bird(X) :- predates(X,Y), bird(Y).

query (flies (cheetah)) .

Probabilistic Queries

P(flies (cheetah))=0.72




ProbLog: probabilistic inference

bird(sparrow) .

bird(eagle) .

bird(ostrich).

predates (eagle, sparrow) .
predates (cheetah, ostrich).

0.9 :: bird_fly(X).

flies(X) :- bird(X), bird_fly(X).

0.8 :: bird_predator_is_bird(X,Y).

bird(X) :- predates(X,Y), bird(Y), bird predator_is_bird(X,Y).

Take probabilities out of rules

probabilistic rules can be made deterministic by introducing
auxhiliary probabilistic facts.

@ probabilisticrule: p:: h:- by,..., by
@ deterministic version of the rule: h :- by,...,bp, a

@ auxhiliary probabilistic fact: p :: a (a must be
parameterized by the logical variables in the rule)




ProbLog: probabilistic inference

Pwy= [ o J] (01-p

p:acF, p:aerF,
acAw) aéAw)

Probability of a possible world

@ F is the set of ground instances of the probabilistic facts in
the logic program.

@ w is a possible world, i.e., a truth assignments to the
elements of F.

@ A(w) is the set of ground instances in F that are true
according to w.




ProbLog: probabilistic inference

Pw= ] o JI (0-»

p:aceF, p:acr,
acAw) ad¢Aw)

bird(sparrow) .
bird(eagle) .
bird(ostrich).

0.9 :: bird_fly(X).
flies(X) :- bird(X), bird_fly(X).

Probability of a possible world: example

o .F = {bird,fly (sparrow), bird_-fly(eagle), bird_fly (ostrich)}
o A(w) = {bird,fly (sparrow), bird_fly (eagle)}

® P(w)=0.9-0.9-(1—0.9) = 0.081




ProbLog: probabilistic inference

Probability of a formula (query)

The probability of a formula ¢ is the sum of the probabilities of
the possible worlds where the formula holds.




ProbLog: probabilistic inference

bird(sparrow) .

bird(eagle) .

bird(ostrich).

predates (eagle, sparrow) .
predates (cheetah, ostrich).

0.9 :: flies(X) :- bird(X).

0.8 :: bird(X) :- predates(X,Y), bird(Y).

Probability of a query: example
P(flies (cheetah))=0.9*0.8=0.72

@ In all possible worlds where flies (cheetah) holds,
bird (ceetach) also holds (it's the only way to prove
flies (cheetah)).

@ The probabilities associated to the other ground instances
sum to one as all combinations are present in the possible
worlds where flies (cheetah) holds.

v




Bayesian Logic Networks in ProbLog

@ earthquake

0.1 :: burglary.

0.2 earthquake.

0.7 hears_alarm(john) .

0.7 hears_alarm(mary) .

alarm :- burglary. { hears_alarm(X)
alarm :- earthquake.

calls(X) :—- alarm, hears_alarm(X). @




ProbLog: efficient probabilistic inference

Probablistic inference as Weighted Model Counting (WMC)

P(¢) = WMC(¢) = > ] w(®)
wE¢ wE=l

@ The logic program + the query (and/or evidence) are
grounded (instanting variables to constants) and converted
into a format amenabile to efficient computation (Clark’s
completion).

@ Ground probabilistic facts (and their negation) are given as
weights the probability of the fact (or 1 minus it if negated).

@ All other literals have weight equal to 1.




ProbLog: efficient probabilistic inference

WMC by knowledge compilation (d-DNNF)

The ground weighted program (+ query/evidence) is compiled
into a compact graphical representation, like a d-DNNF:

@ NNF: each leaf is a literal, each internal node is AND or OR
@ DNNF: decomposable NNF, no two children of an AND
node share any atom (can multiply)

@ d-DNNF: deterministic DNNF, for any OR node, each pair
of children should represent logically inconsistent
alternatives (can sum)

@ smooth d-DNNF: all children of an OR node should use
exactly the same set of atoms.




Knowledge compilation example: d-DNNF

0.1 :: burglary.

0.2 earthquake.

0.7 hears_alarm(john) . calisgohn)
0.7 hears_alarm(mary) .

alarm :- burglary.

alarm :- earthquake.

calls(X) :- alarm,

not burglary
burglary

hears_alarm(X) .

not
earthquake

query (calls (john)) . earthquake




ProbLog: efficient probabilistic inference

WMC by knowledge compilation (d-DNNF)

The d-DNNF is converted into an Algebraic Circuit (AC):

@ AND are replaced by products
@ OR are replaced by sums
@ Literals are replaced by their weight




Knowledge compilation example: d-DNNF to AC

o O O O

~N N

~J

:: burglary.

:: earthquake.

: hears_alarm(john) .
:: hears_alarm(mary) .

alarm :- burglary.
alarm :- earthquake.
calls(X) :- alarm, hears_alarm(X).

query (calls (john)) .




ProbLog: efficient probabilistic inference

Further improvements

@ Lifted inference: exploit symmetries (individuals behaving
the same) to avoid full grounding (sets of individuals
grouped together).

@ Approximate inference: using e.g. sampling techniques

(as in MLN), possibly combined with decomposition
strategies (hashing functions).




ProbLog: parameter learning

wl :: burglary. alarm :- burglary.
w2 :: earthquake. alarm :- earthquake.
w3 :: hears_alarm(X). calls(X) :—- alarm, hears_alarm(X).

Maximum likelihood parameter learning

W* = argmax H P(w; w)

w
weT

@ Probabilities associated to probabilistic facts are unknown
(parameters)

@ There exists a training set 7 of (possibly partial)
intepretations (i.e., possible worlds)

@ Learning amounts at finding parameters maximizing the
likelihood of T




ProbLog: parameter learning

wl :: burglary. alarm :- burglary.
w2 :: earthquake. alarm :- earthquake.
w3 :: hears_alarm(X). calls(X) :— alarm, hears_alarm(X).

Complete interpretations: fractional counts

e ey M(A))
K S e W F @)

@ The parameter of a probabilistic fact is estimated as the
fraction of its groundings that hold in the training set over
the total number of its possibile groundings (same as for
BN).

@ nk(A(w)) is the number of groundings of the k-th
probabilistic fact that hold in possible world w.

@ nk(F(w)) is the total number of groundings of the k-th
probabilistic fact for possible world w (true and false).




ProbLog: parameter learning

wl :: burglary. alarm :- burglary.
w2 :: earthquake. alarm :- earthquake.
w3 :: hears_alarm(X). calls(X) :— alarm, hears_alarm(X).

Partial interpretations: Expectation-Maximization

et Siere) PULEW) = e(w); w))

w,’;“ _
> et Mk(F(w))
@ E(w) are the observed groundings in w, and e(w) their
values.

@ Fi(w) is the subset of F(w) containing groundings of the
k-th probabilistic fact.

@ f; ranges over these groundings.

o P(f/|E(w) = e(w); w') is the probability that f, holds in w
given the observed facts and the current estimate of the
parameters (initialized randomly).
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