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Preliminaries



You need to be checked for COVID-19. The doctor takes a scan of your lungs and uses a state-of-the-art deep

neural network to automatically compute a diagnosis. The model thinks that you are not infected.

Question: Would you trust the model’s prediction?
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As progress in AI is made – and hype grows – people are finding more and more ways of integrating machine

learning models into applications.

� These include plenty of high-stakes applica-

tions:

� Medical Diagnosis

� Crime (e.g., predicting recidivism in convicts)

� Credit Scoring (e.g., approving loan requests)

� Surveillance (e.g., face recognition, profiling)

� Hiring (e.g., ranking/filtering candidates)

� . . .

Misbehaving models running unchecked might

cause all sorts of trouble.

� Regulations from EU and other countries actu-

ally establish the right to explanation:

Example: you apply for a 50, 000 eur loan. Unfor-

tunately, your bank rejects your application. You

have a right to know why it was rejected: was it

your credit history or your age/gender/ethnicity?

See https://en.wikipedia.org/wiki/Right_to_explanation

� Counter-argument: Humans are not necessarily better and/or fairer than machines [Lin et al., 2020]

How can we check that models learned from data behave as expected?
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We will mostly focus on classification.

Notation:

� Instances x ∈ Rd

� Labels y ∈ {1, . . . , c}, often c = 2

� Family of classifiers F , for instance neural networks, random forests, . . .

� A classifier is a map f : X → {1, . . . , c}

� We often consider probabilistic classifiers defined by a conditional distribution P(Y | X), in which case:

f (x) := argmax
y∈[c]

P(Y | X)

Sometimes we simply use the distribution P(Y | X) as a “soft prediction”
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Classification

Given a family of classifiers (hypotheses) F and a data set S = {(xi , yi ) : i = 1, . . . ,m} sampled i.i.d. from a

ground-truth distribution D(X,Y ), find a classifier f ∈ F that achieves low true risk.

� Let `(f , (x, y)) be a loss of interest: e.g., the 0–1 loss `(f , (x, y)) = 1{f (x) 6= y} or the cross-entropy loss:

`(f , (x, y)) = −
∑

j∈[c] 1{j = y}P(Y = j | x)

� The true risk is the average loss w.r.t. the ground-truth distribution D:

LD(f ) := E(x,y)∼D [`(f , (x, y))] =

∫
Rd

∑
y

`(f , (x, y))D(x, y)dx

� This cannot be computed because D is unknown, so minimize empirical risk on the training set S :

L̂S (f ) :=
1

|S |
∑

(x,y)∈S
`(f (x), y)

obtaining f̂ := argminf∈F L̂S (f ).

� Well-known conditions under which |LD(f̂ ) − L̂S (f̂ )| decreases as the size of S increases (VC dimension,

Rademacher complexity, . . . )
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Standard learning pipeline:

� Learn f̂ on training set S.

� Evaluate f̂ on a validation set T .

Is this enough?

Not always:

“The demand for interpretability arises when there is a mismatch between the formal objectives of

supervised learning (test set predictive performance) and the real world costs in a deployment set-

ting.” [Lipton, 2018]

The training & validation sets are unlikely to cover all of the high-risk cases
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The “Clever Hans” Phenomenon

The models pick up (subtle) features of the

training data that happen to correlate with

the desired label, but are not causally re-

lated to it.

Confounders

If watermarks that correlate with the class

“horse” appear in the training set:

� The model learns to rely on them to

achieve low training loss

� Butits predictions are useless if the con-

founder is not present

If they also appear in the test data,

evaluation does not spot them

Credit [Lapuschkin et al., 2019]
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Who is Clever Hans?

“Clever Hans was a horse that was claimed

to have performed arithmetic and other in-

tellectual tasks.”

“After a formal investigation in 1907, psy-

chologist Oskar Pfungst demonstrated that

the horse was not actually performing these

mental tasks, but was watching the reac-

tions of his trainer.”

Hans managed to picked up on confounders

(This is actually quite an impressive feat for

a horse!)

Credit: en.wikipedia.org/wiki/Clever_Hans
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You need to be checked for COVID-19. The doctor takes a scan of your lungs and uses a state-of-the-art deep

neural network to automatically compute a diagnosis. The model thinks that you are not infected.

Question: Would you trust the model’s prediction?

Presumably, you’ll want to know whether the model exhibits C-H behavior first ;-)
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A black-box classifier f : Rd → [c] should like this:

Examples: neural networks, kernel machines, random forests, . . .
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However, this is not quite true. A CNN f : Rd → [c] looks like this:

It is not quite a black box, is it?

10



True: the functional form and parameters are known, but it is hard to [Lipton, 2018]:

� Break down the computation into an interpretable sequence of simple steps

� Allocate responsibility of decisions to individual weights, inputs, features, examples, . . .

This is necessary to answer “why” questions and spot C-H behavior.
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Not all classifiers are black-box!
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A linear model has the form:

f (x) = sign
(
〈w, x〉+ w0︸ ︷︷ ︸

“score” of x

)
, 〈w, x〉 :=

∑
i∈[d ] wixi

In a sparse linear model w ∈ Rd contains few non-zero entries [Tibshirani, 1996, Ustun and Rudin, 2016]

This model assumes conditional independence among inputs: changing one does not change the others. This

makes it “easy” to attribute responsibility to inputs by looking at their weights:1

� wi > 0 =⇒ xi correlates with, aka “votes for”, the positive class

� wi < 0 =⇒ xi anti-correlates with, aka “votes against”, the positive class

� wi ≈ 0 =⇒ xi is irrelevant: changing it does not affect the outcome

1This is intuitively appealing but not “causal”. For instance, flipping a binary input xi with a positive weight wi > 0 is not guaranteed to change a

negative prediction into a positive one. So intuitively xi ought to be irrelevant. More on this later.
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Example: Papayas

Does a papaya x taste good?

Consider a linear classifier:

f (x) = sign
(

1.3 · 1{x pulp is orange}+

0.7 · 1{x skin is yellow}+

. . .

0 · 1{x is round}+

. . .

−0.5 · 1{x skin is green}+

−2.3 · 1{x is moldy}
)

Figure 1: A bunch of papaya fruits.

It is easy to read off what attributes are “for” and “against” x being tasty for the model – specifically because

the model encodes independence assumptions, e.g., that the shape of x is unrelated to its color.2

2When explaining a decision made by the model, it is irrelevant whether these assumptions match how reality works: we are explaining the

model’s reasoning process, or equivalently its interpretation of how reality works, not reality itself!
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Example: Newsgroup Posts

Figure 2: Explaining individual predictions of competing classifiers trying to determine if a document is about “Christianity”

or “Atheism”. The bar chart represents the importance given to the most relevant words, also highlighted in the text. Color

indicates which class the word contributes to (green for “Christianity”, magenta for “Atheism”. [Ribeiro et al., 2016]

15



Caveats

� If not sparse, it may be difficult to simulate the model’s reasoning in your head.

� The learned weights depend on the available attributes.

Example: the importance of the attribute 1{x skin is yellow} depends on what the other attributes are. If the

other attributes include extra information like ruggedness or softness, color may become less important a factor.

If it does not, then color may be the only important factor.

In other words, it’s best not to make absolute judgments based on an arbitrary selection of attributes.
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Decision trees (DTs) that are shallow and rely on interpretable vari-

ables are transparent

Left: a DT for the Titanic survivors dataset. The variables include age,

sex, passenger class, and # of siblings onboard.

� Given a prediction y = f (x), it is easy to understand why such

decision was taken by looking at which nodes were traversed during

the inference procedure.

� The decision in each node only involves one interpretable variable

(e.g., age) and is therefore easy to understand. Figure 3: A shallow decision tree.

Note: this kind of models are called simulatable because they is easy to simulate in your own head.
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Caveats

What if the data is very complex?

This will lead to a DT that is:

� Wide: it has a million small, very local leaves.

� Deep: in high dimensions, each of these leaves will have a large

number of decision (i.e., sides) attached to it.

Figure 4: A shallow decision tree.

This makes the resulting tree much harder to simulate in your head & to understand in general

18



Caveats

What if a transparent model is really large?

19



Caveats

What if a transparent model relies on uninterpretable features?

What the heck is pp14? (Credits: [Lipinski et al., 2020])
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Topics in XAI

Factual explanations answer the question “why did model f output prediction y0 for input x0?”

� . . . in terms of what inputs (e.g., pixels in an image) are responsible.

� . . . in terms of what high-level concepts (e.g., objects in an image) are responsible.

� . . . in terms of what training examples are responsible.

Counterfactual explanations answer the question “why did I get outcome y0 instead of (a more desirable)

outcome y1?”

� . . . in terms of what inputs should be changed to achieve the alternative outcome.

Global & Regional explanations answer “why” questions for more than a single decision.

� . . . often in terms of simple rules, e.g., “if papaya is red then it does not taste good”.
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Take-away

� White-box models are no silver bullet:

� Transparent 6= easy to understand: the model might be too complex or rely on black-box pieces

� White-box models do not achieve SotA performance in many important applications, while black-box mod-

els do (e.g., image classification)

Given their widespread use, it makses sense to develop techniques for explaining black-box models.

� This is what the rest of the slides are about ;-)

Note: another option is to develop “gray-box” models that combine white-box and black-box elements in a way

that makes the model interpretable enough without giving up on performance even in demanding

applications [Rudin, 2019]. This is still a few weeks away though.
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What is an explanation?



Explanations are studied in epistemology & philosophy of science. There are many incompatible but

complementary schools of though:

Biased towards explanations in science. Most work focus on “interventionist” accounts.
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In the deductive-nomological account, the explanation for a fact in-

volves a combination of:

� Laws of nature

� Empirical observations

� A chain of deductive (aka logical) steps

Example

“Why is the shadow 2m long?”

“Because the sun is at this position, and nuclear fusion emits photons,

and photons get absorbed by the flagpole, and the geometry of space

is such and such. Hence the cast shadow is 2m long”

This is verbose but quite intuitive.

Figure 5: a flagpole and the Sun.
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Problem: purely logical explanations do not take the direction of causa-

tion into account:

Example

“Why is the sun at such and such position?”

“Because the shadow is at this position, and nuclear fusion emits

photons, and photons get absorbed by the flagpole, and the geometry

of space is such and such. Hence the sun is at this position.”

This is a perfectly valid deductive-nomological explanation, but intu-

itively we cannot accept the shadow’s position to be a valid explanation

for the sun’s motion!

Figure 6: a flagpole and the Sun.
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Interventions [Pearl, 2009]

Consider a room with a thermostat. Normally, the room’s temperature and the value displayed by the

thermostat are the same. Which value “causes” the other?

This can change if we intervene on the system:

� Changing the room’s temperature (by, e.g., opening a window) does change the temperature displayed by

the thermostat.

� Changing the temperature displayed by the thermostat (by, e.g., rewiring the circuits) does not change

the temperature in the room!

In other words, interventions help to assess the directionality of causation – and they are exactly what was

missing in the flagpole example.

� This is what people do in science and debugging: knocking out genes in mices or fixing the value of some

variables in programs to compare the original and altered systems. Interventions are key to understand how a

mechanism works.

27



Take-away

� No unique definition of explanation, even in philosophy

� Explaining machine learning models is still an open research question

� Non-causal accounts can be incompatible with our intuition of what makes a good explanation

� We will stick to explanations that have a somewhat interventional flavour

Note: causality is a fascinating topic. If you are interested, a good non-technical intro-

duction is given by “The Book of Why” [Pearl and Mackenzie, 2018].
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Attribute-level explanations



Attributions

Fix classifier f : Rd → [c] and a decision f (x0) = y0. What elements of x0 are responsible for this outcome?

Credit [Ribeiro et al., 2016]
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Fix classifier f : Rd → [c] and a decision f (x0) = y0. What elements of x0 are responsible for this outcome?

Recall that it is easy to answer this question for white-box models.

Idea:

1. Convert f to a white-box model g .

2. Extract an attribution map from g .

Seems easy enough. Does it always make sense?
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All classifiers, including black-box ones, can be viewed as decision surfaces:

This view abstracts away unimportant details.
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Model Translation

Given a classifier f ∈ F (e.g., a neural net), find a white-box classifier g ∈ G (e.g., a shallow decision tree)

that approximates its predictions.

Translation can be viewed as a projection from F to G:

argmin
g∈G

d(f , g)

for an appropriate distance between functions d(·, ·).

Depending on the functional form of F and G, comput-

ing the projection may be hard.
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Model Translation

Given a classifier f ∈ F (e.g., a neural net), find a white-box classifier g ∈ G (e.g., a shallow decision tree)

that approximates its predictions.

Strategy:

1. Sample a (large) set of instances {x1, . . . , xm}

2. Label the samples using f , obtaining yi := f (xi ) for i ∈ [m]

3. Fit g ∈ G on the the synthetic data set S = {(xi , yi ) : i ∈ [m]}

In other words, model translation can be implemented as learning.

The trained white-box model g will have a decision surface similar to that of f , hence it can be used to answer

“why” questions in its place.3

3This assumes that the explanation only includes relevance information about the observed, input variables. If the explanation also includes latent

variables (e.g., whether concepts captured by hidden layers are present or not), then the white-box model must also match the output of the black-

box for those variables.

33



Model Translation

Given a classifier f ∈ F (e.g., a neural net), find a white-box classifier g ∈ G (e.g., a shallow decision tree)

that approximates its predictions.

Strategy:

1. Sample a (large) set of instances {x1, . . . , xm}

2. Label the samples using f , obtaining yi := f (xi ) for i ∈ [m]

3. Fit g ∈ G on the the synthetic data set S = {(xi , yi ) : i ∈ [m]}

In other words, model translation can be implemented as learning.

The trained white-box model g will have a decision surface similar to that of f , hence it can be used to answer

“why” questions in its place.3

3This assumes that the explanation only includes relevance information about the observed, input variables. If the explanation also includes latent

variables (e.g., whether concepts captured by hidden layers are present or not), then the white-box model must also match the output of the black-

box for those variables.

33



Model Translation

Given a classifier f ∈ F (e.g., a neural net), find a white-box classifier g ∈ G (e.g., a shallow decision tree)

that approximates its predictions.

Strategy:

1. Sample a (large) set of instances {x1, . . . , xm}

2. Label the samples using f , obtaining yi := f (xi ) for i ∈ [m]

3. Fit g ∈ G on the the synthetic data set S = {(xi , yi ) : i ∈ [m]}

In other words, model translation can be implemented as learning.

The trained white-box model g will have a decision surface similar to that of f , hence it can be used to answer

“why” questions in its place.3

3This assumes that the explanation only includes relevance information about the observed, input variables. If the explanation also includes latent

variables (e.g., whether concepts captured by hidden layers are present or not), then the white-box model must also match the output of the black-

box for those variables.

33



Model Translation

Given a classifier f ∈ F (e.g., a neural net), find a white-box classifier g ∈ G (e.g., a shallow decision tree)

that approximates its predictions.

Strategy:

1. Sample a (large) set of instances {x1, . . . , xm}

2. Label the samples using f , obtaining yi := f (xi ) for i ∈ [m]

3. Fit g ∈ G on the the synthetic data set S = {(xi , yi ) : i ∈ [m]}

In other words, model translation can be implemented as learning.

The trained white-box model g will have a decision surface similar to that of f , hence it can be used to answer

“why” questions in its place.3

3This assumes that the explanation only includes relevance information about the observed, input variables. If the explanation also includes latent

variables (e.g., whether concepts captured by hidden layers are present or not), then the white-box model must also match the output of the black-

box for those variables.

33



Model Translation

Given a classifier f ∈ F (e.g., a neural net), find a white-box classifier g ∈ G (e.g., a shallow decision tree)

that approximates its predictions.

Strategy:

1. Sample a (large) set of instances {x1, . . . , xm}

2. Label the samples using f , obtaining yi := f (xi ) for i ∈ [m]

3. Fit g ∈ G on the the synthetic data set S = {(xi , yi ) : i ∈ [m]}

In other words, model translation can be implemented as learning.

The trained white-box model g will have a decision surface similar to that of f , hence it can be used to answer

“why” questions in its place.3

3This assumes that the explanation only includes relevance information about the observed, input variables. If the explanation also includes latent

variables (e.g., whether concepts captured by hidden layers are present or not), then the white-box model must also match the output of the black-

box for those variables.

33



Model Translation

Given a classifier f ∈ F (e.g., a neural net), find a white-box classifier g ∈ G (e.g., a shallow decision tree)

that approximates its predictions.

Strategy:

1. Sample a (large) set of instances {x1, . . . , xm}

2. Label the samples using f , obtaining yi := f (xi ) for i ∈ [m]

3. Fit g ∈ G on the the synthetic data set S = {(xi , yi ) : i ∈ [m]}

In other words, model translation can be implemented as learning.

The trained white-box model g will have a decision surface similar to that of f , hence it can be used to answer

“why” questions in its place.3

3This assumes that the explanation only includes relevance information about the observed, input variables. If the explanation also includes latent

variables (e.g., whether concepts captured by hidden layers are present or not), then the white-box model must also match the output of the black-

box for those variables.

33



� How large should the synthetic data set S be?

� Start with a small S

� Grow S and retrain until d(f , g) ≤ τ , with τ controllable threshold.

� How complex should g be allowed to be?

� If g is too simple, it may not capture f ’s decision surface faithfully enough

� Making g too complex may break interpretability (and require enormous amounts of synthetic data)

� There may be no middle ground!

� There may be multiple g ∈ G with the same distance to f / accuracy on S

� Example: two different decision trees g that both “look like” f .

� Troublesome if they have different structure and give different explanations!

� Sometimes it is enough to grow S so to remove alternatives.
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Local Interpretable Model-agnostic Explanations (LIME)

Idea: rather than translating all of f , only translate the neighborhood of f (x0)

� Those parts of the model that do not contribute to the decision surface around f (x0) are irrelevant and do

not need to appear in the explanation.

� Even if the model is extremely complex, locally it can be much simpler (it is almost linear in this example)

meaning that it will be much easier to fit it with an interpretable white-box model!

Credit [Ribeiro et al., 2016]
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LIME

Given a classifier f ∈ F and a point x0, find a white-box classifier g0 ∈ G that approximates the predictions of

f in the neighborhood of x0.

Algorithm:

� Sample a set of instances {x1, . . . , xm} from an “appropriate” distribution [same as before]

� Label all samples using f , obtaining yi = f (xi ) for all i ∈ [m] [same as before]

� Fit g0 ∈ G by solving the weighted learning problem:

g0 := argmin
g∈G

1

m

∑
i∈[m]

k(x0, xi )L(g0(xi ), yi )

� Each example (xi , yi ) is weighted by its similarity to x using a kernel k, e.g., a Gaussian kernel:

k(x0, xi ) = exp(−γ · ‖x0 − xi‖2)

The closer to x0, the more important getting the label of xi right is.

Remark: notice that the kernel upscales (exponentially) all points closer than a threshold and downscales

(exponentially) all points farther than the threshold.
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Credit: [Guidotti et al., 2019]
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� Sample {xi} from some distribution P(X). What distribution?

Idea: Use the ground-truth distribution P∗(X). This way, g0 ends up “looking like” f in regions that actually

occur in the data.

� In practice, P∗ is unknown, so it must be either:

� Replaced with the empirical distribution, i.e., the training set used to train f , which is however likely too

small to truly capture the neighborhood of any given instance x0.

� Replaced with a generative model P̂(X) estimated on the training data used for f .

Sampling from P̂(X) may be computationally challenging & estimation of generative models is non-trivial.

Sampling from P∗(X) neglects the behavior of f in regions that do not normally occur: this can hide C-H

behavior.

If the goal is to understand why the decision f (x0) = y0 was made, so to build or reject trust in f , there is no

reason to restrict the synthetic samples {xi} to high-density regions: the whole neighborhood of x0 should be

covered!
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It depends on the type of variables:

� If xi is a categorical variable and all its values are known, then simply pick from a value uniformly at ran-

dom.

Example: xi ∈ {winter , autumn, summer , spring}, pick any choice at random.

� If xi is a continuous variable, sample from either a uniform distribution or a Gaussian.

The width of the distribution can be chosen by looking at the data.

Example: use empirical std. deviation to define the Gaussian.

Issue: the samples look distinctly “different” from regular points sampled from P∗(X). This makes it easy to

build attacks on the explanations computed by LIME, see [Slack et al., 2020].
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LIME requires to solve:

argmin
g∈G

1

m

∑
i∈[m]

k(x, xi )L(g0(xi ), yi )︸ ︷︷ ︸
loss on (xi , yi )

One would expect L to be a loss for classification, right?
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However, if the surrogate g is a linear model, then LIME uses an L2 loss:

L(ŷ , y) = (y − ŷ)2

This immediately gives:

argmin
g∈G

1

m

∑
i∈[m]

k(x, xi )(g0(xi )− f (xi ))2

This problem admits a closed-form solution and it can be computed in a numerically stable manner.
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Let g0(x) be a linear model:

g0(x) = w>x + b =
∑
j∈[d ]

wjxj + b

Remark: the offset b can be ignored if we center the data.

Replacing g0 with the above in the LIME objective, we obtain:

1

m

∑
i∈[m]

k(x, xi )(g0(xi )− yi )
2 =

∑
i∈[m]

α2
i (w>xi − yi )

2 αi :=

√
k(x, xi )

m

= ‖a� (w>X − y)‖2 = ‖w>X ′ − y′‖2 X’, y’ absorbed a

where � is the Hadamard (element-wise) product and we used:

a := (α1, . . . , αm), X := [x1, . . . , xm], y = (y1, . . . , ym)

Hence fitting a linear g0 in LIME boils down to solving least squares:

argmin
w∈Rd

‖w>X ′ − y′‖ s.t. ‖w‖ ≤ 1
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LIME has one more trick: learning a k-sparse weight vector w.

This can be achieved by solving:

argmin
w∈Rd

‖w>X ′ − y′‖ s.t. ‖w‖0 ≤ b

where ‖w‖0 =
∑

j∈[d ] 1
{
wj 6= 0

}
is the L0 pseudo-norm.

� Solving this is a hard (combinatorial) optimization problem.

� Use LASSO instead [Tibshirani, 1996], which involves solving:

argmin
w∈Rd

‖w>X ′ − y′‖+ λ · ‖w‖1, ‖w‖1 =
∑
j∈[d ]

|wj |

It turns out that solving this (non-combinatorial) surrogate provably solves the original problem (under

assumptions).
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‖w>X ′ − y′‖ s.t. ‖w‖0 ≤ b

where ‖w‖0 =
∑

j∈[d ] 1
{
wj 6= 0

}
is the L0 pseudo-norm.

� Solving this is a hard (combinatorial) optimization problem.

� Use LASSO instead [Tibshirani, 1996], which involves solving:

argmin
w∈Rd

‖w>X ′ − y′‖+ λ · ‖w‖1, ‖w‖1 =
∑
j∈[d ]

|wj |

It turns out that solving this (non-combinatorial) surrogate provably solves the original problem (under

assumptions).
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Illustration

Consider the task of discriminating between (images of) wolves and husky dogs.
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Illustration

You receive this image x0, which the black-box classifier f predicts as wolf

How does LIME construct an explanation for this decision?
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Illustration

You receive this image x0, which the black-box classifier f predicts as wolf

LIME samples points in the neighborhood of x0 and fits a sparse linear classifier g0 on them
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Illustration

You receive this image x0, which the black-box classifier f predicts as wolf

Roughly equivalent to randomly perturbing (aka “wiggling”) x0, checking where the output of f changes, and

then fitting a white-box model that mimics those changes.
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� What about the input variables xi are not interpretable?

� Black-box models often rely on complex features of the inputs x = (x1, . . . , xn):

� Text: tagging documents by looking for sequences of words

� Images: classifying pictures by leveraging high-order correlations between pixels

Explanations extracted from white-box modes based on these features are not interpretable!

� LIME assumes to be given a function ψ : Rd → {0, 1}q that maps inputs x to an interpretable representation

ψ(x):

� Text: ψ(x) represents document x in terms of presence/absence of individual words

� Images: ψ represents image x in terms of presence/absence of objects
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Illustration

You receive this image x0, which the black-box classifier f predicts as wolf

For images, LIME builds an instance-specific map ψ0(x) by segmenting the target image x0. In this case, the

“wiggling” corresponds to filling individual segments with noise.
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LIME (Updated)

Given a classifier f ∈ F and a point x0, find a white-box classifier g0 ∈ G that approximates the predictions of

f in the neighborhood of x0.

Algorithm:

� Sample a set of instances {x1, . . . , xm} from an “appropriate” distribution [same as before]

� Label all samples using f , obtaining yi = f (xi ) for all i ∈ [m] [same as before]

� Fit g0 ∈ G by solving the weighted learning problem:

g0 := argmin
g∈G

1

m

∑
i∈[m]

k(x0, xi )L(g0(ψ(xi )), yi )

The white-box model g0 is now learned on the interpretable feature space ψ(x) → its explanations will

also be given in terms of the interpretable concepts

� Important: ψ does not have to stay the same for different targets x0 – so long as the features that it ex-

tracts are interpretable, we are good.
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� Once g0 is obtained, LIME extracts an explanation for ŷ0 = g0(x0) – this is easy, because g0 is a white-box

model – and uses it as an explanation for y0 = f (x0).

� If g0 is a sparse linear model:

g0(x) =
∑
j∈[d ]

wjψj (x) + b

� wi > 0 =⇒ ψi (x) votes for” positive class

� wi < 0 =⇒ ψi (x) “votes against” positive

class

� wi ≈ 0 =⇒ ψ(x)i is irrelevant

Back to papayas

f (x) =
(

1.3 · 1{x pulp is orange}+

. . .

0 · 1{x is round}+

. . .

−2.3 · 1{x is moldy}
)

� The interpretable features ψ(x) can be semantically meaningful image segments, words, high-level concepts,

etc.
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Examples

Left: LIME explains document classification by highlighting relevant words.

Credit [Ribeiro et al., 2016]
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Examples

Bonus: in the multi-class case (c > 2), learn a different g for each class y ∈ [c] using a one-vs-all setup.

Credit [Ribeiro et al., 2016]
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Shapley values

There are d players. The function v(S) maps subsets of players S ⊆ [d ] to value v(S) ∈ R, with v(∅) = 0.

Question: How much does ith player contribute to v([d ])?

This depends on the order in which players are added to [d ].

Fix S ⊆ [d ]. The marginal contribution of i w.r.t. S is the value generated by including i in S :

∆(i , S) := v(S ∪ {i})− v(S)

The Shapley value of i is the average marginal contribution w.r.t every possible order:

φ(i) :=
1

d!

∑
π

∆(i , Si,π)

where π iterates over all permutations of [d ] and Si,π := {j : π(j) < π(i)} are the players before i in π.

Viewed as the “influence” of ith player on the output of v([d ]).

Since the order of the elements in S does not matter for computing ∆(i , S), can rewrite:

φ(i) =
∑
S⊆[d ]

|S|!(d − |S| − 1)!

d!
∆(i , S)
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Shapley values have a number of useful properties:

Symmetry For any two players i , j , if ∆(i ,S) = ∆(j , S) for any S ⊆ [d ], then φ(i) = φ(j).

Dummy For any player i , if ∆(i , S) = 0 for all S, then φ(i) = 0.

Additivity For any player i and value functions v , w , φ(i ; v) = φ(i ;w) = φ(i ; v + w).

All these properties make intuitive sense.
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Idea: use Shapley values to estimate importance of ith input on the score of class y

Fix a predictor f and a decision (x, y). Let score(x) be the score of class y , e.g., the output of the top layer of a

network or the log-likelihood.

SHAP values take:4

v(S) = EXS̄
[score(x) | XS = xS ]

=

∫
R|S̄|

score(xS , xS̄ )dxS̄

where S̄ = [d ] \ S, XS = {Xi : i ∈ S}, and similarly for xS .

This is the expected score of class y when only features in S are known (conditioned on XS = xS )

4[Štrumbelj and Kononenko, 2014, Lundberg and Lee, 2017]
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The contribution of the ith feature is:

φ(i) =
∑
S⊆[d ]

|S|!(d − |S | − 1)!

d!
∆(i , S)

=
∑
S⊆[d ]

|S|!(d − |S | − 1)!

d!

(
v(S∪{i})− v(S)

)
=
∑
S⊆[d ]

|S|!(d − |S | − 1)!

d!

(
EX

S∪{i}
[score(x) | XS∪{i} = xS∪{i}]− EXS̄

[score(x) | XS = xS ]
)

Computing SHAP values is highly non-trivial:5

� The sum runs over 2d subsets of variables.

� For each subset, must solve an expectation.

� Each expectation marginalizes over the model outputs, the resulting integral is often intractable.

5Exact computation of SHAP values is intractable even for simple models [Van den Broeck et al., 2021].
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Approximating SHAP

� Assume independence between features:

EXS̄
[score(x) | XS = xS ] ≈ EXS̄

[score(x)]

This is quite a brutal approximation in practice, but it makes the expectation independent of xS , i.e., it can be

cached

� Assume that score is linear (or approximate it as such):

score(EXS̄
[x])

This gives an enormous speed-up, because we can compute the score of the average element E[x] and we are

done.
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� LIME and SHAP are model-agnostic

� Only require access to the predictions of the model

� Leverage this to probe f ’s decision surface near at selected points

� Computing an explanation can be slow and high-variance:

� Large number of samples must be predicted

� Explaining requires to fit a white-box model

� Result depends statistically on choice of samples (& how well the kernel is tuned)

� Are there more efficient alternatives?
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Idea: typically the architecture can be accessed!6 Not literally a black-box.

For instance, a neural net looks like this:

f (x) = argmax
y∈[c]

pθ(y | x)

where pθ(y | x) is a conditional distribution defined by a softmax activation layer on top of a dense “scoring”

layer s(x; θ) ∈ Rc , i.e.

pθ(y | x) = softmax(s(x; θ))y softmax(s)y =
exp sy (x; θ)∑
j∈[c] exp sj (x; θ)

and the dense layer is a linear transformation of embeddings φ : Rd → Rq , that is:

s(x; θ) = Wφ(x)

In addition to the predictions, we also have access to the network’s gradients. Is this useful?

6If this is not the case, for instace when querying a website, then it all depends on what queries can be asked to the model.
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Gradients ≈ Wiggling

� Let f : R→ R. The derivative of f w.r.t. x evaluated at x0 ∈ R is:

f ′(x0) =
( d

dx
f (x)

)∣∣∣
x=x0

:= lim
ε→0

f (x + ε)− f (x)

ε

It measures how much perturbing the input x by an infinitesimal amount ε affects the output of f at x0

� For f : Rd → R, the gradient w.r.t. x is the vector of partial derivatives:

∇xf (x0) =
(
∇xf (x)

)∣∣∣
x=x0

=
( ∂f
∂x1

, . . . ,
∂f

∂xd

)
So it captures the effect of perturbing each input xi , i ∈ [d ], on the output

of f (x)

� So, ‖∇xf (x0)‖ measures the sensitivity of the output of f if we “wiggle”

x0 around
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Input Gradients

� Recall that a neural nets is:

f (x) = argmax
y∈[c]

pθ(y | x)

The conditional distribution pθ(y | x) is differentiable (almost everywhere).

� Idea: compute the (absolute value of the) partial derivative of pθ w.r.t. xi :

wi :=
∂

∂xi
pθ(x0) ∈ R

This conveys information about how much perturbing (wiggling) the ith input xi from its current value in x0,

while leaving all other inputs untouched, affects the score of class y .

� Just like for linear models:

� ui > 0 =⇒ xi correlates with, aka “votes for”, class y

� ui < 0 =⇒ xi anti-correlates with, aka “votes against”, class y

� |ui | ≈ 0 =⇒ xi is irrelevant: changing it does not affect the probability of class y

References: [Baehrens et al., 2010, Simonyan et al., 2013]
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Gradient w.r.t. Input or Parameters?

� Input gradients:

∇xpθ(x0)

This conveys information about sensitivity of the output to perturbations of the input.

� This is different from the gradients used for training via SGD:

∇θ`(pθ, (xi , yi ))

This measures sensitivity of the loss to perturbations of the parameters (or weights)

� The first gradients are w.r.t. the model’s output pθ, the second ones are w.r.t. the loss function ` – they

are not the same.

� Both methods identify relevant elements: relevant inputs (which have responsibility for a particular deci-

sion) vs relevant weights (which are responsible for how badly pθ behaves on a particular training example

(xi , yi ))

Remark: the gradients ∇θpθ(x) will be discussed later on.
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Input Gradients:

� Given x0 ∈ Rd and neural network f (x) with conditional class distribution pθ(Y | X)

� Compute the all partial derivatives:

wi :=

∣∣∣∣ ∂∂xi pθ(x0)

∣∣∣∣ i ∈ [d ]

This is easy to do using automatic differentiation packages (Tensorflow, Pytorch, JAX, . . . ).

This gives you an Rd vector w = (w1, . . . ,wd ).

� Transform this vector into an image → saliency map.
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Examples

Example images with predictions and saliency maps computed with (variants of) input gradients.
65



Aside: Feature interactions

� The input gradient ∇xpθ(x0) ignores feature interactions. This can be viewed with a Taylor decomposition of

pθ:

pθ(x + ε) ≈ pθ(x) +∇>x ε

so for instance if the probability is large when both xi and xj are large but low when xi , xj are individually large,

the input gradient will attribute relevance to either/both features depending on x0.

� How to recover feature interations? Again, use the Taylor expansion:

pθ(x + ε) ≈ pθ(x) +∇>x ε+
1

2
ε>Hε

where Hij = ∂2

∂xi∂xj
pθ is the Hessian matrix.

The term |Hij | encodes the contribution of the pair of features xixj .

� Can be non-trivial to compute.
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Two models f and f ′ are functionally equivalent if pθ(x) = pω(x) for all inputs x ∈ Rd .

Implementation Invariance

An attribution method satisfies the implementation invariance axiom if, for every pair of functionally

equivalent models f and f ′ and every input x, it outputs the same attributions for both models.

� Input gradients satisfy implementation invariance.

Intuition: consider a neural network:

pθ(x) = (hL ◦ hL−1 ◦ · · · ◦ h2 ◦ h1)(x)

where h` is the `-th layer. The layers are implementation details. Gradients satisfy – and are computed in

practice using – the chain rule:
∂f

∂xi
=

∂f

∂h`

∂h`

∂xi

On the LHS, the gradient ignores implementation details, on the RHS it depends on them. Intuitively, the chain

rule states that implementation details do not matter when computing gradients.

� Attribution methods that do not work analogously to the chain rule – for instance LRP and DeepLIFT –

violate implementation invariance [Sundararajan et al., 2017]
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Sensitivity

An attribution method satisfies the sensitivity axiom if, for every two inputs x and x′ that differ in one feature

(e.g., xi ) and have different predictions pθ(x) 6= pθ(x′), then the differing feature has non-zero responsibility.

� Unfortunately, input gradients violate sensitivity.

Consider a function [Sundararajan et al., 2017]:

f (x) = 1− ReLU(1− x) = 1−max{0, 1− x}

Pick x = 0 and x ′ = 2. Then f (0) = 1− 1 = 0 and f (2) = 1− 0 = 1, so the output at the two points is

different. However, since f is “flat” at x = 1, the gradient gives attribution 0 to x :

f ′(0) = 1 f ′(1) = 0
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� Unfortunately, input gradients violate sensitivity.

� Input gradients break sensitivity because the prediction function may “flatten” at any fixed point and thus

have zero input gradient!

� This means that input gradients may ignore relevant features and focus on irrelevant ones!
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Idea: instead of looking at the gradient only at x, consider a baseline x′ and how the gradients change across

the two.

� This gives integrated gradients:

intgi (x) := (xi − x ′i ) ·
∫ 1

0

∂

∂xi
pθ(x′ + α · (x− x′))dα

Integrated gradients are the path intergral of the input gradients along the straightline path from the baseline

x′ to the target point x

The baseline x′ is simply:

� A black or random image

� An all-zero embeddings for text models

� Typically, x′ := Ep∗(x)[x] in theoretical papers.

Integrated gradients capture features that account fo the change in output between the baseline x′ and the

target point x. This intuitively matches what we do with counterfactual reasoning.
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Completeness

An attribution method satisfies the completeness axiom if its attributions add up to the difference between

the output of f at the target point x and the baseline x′.

In other words, the attributions “account for all changes”.

� Integrated gradients satisfy completeness, by the fundamental theorem of calculus:∑
i∈[d ]

intgi (x) = pθ(x)− pθ(x′)

i.e., that integrating the derivative gives the original function.

� Completeness implies sensitivity! If the sum of integrated integrals recovers the change in output, and only

one feature changes between the baseline x′ and the target output x, then that feature must have non-zero

integrated gradent attribution!

� Integrated gradients satisfy sensitivity!

71



Completeness

An attribution method satisfies the completeness axiom if its attributions add up to the difference between

the output of f at the target point x and the baseline x′.

In other words, the attributions “account for all changes”.

� Integrated gradients satisfy completeness, by the fundamental theorem of calculus:∑
i∈[d ]

intgi (x) = pθ(x)− pθ(x′)

i.e., that integrating the derivative gives the original function.

� Completeness implies sensitivity! If the sum of integrated integrals recovers the change in output, and only

one feature changes between the baseline x′ and the target output x, then that feature must have non-zero

integrated gradent attribution!

� Integrated gradients satisfy sensitivity!

71



Completeness

An attribution method satisfies the completeness axiom if its attributions add up to the difference between

the output of f at the target point x and the baseline x′.

In other words, the attributions “account for all changes”.

� Integrated gradients satisfy completeness, by the fundamental theorem of calculus:∑
i∈[d ]

intgi (x) = pθ(x)− pθ(x′)

i.e., that integrating the derivative gives the original function.

� Completeness implies sensitivity! If the sum of integrated integrals recovers the change in output, and only

one feature changes between the baseline x′ and the target output x, then that feature must have non-zero

integrated gradent attribution!

� Integrated gradients satisfy sensitivity!

71



Two models f and f ′ are functionally equivalent if pθ(x) = pω(x) for all inputs x ∈ Rd .

Implementation Invariance

An attribution method satisfies the implementation invariance axiom if, for every pair of functionally

equivalent models f and f ′ and every input x, it outputs the same attributions for both models.

� Integrated gradients satisfy implementation invariance!

Because they are defined on top of input gradients, which are implementation invariant.
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� Other properties satisfied by integrated gradients (and path integrals in general) are:

Dummy

If the output of f does not depend on a particular input variable xi , then the attribution to that variable is zero.

Linearity

Take the linear combination of two networks pθ and pω , i.e., p(x) = apθ + bpω . Then the attributions of any

input xi for p are the linear combination of the attributions in pθ and pω .

� Path integrals are the only methods that satisfy Completeness (and thus Sensitivity), Implementation

Invariance, Dummy, and Linearity:

pathint(x, γ) =

∫ 1

0

∂p(γ(α))

∂γi (α)

∂γi (α)

∂α
dα, γ(0) = x′, γ(1) = x

Integrated gradients are simply path methods along a straight line γ between x′ and x.
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What’s so unique about integrated gradients?

Symmetry Preserving

If the output of f is invariant to swapping the value of two input variables xi and xj , then an attribution

method is symmetry preserving if it assignes the same attribution to both xi and xj .

� Integrated gradients are the only path integral that is symmetry preserving.
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� Computing integrated gradients is not straightforward:

intgi (x) := (xi − x ′i ) ·
∫ 1

0

∂

∂xi
pθ(x′ + α · (x− x′))dα

This requires integration.

� Replace integral with finite summation:

(xi − x ′i ) ·
∑
k∈[n]

1

n
·
∂

∂xi
pθ(x′ +

k

n
· (x− x′))

This involves calling the autodiff package once for every step.

Trick: use a Jacobian operation to compute the input gradient at all steps of the computation jointly. If the

autodiff package is smart enough, it will parallelize/batch-ize the computation.
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Illustration

76



� Saliency methods really look like edge detectors [Adebayo et al., 2018]

Question: do these methods provide extra insight into the model or do they just find edges (which do not

depend on the model?)
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� Input gradients: ∂
∂xi

pθ(x)

� Integrated gradients: integrate input gradients over a path between baseline x′ and target point x

� Gradient Times Input: x� ∂
∂xi

pθ(x)

� SmoothGrad: 1
n

∑
k∈[n]

∂
∂xi

pθ(x + uk )

� Guided Backpropagation: similar to input gradients, except that negative gradients are suppressed in the

computation at all steps of the chain rule.

� Guided GradCAM: similar but for GradCAM.
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� This is what happens if we randomize the weights of different layers:

� Highlights the risks of judging explanation quality only visually.
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Aside: Gradients vs LIME

Both input gradients and LIME estimate the sensibility of the output pθ(x) to perturbations. Are they related

somehow?

� Yes! Intuitively, if the kernel k(x0, xi ) is “pointy” enough, then LIME essentially becomes a 0-th order

approximation of the input gradient7

� Does this mean that LIME also fails to satisfy sensitivity? Not exactly, precisely because it looks at synthetic

points different from x0 – so in a sense these points play the role of baselines x′.

7Formally studied in [Garreau and Luxburg, 2020].
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Aside: Adversarial Attacks
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The adversarial image xadv is obtained by following the gradient:

argmin
xadv

−|pθ(xadv)− pθ(x)|+ λ · ‖xadv − x‖

Intuition: keep xadv close to x, so that the difference is not perceptible to a human eye, while changing the

output probability as much as possible.

Image credit: IBM
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Attribution approaches can be fooled by adversarial attacks too!
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Algorithm:

� Given a target adversarial attribution map aadv and a target input x with attribution a

� Find a new input xadv such that:

� xadv is perceptually similar to x

� Output of the network stays the same: pθ(xadv) ≈ pθ(x)

� Attribution is as close as possible to the adversarial map: attr(xadv) ≈ aadv

� Simply apply gradient descent to optimize:

min
xadv
‖attr(xadv)− aadv‖+ γ · ‖pθ(Y | xadv)− pθ(Y | x)‖

In practice, do a small step of gradient descent, then project xadv back close to x.
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Take-away

� Perturbation-based techniques (LIME, SHAP):

� Model-agnostic: can be applied even to non-smooth black-box models (e.g., ensembles)

� Supports mapping complex objects to interpretable high-level features

� Requires sampling & training on a large number of points, which is slow

� The estimated white-box model can have a large variance; depends strongly on hyper-parameters (# of

samples, kernel, . . . ) → can have poor faithfulness

� Gradient-based techniques:

� Does not require sampling or retraining, which is much faster

� Gradient can be computed cheaply using automatic differentiation packages

� Since no translation takes place, the explanation is usually stable & “faithful”

� Model-specific: can only be applied to models for which the gradient w.r.t. x exists almost everywhere,

requires continuous inputs x
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Example-level Explanations



� Input attributions tell you what input variables or high-level concepts are responsible for a particular

prediction y0 = f (x0)

This explanation assumes that the model f is given and fixed, however this is not the case: f is learned from

data, which may or may not be trustworthy.

� Example attributions tell you what training examples are (indirectly) responsible for a particular prediction.

How can we explain where the model came from?
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For some models it is straightforward to determine what training examples determine a particular prediction

y0 = f (x).

Example: k nearest neighbors (kNN)

� So long as k is sufficiently small, is white-box: the prediction is due to few examples that are close to x0 in

terms of the distance function (e.g., Euclidean distance)
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Kernel Methods

For some models it is straightforward to determine what training examples determine a particular prediction

y0 = f (x).

Example: kernel methods, e.g., support vector machines.

� An SVM is simply a linear model built on top of a feature function ϕ : Rd → Rk :

score(x) =
∑
j∈[k]

wjϕj (x) + b

What makes it special is that (w, b) are the max-margin solution, obtained by solving a very special, convex

learning problem.

� The Representer Theorem implies that this specific choice of parameters (w, b) admits a dual representation

in terms of a kernel k(x, x′) := 〈ϕ(x), ϕ(x′)〉, namely:

score(x) =
∑
i∈[m]

αik(x, xi )

where S = {(xi , yi ) : i ∈ [m]} is the training set.

� This is the analogue of linear models in the dual!
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Training examples (xi , yi ) with αi > 0 are called support vectors (SV)

Intuitively, removing or perturbing an SV changes f , while changing a non-SV has no effect.
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� kNN and SVMs do not quite answer the same question:

� kNN identifies those training examples that affect a particular prediction f (x0) = y0

� αi identifies those training examples on which all of f relies on

In order to obtain this information, one has to compute αi · k(xi , x0) for all i ’s: this takes x0 into consideration!
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What about general models?

How to generalize this to general models, including neural networks?
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� An example is a support vector if removing it from the training set and retraining changes f

� An example is a support vector for x0 if removing it from the training set and retraining changes f (x0) = y0

(or pθ)

� An example is relevant to y0 = f (x0) if removing it from the training set and retraining changes f (x0) (or pθ)

Algorithm:

� Given:

� A training set S = {(xi , yi ) : i ∈ [m]}
� A classifier f ∈ F trained on it

� A target prediction f (x0) = y0

� For each (xi , yi ), remove it from the S , obtaining S−i , learn f−1 ∈ F

� The relevance of (xi , yi ) is the difference between f (x0) and f (x0) (or pθ)

This is the so-called deletion metric
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Algorithm:

� Given:

� A training set S = {(xi , yi ) : i ∈ [m]}
� A classifier f ∈ F trained on it

� A target prediction f (x0) = y0

� For each (xi , yi ), remove it from the S , obtaining S−i , learn f−1 ∈ F ← slow
� The relevance of (xi , yi ) is the difference between f (x0) and f (x0) (or pθ)

� Quite challenging if S is very large and/or f is a complex model (deep nets takes hours/days to retrain)

� Especially because one must retrain once for each i!

� Can we approximate the impact of removing (xi , yi ) without retraining?
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Influence Functions

Influence functions (IFs) is a technique born in robust statistics that helps us to estimate the impact of a

training examples without retraining [Koh and Liang, 2017].

� Fix a loss function ` and a data set S = {zi = (xi , yi ) : i ∈ [m]}

� Let each f ∈ F be identified by parameters θ

� Let θm be the parameters of the empirical risk minimizer on S:

θm ← argmin
θ

1

m

∑
k

`(θ, zk )

� Let θm(z, ε) be the parameters of the empirical risk minimizer after example z is upscaled by ε:

θm(z, ε)← argmin
θ

( 1

m

∑
k

`(θ, zk )
)

+ ε`(θ, z)

Remark: θm = θm(z, 0).

Remark: ε = 1
t

is equivalent to deleting z.
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� Take a first-order Taylor expansion:

θm(z, ε)− θm(z, 0) ≈ ε ·
(

d

dε
θm(z, ε)

∣∣∣∣
ε=0

)
︸ ︷︷ ︸
influence function I(z)

(1)

� The effect on θm of adding an example z to S is:

≈
1

t
· I(z)

� The effect on θm of removing an example z from S is:

≈ −
1

t
· I(z)

� No retraining required! But. . . how do we compute I(z)?
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Idea: if the loss function `(θ, z) is strongly convex and twice differentiable, then [Koh and Liang, 2017]:

I(z) = −H(θm)−1∇θ`(z, θm)

where H(θm) is the Hessian computed on the data set S :

H(θm) :=
1

t

t∑
k=1

∇2
θ`(zk , θm), ∇2

θ`(zk , θm) =
[ ∂

∂θs∂θt
`(zk , θ)

∣∣∣
θ=θm

]
st

� The above estimates the change in parameters – it’s a vector. In order to convert this into a example

relevance score, just compute its norm: ‖H(θm)−1∇θ`(z, θm)‖.

� This can be derived formally for convex models

� IFs were shown to be applicable to non-convex models (e.g., deep nets) too!

97



Idea: if the loss function `(θ, z) is strongly convex and twice differentiable, then [Koh and Liang, 2017]:

I(z) = −H(θm)−1∇θ`(z, θm)

where H(θm) is the Hessian computed on the data set S :

H(θm) :=
1

t

t∑
k=1

∇2
θ`(zk , θm), ∇2

θ`(zk , θm) =
[ ∂

∂θs∂θt
`(zk , θ)

∣∣∣
θ=θm

]
st

� The above estimates the change in parameters – it’s a vector. In order to convert this into a example

relevance score, just compute its norm: ‖H(θm)−1∇θ`(z, θm)‖.

� This can be derived formally for convex models

� IFs were shown to be applicable to non-convex models (e.g., deep nets) too!

97



Idea: if the loss function `(θ, z) is strongly convex and twice differentiable, then [Koh and Liang, 2017]:

I(z) = −H(θm)−1∇θ`(z, θm)

where H(θm) is the Hessian computed on the data set S :

H(θm) :=
1

t

t∑
k=1

∇2
θ`(zk , θm), ∇2

θ`(zk , θm) =
[ ∂

∂θs∂θt
`(zk , θ)

∣∣∣
θ=θm

]
st

� The above estimates the change in parameters – it’s a vector. In order to convert this into a example

relevance score, just compute its norm: ‖H(θm)−1∇θ`(z, θm)‖.

� This can be derived formally for convex models

� IFs were shown to be applicable to non-convex models (e.g., deep nets) too!

97



Recall that:

I(z) = −H(θm)−1∇θ`(z, θm)

� The above estimates the change in parameters – it’s a vector. In order to convert this into a example

relevance score, just compute its norm: ‖H(θm)−1∇θ`(z, θm)‖.

� What about the influence of removing z on the likelihood of z∗?

Using the chain rule, we get:

d

dε
P(y∗ | x∗; θm(zk , ε))

∣∣∣∣
ε=0

= ∇θP(y∗ | x∗; θm)>
d

dε
θm(zk , ε)

∣∣∣∣
ε=0

= ∇θP(y∗ | x∗; θm)>I(zk )

= −∇θP(y∗ | x∗; θm)>H(θm)−1∇θ`(z, θm)

This is a scalar, it approximates the change in likelihood at z∗ by upscaling z by ε.

� The same trick works for other functions of θm, like the loss, the input gradients, etc.
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The change in likelihood is approximated as:

−∇θP(y∗ | x∗; θm)>H(θm)−1∇θ`(z, θm)

with:

H(θm) :=
1

t

t∑
k=1

∇2
θ`(zk , θm), ∇2

θ`(zk , θm) =
[ ∂

∂θs∂θt
`(zk , θ)

∣∣∣
θ=θm

]
st

� Cool but houses a heap of numerical and computational issues:

� Requires computing H: a bunch of second-order derivatives for every k

� H is |θ| × |θ|: quadratic in the # of parameters, huge for even moderately sized networks

� Requires computing H−1: time cubic in |θ|, may not be unique, may not be numerically stable, . . .

� Often must be computed once for every training point
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Idea: use implicit Hessian-vector product (HVPs)

Algorithm:

� Approximate s∗ := H(θm)−1∇θP(y∗ | x∗; θm) using an efficient HVP technique (see below)

� Compute −s∗ · ∇θ`(z, θm)

� If we manage to do this, we also solve the second problem: s∗ depends on test point z∗ but it is independent

from training point z, so we can cache it
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� HVP via stochastich estimation (LISSA) [Agarwal et al., 2017]

� Fix j ∈ N0 and consider:

H−1
j =

j∑
i=0

(I − H)i

This is the jth order Taylor expansion of H−1, and H−1
j → H−1 as j →∞.

� This can be written recursively as:

H−1
j = I + (I − H)H−1

j−1

Can be showng by plugging the definition into the RHS we get:

I + (I − H)H−1
j−1 = I + (I − H)

j−1∑
i=0

(I − H)i = I +

j∑
i=1

(I − H)i

= (I − H)0 +

j∑
i=1

(I − H)i =

j∑
i=0

(I − H)i = H−1
j
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j =

j∑
i=0

(I − H)i

This is the jth order Taylor expansion of H−1, and H−1
j → H−1 as j →∞.

� This can be written recursively as:

H−1
j = I + (I − H)H−1

j−1
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� HVP via stochastich estimation (LISSA) [Agarwal et al., 2017]

Idea: ∇2
θ`(θ, zi ), where zi is a single training point, is an unbiased estimator of H! This means that its average

matches that of H.

Algorithm for stochastic approximation of H−1v:

� Initialize H̃−1
0 v← v

� Repeat:

H̃−1
j v← vI + (I −∇2

θ`(θ, zs))H̃−1
j−1

where zs ∼ S is a single, random training set example.

� Then the average of H−1
j v converges to H−1v as j →∞ (= sample many points)

� Computing ∇2
θ`(θ, z) is relatively cheap if the model does not have too many parameters
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How do IF compare to leave-one-out retraining?

� Looks pretty good!
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Problem: H is seldom positive definite in practice:

� The model may be highly non-convex

� The loss may be non-convex

� Training often stopped early, before local optimum is reached

� Noisy data messes with the curvature of the decision surface

This means that H−1 does not technically exist and can be hard to “approximate”

This means that computation of IFs to be unreliable [?]: the recursion can diverge!

Solutions: standard remedies include:

� Fine-tuning θ using a second-order method like L-BFGS [Koh and Liang, 2017] → this is “cheating”,

second-order methods are quite slow (sometimes comparably to retraining)

� Implicitly preconditioning H−1 → this smooths out the curvature, may be insufficient

� Weight decay [?] keeps ‖θ‖ small, only indirectly affects 2nd order derivatives, may be insufficient
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Idea: replace Hessian with Fisher information matrix F (θ):

F (θ) :=
1

t − 1

t−1∑
k=1

Ey∼P(Y | xk ,θ)

[
∇θ log P(y | xk , θ)∇θ log P(y | xk , θ)>

]

� The FIM is useful because:

� Positive semi-definite, so inverse always “almost exists” & numerically stabler to approximate

� It the model approximates the data distribution, then F (θ) ≈ H(θ)

� Even if this does not hold, F (θ) still captures useful curvature information

Problem: both H and F are |θ| × |θ|, very large. Can restrict either to just some layers of the network, e.g., the

top layer.
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One simple technique to speed up computation:

This also avoids identifying far-away outliers that say little about (are very different from) the test point
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Take-away

� Some approaches are white-box when it comes to example-based why questions

� Other – like neural nets – are black-box, but we can use influence functions to understand what examples

they rely on for making predictions.

� IFs are sound for convex models & can be meaningful for non-convex models too

� IFs are not cheap to compute, but there are fast approximations.

� IFs can be brittle, especially with noisy data

� Influential examples tend to be outliers, restrict search to neighbors
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Counterfactual Explanations



Limits of Factual Explanations

� Factual explanations explain why a particular decision y0 = f (x0) was made

� However, they say nothing about how to change x 0 to obtain a different, more desirable outcome y1 In other

words, they are not actionable

Example

You file a loan request at your bank. Unfortunately, the loan is refused. Your bank gives you a factual

explanation that clarifies how the decision was based on your education level and work history. Which of these

variables should you work on to increase the chance of getting a loan? For instance, in order to get the loan,

should you i) obtain an additional master degree, or ii) look for a more stable or well-payed job?
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Enter counterfactual explanations:

� They explain why a particular outcome y0 was obtained instead of a (more desirable) alternative y1

Intuition:

1. Given x0, look for the “closest” instance x1 ∈ Rd such that:

f (x1) = y1

where y1 is either a specific, more desirable outcome, or simply any other outcome y1 6= y0, depending on

your needs.

2. Summarize the difference between x0 and x1 by, for instance, identifying the variables that differ between

them:

{i ∈ [d ] : x0i 6= x1i}

� Picking x1 to be “close” to x0 encourages the difference to be minimal/sparse and easy to summarize, thus

interpretable
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Algorithm: it is easy to see that counterfactual examples x1 can be obtained by solving:

x1 ← argmax
x∈Rd

‖x0 − x1‖0

s.t. f (x1) = y1 (or f (x1) 6= f (x0))

� The pseudo-norm ‖·‖0 counts the number of non-zero entries, i.e., we minimize the number of entries that

differ between x0 and x1 → sparse explanation

� Once again, replace with L1 norm ‖·‖1 to obtain a more tractable optimization problem (as for LIME earlier).
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Algorithm (Updated):

x1 ← argmax
x∈Rd

‖x0 − x1‖1

s.t. f (x1) = y1 (or f (x1) 6= f (x0))

� How do we solve this?

� Use gradient descent (aka, “if you have a hammer, every problem you see looks like a nail”)

Start from x0 and follow the gradient of pθ. This will usually give you a solution – but not necessarily, and

not necessarily the closest one.

This strategy sports no guaranteees.

� Use model-specific procedures.

� Use mathematical programming.
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Consider a decision tree f :

� Decision surface can be decomposed into leaves {`}

� Each leaf identifies a region φ` of input space that is described as the conjunction of logical conditions, for

instance:

φ` = (xage > 21) ∧ (xnsiblings ≤ 2.5)

The union of all leaves is Rd

� Each leaf is associated to a label y` ∈ [c]

Algorithm: given f (x0) = y0 and y1 6= y0, finding a counterfactual example x1 with label y1 amounts to:

1. Find leaf ` to which x0 belongs [easy]

2. Iterate over all other leaves `′ 6= ` and keep those that have label y`′ = y1.

3. For each such `′, compute minx′|=φ`′ ‖x0 − x′‖1

4. Pick the closest such `′ and use the corresponding x′ as x1.

� Complexity is linear in the number of leaves, times the amount needed to solve the projection (Step 3)
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Alternative: simply encode the whole problem using, e.g., mixed-integer linear programming (MILP)

Mixed-integer Linear Program

An optimization program is a MILP if it can be written as:

min
x

c>x (2)

s.t. Ax ≤ b (equiv. ∀j a>j x ≤ bj ) (3)

∀i ∈ IC xi ∈ R (4)

∀i ∈ II xi ∈ Z (5)

IC ∪ II = [d ] (6)

IC ∩ II = ∅ (7)

In other words, (i) the cost is a linear function of the input x, (ii) the feasible space is a conjunction of

hyperplanes (i.e., a convex polytope)

Notice that some of the variables are continuous while the others are integral.

� Can be solved with excellent off-the-shelf solver like Gurobi, CPLEX, SCIP, . . .

� Can we encode the counterfactual search problem as MILP?
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Encoding: finding a counterfactual example for a DT:

argmin
x1

∑
j∈[d ]

|x0j − x1j | (8)

s.t. a>`,f x− b`,f ≤ 0 ∀` : y` = y1, face f (9)

� Wait, what?

� This is wrong!

� Whoops!
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Encoding: finding a counterfactual example for a DT:

argmin
x1

∑
j∈[d ]

|x0j − x1j | (10)

s.t. a>`,f x− b`,f ≤ ε` ∀` : y` = y1, face f (11)

ε ≤ ε` ∀` : y` = y1 (12)

ε ≤ 0 (13)

This strategy:

+ works for all models with a piecewise-linear decision surface. This includes: DTs, random forest classifiers

and regressors, kernel machines with piecewise-linear kernels, neural nets with ReLU activations, . . .

- the encoding can be non-trivial and lead to a practically hard optimization problem
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Additional Properties

� Actionability: a counterfactual should never ask the user to change an immutable feature (e.g., ethnicity,

age) but only features that the user has control over (e.g., amount of income, degree of education)

� Causal Actionability: features are rarely independent, e.g., in order to increase the degree of education one

has to age a bit. Counterfactuals should take this into account.

� Validity: if x is structured – i.e., if it must obey structure constraints, for instance because of molecule

(chemical validity) or a solution to a Sudoku problem (Sudoku rules) – then these constraints must be

taken into consideration when computing counterfactual instances x′.

� Believability: It is hard to trust/believe a counterfactual if it includes a combination of features which are

very different from observations the classifier has seen before. So we’d like p∗(x1) to be large if possible,

i.e., it should lie on the data manifold. (Otherwise we’d get an adversarial example instead.)
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� Believability: It is hard to trust/believe a counterfactual if it includes a combination of features which are

very different from observations the classifier has seen before. So we’d like p∗(x1) to be large if possible,

i.e., it should lie on the data manifold. (Otherwise we’d get an adversarial example instead.)
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Additional Properties
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� Believability: It is hard to trust/believe a counterfactual if it includes a combination of features which are

very different from observations the classifier has seen before. So we’d like p∗(x1) to be large if possible,

i.e., it should lie on the data manifold. (Otherwise we’d get an adversarial example instead.)

117



Take-away

� Counterfactuals are human-friendly: we use them all the time [Byrne, 2019]

� Counterfactuals support actionable recourse, i.e., stakeholders can decide what to change for the outcome to

change

� Counterfactuals can be computed by solving constrained optimization problem

� Solving it can be computationally challenging for general models

� Cheap approximations based on gradient descent give few guarantees, make interpretation tricky
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Take-away

� Many different types of explanations with different properties:

� See [Guidotti et al., 2018]

� Many different implementations, for instance:

� captum for Pytorch: github.com/pytorch/captum

� innvestigate for Tensorflow: github.com/albermax/innvestigate

� DiCE for counterfactuals: github.com/albermax/innvestigate

� Can be used right away to find bugs & quirks in your models

� Still very much being worked out – we just scratched the surface
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