
Graph Neural Networks (GNN)

Andrea Passerini
andrea.passerini@unitn.it

Advanced Topics in Machine Learning and Optimization

Graph Neural Networks

Neural Networks on Graph Data
Published as a conference paper at ICLR 2017

C

input layer

X1

X2

X3

X4

F

output layer

Z1

Z2

Z3

Z4

hidden

layers

Y1

Y4

1

(a) Graph Convolutional Network (b) Hidden layer activations

Figure 1: Left: Schematic depiction of multi-layer Graph Convolutional Network (GCN) for semi-
supervised learning with C input channels and F feature maps in the output layer. The graph struc-
ture (edges shown as black lines) is shared over layers, labels are denoted by Yi. Right: t-SNE
(Maaten & Hinton, 2008) visualization of hidden layer activations of a two-layer GCN trained on
the Cora dataset (Sen et al., 2008) using 5% of labels. Colors denote document class.

Here, W (0) 2 RC⇥H is an input-to-hidden weight matrix for a hidden layer with H feature maps.
W (1) 2 RH⇥F is a hidden-to-output weight matrix. The softmax activation function, defined as
softmax(xi) = 1

Z exp(xi) with Z =
P

i exp(xi), is applied row-wise. For semi-supervised multi-
class classification, we then evaluate the cross-entropy error over all labeled examples:

L = �
X

l2YL

FX

f=1

Ylf ln Zlf , (10)

where YL is the set of node indices that have labels.

The neural network weights W (0) and W (1) are trained using gradient descent. In this work, we
perform batch gradient descent using the full dataset for every training iteration, which is a viable
option as long as datasets fit in memory. Using a sparse representation for A, memory requirement
is O(|E|), i.e. linear in the number of edges. Stochasticity in the training process is introduced via
dropout (Srivastava et al., 2014). We leave memory-efficient extensions with mini-batch stochastic
gradient descent for future work.

3.2 IMPLEMENTATION

In practice, we make use of TensorFlow (Abadi et al., 2015) for an efficient GPU-based imple-
mentation2 of Eq. 9 using sparse-dense matrix multiplications. The computational complexity of
evaluating Eq. 9 is then O(|E|CHF), i.e. linear in the number of graph edges.

4 RELATED WORK

Our model draws inspiration both from the field of graph-based semi-supervised learning and from
recent work on neural networks that operate on graphs. In what follows, we provide a brief overview
on related work in both fields.

4.1 GRAPH-BASED SEMI-SUPERVISED LEARNING

A large number of approaches for semi-supervised learning using graph representations have been
proposed in recent years, most of which fall into two broad categories: methods that use some
form of explicit graph Laplacian regularization and graph embedding-based approaches. Prominent
examples for graph Laplacian regularization include label propagation (Zhu et al., 2003), manifold
regularization (Belkin et al., 2006) and deep semi-supervised embedding (Weston et al., 2012).

2Code to reproduce our experiments is available at https://github.com/tkipf/gcn.

4

Features
Allow to learn feature representations for nodes
Allow to propagate information between neighbouring
nodes
Allow for efficient training (wrt to e.g. graph kernels)

Image from Kipf et al., 2017

Graph Neural Networks

Neural Networks on Graph Data
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 2

(a) 2D Convolution. Analogous
to a graph, each pixel in an image
is taken as a node where neigh-
bors are determined by the filter
size. The 2D convolution takes
the weighted average of pixel val-
ues of the red node along with
its neighbors. The neighbors of a
node are ordered and have a fixed
size.

(b) Graph Convolution. To get a
hidden representation of the red
node, one simple solution of the
graph convolutional operation is
to take the average value of the
node features of the red node
along with its neighbors. Differ-
ent from image data, the neigh-
bors of a node are unordered and
variable in size.

Fig. 1: 2D Convolution vs. Graph Convolution.

for learning from relational data, reviewing part of GNNs
under a unified framework. Lee et al. [12] conduct a partial
survey of GNNs which apply different attention mechanisms.
In summary, existing surveys only include some of the GNNs
and examine a limited number of works, thereby missing
the most recent development of GNNs. Our survey provides
a comprehensive overview of GNNs, for both interested re-
searchers who want to enter this rapidly developing field and
experts who would like to compare GNN models. To cover a
broader range of methods, this survey considers GNNs as all
deep learning approaches for graph data.

Our contributions Our paper makes notable contributions
summarized as follows:

• New taxonomy We propose a new taxonomy of graph
neural networks. Graph neural networks are categorized
into four groups: recurrent graph neural networks, convo-
lutional graph neural networks, graph autoencoders, and
spatial-temporal graph neural networks.

• Comprehensive review We provide the most compre-
hensive overview of modern deep learning techniques for
graph data. For each type of graph neural network, we
provide detailed descriptions on representative models,
make the necessary comparison, and summarise the cor-
responding algorithms.

• Abundant resources We collect abundant resources on
graph neural networks, including state-of-the-art models,
benchmark data sets, open-source codes, and practical
applications. This survey can be used as a hands-on guide
for understanding, using, and developing different deep
learning approaches for various real-life applications.

• Future directions We discuss theoretical aspects of
graph neural networks, analyze the limitations of exist-
ing methods, and suggest four possible future research
directions in terms of model depth, scalability trade-off,
heterogeneity, and dynamicity.

Organization of our survey The rest of this survey is

organized as follows. Section II outlines the background of
graph neural networks, lists commonly used notations, and
defines graph-related concepts. Section III clarifies the cate-
gorization of graph neural networks. Section IV-VII provides
an overview of graph neural network models. Section VIII
presents a collection of applications across various domains.
Section IX discusses the current challenges and suggests future
directions. Section X summarizes the paper.

II. BACKGROUND & DEFINITION

In this section, we outline the background of graph neural
networks, list commonly used notations, and define graph-
related concepts.

A. Background

A brief history of graph neural networks (GNNs) Sper-
duti et al. (1997) [13] first applied neural networks to directed
acyclic graphs, which motivated early studies on GNNs. The
notion of graph neural networks was initially outlined in Gori
et al. (2005) [14] and further elaborated in Scarselli et al.
(2009) [15], and Gallicchio et al. (2010) [16]. These early stud-
ies fall into the category of recurrent graph neural networks
(RecGNNs). They learn a target node’s representation by
propagating neighbor information in an iterative manner until
a stable fixed point is reached. This process is computationally
expensive, and recently there have been increasing efforts to
overcome these challenges [17], [18].

Encouraged by the success of CNNs in the computer
vision domain, a large number of methods that re-define the
notion of convolution for graph data are developed in parallel.
These approaches are under the umbrella of convolutional
graph neural networks (ConvGNNs). ConvGNNs are divided
into two main streams, the spectral-based approaches and
the spatial-based approaches. The first prominent research
on spectral-based ConvGNNs was presented by Bruna et al.
(2013) [19], which developed a graph convolution based on
the spectral graph theory. Since this time, there have been
increasing improvements, extensions, and approximations on
spectral-based ConvGNNs [20], [21], [22], [23]. The research
of spatial-based ConvGNNs started much earlier than spectral-
based ConvGNNs. In 2009, Micheli et al. [24] first addressed
graph mutual dependency by architecturally composite non-
recursive layers while inheriting ideas of message passing
from RecGNNs. However, the importance of this work was
overlooked. Until recently, many spatial-based ConvGNNs
(e.g., [25], [26], [27]) emerged. The timeline of representative
RecGNNs and ConvGNNs is shown in the first column of Ta-
ble II. Apart from RecGNNs and ConvGNNs, many alternative
GNNs have been developed in the past few years, including
graph autoencoders (GAEs) and spatial-temporal graph neural
networks (STGNNs). These learning frameworks can be built
on RecGNNs, ConvGNNs, or other neural architectures for
graph modeling. Details on the categorization of these methods
are given in Section III.

Graph neural networks vs. network embedding The
research on GNNs is closely related to graph embedding or

Basic step: graph “convolution”
Aggregates information from neghbours to update
information on node
Inspired by convolution on pixels in CNN
Differs from CNN convolution as neighbourhood has
variable size

Image from Wu et al., 2019

Graph Neural Networks

Graph “convolution” operation

Generic form
Aggregate information from neighbouring nodes:

h(k)
N (v) = AGGREGATE(k)

({
h(k−1)

u : u ∈ N (v)
})

Combine node information with aggregated neighbour
information:

h(k)
v = COMBINE(k)

(
h(k−1)

v ,h(k)
N (v)

)

where
k is the index of the layer (operations are layer-dependent)

h(k)
v is the hidden representation of node v (initialized to

the node features h(0)
v = xv)

N (v) is the set neighbours of v

Graph Neural Networks

Example: GraphSAGE (Hamilton et al., 2017)

Graph “convolution” operation
Mean aggregation

h(k)
N (v) = MEAN(k)

({
h(k−1)

u : u ∈ N (v)
})

Max aggregation (on transformed representation)

h(k)
N (v) = MAX(k)

({
σ
(

W (k)
poolh

(k−1)
u + b

)
: u ∈ N (v)

})

Combine operation as concatenation + linear mapping +
non-linearity:

h(k)
v = σ

(
W (k)

[
h(k−1)

v ;h(k)
N (v)

])

Graph Neural Networks

Node embedding generation

Algorithm

1: h(0)
v = xv ∀ v ∈ V

2: for k ∈ 1, . . . ,K do
3: for v ∈ V do
4: h(k)

N (v) ← AGGREGATE(k)
({

h(k−1)
u : u ∈ N (v)

})

5: h(k)
v ← COMBINE(k)

(
h(k−1)

v ,h(k)
N (v)

)

6: h(k)
v ← h(k)

v /||h(k)
v ||

7: end for
8: end for
9: return h(K)

v ∀ v ∈ V

Graph Neural Networks

Message Passing Neural Networks (MPNN)

Generic form
Aggregate messages from neighbouring nodes:

m(k)
v =

∑

u∈N (v)

M(k−1)
(

h(k−1)
v ,h(k−1)

u ,evu

)

Update node information:

h(k)
v = U(k)

(
h(k−1)

v ,m(k)
v

)

where
evu are the features associated to edge (v ,u)
M(k−1) is a message function (e.g. an MLP) computing
message from neighbour
U(k) is a node update function (e.g. an MLP) combining
messages and local information

Graph Neural Networks

Node ClassificationJOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 5

!"#$%

&

'()* '()*
+,-$,-.

!/012

…

!/012

…

(a) A ConvGNN with multiple graph convolutional layers. A graph convo-
lutional layer encapsulates each node’s hidden representation by aggregating
feature information from its neighbors. After feature aggregation, a non-linear
transformation is applied to the resulted outputs. By stacking multiple layers,
the final hidden representation of each node receives messages from a further
neighborhood.

!"#$%!&'()

*+',#-.

!"#$%

/##01$2
3#4.5'6

7

… …

89/ :

∑

(b) A ConvGNN with pooling and readout layers for graph classification
[21]. A graph convolutional layer is followed by a pooling layer to coarsen
a graph into sub-graphs so that node representations on coarsened graphs
represent higher graph-level representations. A readout layer summarizes the
final graph representation by taking the sum/mean of hidden representations
of sub-graphs.

!	

φ(

!%!

∗)

'

(

')

*+,-.+/
01,-.+/

…

2,-13	2,-13

…

(c) A GAE for network embedding [61]. The encoder uses graph convolutional
layers to get a network embedding for each node. The decoder computes the
pair-wise distance given network embeddings. After applying a non-linear
activation function, the decoder reconstructs the graph adjacency matrix. The
network is trained by minimizing the discrepancy between the real adjacency
matrix and the reconstructed adjacency matrix.

!

"

#$
%
&

					()*+,				-..						()*+,					-..

… …

/01 2

#$%
&

(d) A STGNN for spatial-temporal graph forecasting [74]. A graph convolu-
tional layer is followed by a 1D-CNN layer. The graph convolutional layer
operates on A and X(t) to capture the spatial dependency, while the 1D-CNN
layer slides over X along the time axis to capture the temporal dependency.
The output layer is a linear transformation, generating a prediction for each
node, such as its future value at the next time step.

Fig. 2: Different graph neural network models built with
graph convolutional layers. The term Gconv denotes a graph
convolutional layer. The term MLP denotes a multi-layer
perceptron. The term CNN denotes a standard convolutional
layer.

ular way is to utilize the negative sampling approach
which samples a portion of node pairs as negative pairs
while existing node pairs with links in the graphs are
positive pairs. Then a logistic regression layer is applied
to distinguish between positive and negative pairs [42].

In Table III, we summarize the main characteristics of
representative RecGNNs and ConvGNNs. Input sources, pool-
ing layers, readout layers, and time complexity are compared
among various models. In more detail, we only compare the
time complexity of the message passing/graph convolution
operation in each model. As methods in [19] and [20] require
eigenvalue decomposition, the time complexity is O(n3). The
time complexity of [46] is also O(n3) due to the node pair-
wise shortest path computation. Other methods incur equiva-
lent time complexity, which is O(m) if the graph adjacency
matrix is sparse and is O(n2) otherwise. This is because in
these methods the computation of each node vi’s representa-
tion involves its di neighbors, and the sum of di over all nodes
exactly equals the number of edges. The time complexity of
several methods are missing in Table III. These methods either
lack a time complexity analysis in their papers or report the
time complexity of their overall models or algorithms.

IV. RECURRENT GRAPH NEURAL NETWORKS

Recurrent graph neural networks (RecGNNs) are mostly pi-
oneer works of GNNs. They apply the same set of parameters
recurrently over nodes in a graph to extract high-level node
representations. Constrained by computational power, earlier
research mainly focused on directed acyclic graphs [13], [80].

Graph Neural Network (GNN*2) proposed by Scarselli et
al. extends prior recurrent models to handle general types of
graphs, e.g., acyclic, cyclic, directed, and undirected graphs
[15]. Based on an information diffusion mechanism, GNN*
updates nodes’ states by exchanging neighborhood information
recurrently until a stable equilibrium is reached. A node’s
hidden state is recurrently updated by

h(t)
v =

X

u2N(v)

f(xv,xe
(v,u),xu,h(t�1)

u), (1)

where f(·) is a parametric function, and h
(0)
v is initialized

randomly. The sum operation enables GNN* to be applicable
to all nodes, even if the number of neighbors differs and no
neighborhood ordering is known. To ensure convergence, the
recurrent function f(·) must be a contraction mapping, which
shrinks the distance between two points after projecting them
into a latent space. In the case of f(·) being a neural network,
a penalty term has to be imposed on the Jacobian matrix
of parameters. When a convergence criterion is satisfied,
the last step node hidden states are forwarded to a readout
layer. GNN* alternates the stage of node state propagation
and the stage of parameter gradient computation to minimize
a training objective. This strategy enables GNN* to handle
cyclic graphs. In follow-up works, Graph Echo State Network
(GraphESN) [16] extends echo state networks to improve the

2As GNN is used to represent broad graph neural networks in the survey,
we name this particular method GNN* to avoid ambiguity.

Procedure
Compute node embeddings with layerwise architecture
Add appropriate output layer on top of each node
embedding (MLP + softmax, MLP + linear)

Image from Wu et al., 2019

Graph Neural Networks

Node classification: scalability

Figure 1: Visual illustration of the GraphSAGE sample and aggregate approach.

recognize structural properties of a node’s neighborhood that reveal both the node’s local role in the
graph, as well as its global position.

Most existing approaches to generating node embeddings are inherently transductive. The majority
of these approaches directly optimize the embeddings for each node using matrix-factorization-based
objectives, and do not naturally generalize to unseen data, since they make predictions on nodes in a
single, fixed graph [5, 11, 23, 28, 35, 36, 37, 39]. These approaches can be modified to operate in an
inductive setting (e.g., [28]), but these modifications tend to be computationally expensive, requiring
additional rounds of gradient descent before new predictions can be made. There are also recent
approaches to learning over graph structures using convolution operators that offer promise as an
embedding methodology [17]. So far, graph convolutional networks (GCNs) have only been applied
in the transductive setting with fixed graphs [17, 18]. In this work we both extend GCNs to the task
of inductive unsupervised learning and propose a framework that generalizes the GCN approach to
use trainable aggregation functions (beyond simple convolutions).

Present work. We propose a general framework, called GraphSAGE (SAmple and aggreGatE), for
inductive node embedding. Unlike embedding approaches that are based on matrix factorization,
we leverage node features (e.g., text attributes, node profile information, node degrees) in order to
learn an embedding function that generalizes to unseen nodes. By incorporating node features in the
learning algorithm, we simultaneously learn the topological structure of each node’s neighborhood
as well as the distribution of node features in the neighborhood. While we focus on feature-rich
graphs (e.g., citation data with text attributes, biological data with functional/molecular markers), our
approach can also make use of structural features that are present in all graphs (e.g., node degrees).
Thus, our algorithm can also be applied to graphs without node features.

Instead of training a distinct embedding vector for each node, we train a set of aggregator functions
that learn to aggregate feature information from a node’s local neighborhood (Figure 1). Each
aggregator function aggregates information from a different number of hops, or search depth, away
from a given node. At test, or inference time, we use our trained system to generate embeddings for
entirely unseen nodes by applying the learned aggregation functions. Following previous work on
generating node embeddings, we design an unsupervised loss function that allows GraphSAGE to be
trained without task-specific supervision. We also show that GraphSAGE can be trained in a fully
supervised manner.

We evaluate our algorithm on three node-classification benchmarks, which test GraphSAGE’s ability
to generate useful embeddings on unseen data. We use two evolving document graphs based on
citation data and Reddit post data (predicting paper and post categories, respectively), and a multi-
graph generalization experiment based on a dataset of protein-protein interactions (predicting protein
functions). Using these benchmarks, we show that our approach is able to effectively generate
representations for unseen nodes and outperform relevant baselines by a significant margin: across
domains, our supervised approach improves classification F1-scores by an average of 51% compared
to using node features alone and GraphSAGE consistently outperforms a strong, transductive baseline
[28], despite this baseline taking ⇠100⇥ longer to run on unseen nodes. We also show that the new
aggregator architectures we propose provide significant gains (7.4% on average) compared to an
aggregator inspired by graph convolutional networks [17]. Lastly, we probe the expressive capability
of our approach and show, through theoretical analysis, that GraphSAGE is capable of learning
structural information about a node’s role in a graph, despite the fact that it is inherently based on
features (Section 5).

2

Sampling node neighbourhood

Replace N (v) with a layer-dependent sampling function Nk (v)
that takes a random sample of a node’s neighbourhood.

Image from Hamilton et al., 2017

Graph Neural Networks

GNN for graph classification

Basic approaches
Apply final aggregation (READOUT) to combine all nodes in
a single representation (mean, sum).
Introduce a “virtual node” connected to all nodes in the
graph

Problems
No hierarchical structure is learned.
Lack of “pooling” operation which is effective in CNNs to
learn complex pattern.

Graph Neural Networks

Graph classification with Hierachical Pooling

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 5

!"#$%

&

'()* '()*
+,-$,-.

!/012

…

!/012

…

(a) A ConvGNN with multiple graph convolutional layers. A graph convo-
lutional layer encapsulates each node’s hidden representation by aggregating
feature information from its neighbors. After feature aggregation, a non-linear
transformation is applied to the resulted outputs. By stacking multiple layers,
the final hidden representation of each node receives messages from a further
neighborhood.

!"#$%!&'()

*+',#-.

!"#$%

/##01$2
3#4.5'6

7

… …

89/ :

∑

(b) A ConvGNN with pooling and readout layers for graph classification
[21]. A graph convolutional layer is followed by a pooling layer to coarsen
a graph into sub-graphs so that node representations on coarsened graphs
represent higher graph-level representations. A readout layer summarizes the
final graph representation by taking the sum/mean of hidden representations
of sub-graphs.

!	

φ(

!%!

∗)

'

(

')

*+,-.+/
01,-.+/

…

2,-13	2,-13

…

(c) A GAE for network embedding [61]. The encoder uses graph convolutional
layers to get a network embedding for each node. The decoder computes the
pair-wise distance given network embeddings. After applying a non-linear
activation function, the decoder reconstructs the graph adjacency matrix. The
network is trained by minimizing the discrepancy between the real adjacency
matrix and the reconstructed adjacency matrix.

!

"

#$
%
&

					()*+,				-..						()*+,					-..

… …

/01 2

#$%
&

(d) A STGNN for spatial-temporal graph forecasting [74]. A graph convolu-
tional layer is followed by a 1D-CNN layer. The graph convolutional layer
operates on A and X(t) to capture the spatial dependency, while the 1D-CNN
layer slides over X along the time axis to capture the temporal dependency.
The output layer is a linear transformation, generating a prediction for each
node, such as its future value at the next time step.

Fig. 2: Different graph neural network models built with
graph convolutional layers. The term Gconv denotes a graph
convolutional layer. The term MLP denotes a multi-layer
perceptron. The term CNN denotes a standard convolutional
layer.

ular way is to utilize the negative sampling approach
which samples a portion of node pairs as negative pairs
while existing node pairs with links in the graphs are
positive pairs. Then a logistic regression layer is applied
to distinguish between positive and negative pairs [42].

In Table III, we summarize the main characteristics of
representative RecGNNs and ConvGNNs. Input sources, pool-
ing layers, readout layers, and time complexity are compared
among various models. In more detail, we only compare the
time complexity of the message passing/graph convolution
operation in each model. As methods in [19] and [20] require
eigenvalue decomposition, the time complexity is O(n3). The
time complexity of [46] is also O(n3) due to the node pair-
wise shortest path computation. Other methods incur equiva-
lent time complexity, which is O(m) if the graph adjacency
matrix is sparse and is O(n2) otherwise. This is because in
these methods the computation of each node vi’s representa-
tion involves its di neighbors, and the sum of di over all nodes
exactly equals the number of edges. The time complexity of
several methods are missing in Table III. These methods either
lack a time complexity analysis in their papers or report the
time complexity of their overall models or algorithms.

IV. RECURRENT GRAPH NEURAL NETWORKS

Recurrent graph neural networks (RecGNNs) are mostly pi-
oneer works of GNNs. They apply the same set of parameters
recurrently over nodes in a graph to extract high-level node
representations. Constrained by computational power, earlier
research mainly focused on directed acyclic graphs [13], [80].

Graph Neural Network (GNN*2) proposed by Scarselli et
al. extends prior recurrent models to handle general types of
graphs, e.g., acyclic, cyclic, directed, and undirected graphs
[15]. Based on an information diffusion mechanism, GNN*
updates nodes’ states by exchanging neighborhood information
recurrently until a stable equilibrium is reached. A node’s
hidden state is recurrently updated by

h(t)
v =

X

u2N(v)

f(xv,xe
(v,u),xu,h(t�1)

u), (1)

where f(·) is a parametric function, and h
(0)
v is initialized

randomly. The sum operation enables GNN* to be applicable
to all nodes, even if the number of neighbors differs and no
neighborhood ordering is known. To ensure convergence, the
recurrent function f(·) must be a contraction mapping, which
shrinks the distance between two points after projecting them
into a latent space. In the case of f(·) being a neural network,
a penalty term has to be imposed on the Jacobian matrix
of parameters. When a convergence criterion is satisfied,
the last step node hidden states are forwarded to a readout
layer. GNN* alternates the stage of node state propagation
and the stage of parameter gradient computation to minimize
a training objective. This strategy enables GNN* to handle
cyclic graphs. In follow-up works, Graph Echo State Network
(GraphESN) [16] extends echo state networks to improve the

2As GNN is used to represent broad graph neural networks in the survey,
we name this particular method GNN* to avoid ambiguity.

Features
Alternate convolutional and pooling layers as in CNN.
Progressively reduce number of nodes.
Pool all nodes in last layer into a single representation.

Problem
How to decide which nodes to pool together

Image from Wu et al., 2019

Graph Neural Networks

Graph classification with Differentiable Pooling
Original
network

Pooled network
at level 1

Pooled network
at level 2

Graph
classification

Pooled network
at level 3

Figure 1: High-level illustration of our proposed method DIFFPOOL. At each hierarchical layer, we
run a GNN model to obtain embeddings of nodes. We then use these learned embeddings to cluster
nodes together and run another GNN layer on this coarsened graph. This whole process is repeated
for L layers and we use the final output representation to classify the graph.

atoms and their direct bonds) as well as the coarse-grained structure of the molecular graph (e.g.,
groups of atoms and bonds representing functional units in a molecule). This lack of hierarchical
structure is especially problematic for the task of graph classification, where the goal is to predict
the label associated with an entire graph. When applying GNNs to graph classification, the standard
approach is to generate embeddings for all the nodes in the graph and then to globally pool all these
node embeddings together, e.g., using a simple summation or neural network that operates over sets
[7, 11, 15, 25]. This global pooling approach ignores any hierarchical structure that might be present
in the graph, and it prevents researchers from building effective GNN models for predictive tasks
over entire graphs.

Here we propose DIFFPOOL, a differentiable graph pooling module that can be adapted to various
graph neural network architectures in an hierarchical and end-to-end fashion (Figure 1). DIFFPOOL
allows for developing deeper GNN models that can learn to operate on hierarchical representations
of a graph. We develop a graph analogue of the spatial pooling operation in CNNs [23], which
allows for deep CNN architectures to iteratively operate on coarser and coarser representations of
an image. The challenge in the GNN setting—compared to standard CNNs—is that graphs contain
no natural notion of spatial locality, i.e., one cannot simply pool together all nodes in a “m ⇥ m

patch” on a graph, because the complex topological structure of graphs precludes any straightforward,
deterministic definition of a “patch”. Moreover, unlike image data, graph data sets often contain
graphs with varying numbers of nodes and edges, which makes defining a general graph pooling
operator even more challenging.

In order to solve the above challenges, we require a model that learns how to cluster together nodes
to build a hierarchical multi-layer scaffold on top of the underlying graph. Our approach DIFFPOOL
learns a differentiable soft assignment at each layer of a deep GNN, mapping nodes to a set of clusters
based on their learned embeddings. In this framework, we generate deep GNNs by “stacking” GNN
layers in a hierarchical fashion (Figure 1): the input nodes at the layer l GNN module correspond
to the clusters learned at the layer l � 1 GNN module. Thus, each layer of DIFFPOOL coarsens
the input graph more and more, and DIFFPOOL is able to generate a hierarchical representation
of any input graph after training. We show that DIFFPOOL can be combined with various GNN
approaches, resulting in an average 7% gain in accuracy and a new state of the art on four out of
five benchmark graph classification tasks. Finally, we show that DIFFPOOL can learn interpretable
hierarchical clusters that correspond to well-defined communities in the input graphs.

2 Related Work

Our work builds upon a rich line of recent research on graph neural networks and graph classification.

General graph neural networks. A wide variety of graph neural network (GNN) models have
been proposed in recent years, including methods inspired by convolutional neural networks [5,
8, 11, 16, 21, 24, 29, 36], recurrent neural networks [25], recursive neural networks [1, 30] and
loopy belief propagation [7]. Most of these approaches fit within the framework of “neural message
passing” proposed by Gilmer et al. [15]. In the message passing framework, a GNN is viewed as a

2

Idea
Use standard GNN module to obtain embedding of nodes
Perform graph pooling using a differentiable soft cluster
assignment module
Repeat the process for K layers
Aggregate in single cluster in the last layer
Use final representation to classify graph

Image from Ying et al., 2018

Graph Neural Networks

Graph classification with Differentiable Pooling

Original
network

Pooled network
at level 1

Pooled network
at level 2

Graph
classification

Pooled network
at level 3

Figure 1: High-level illustration of our proposed method DIFFPOOL. At each hierarchical layer, we
run a GNN model to obtain embeddings of nodes. We then use these learned embeddings to cluster
nodes together and run another GNN layer on this coarsened graph. This whole process is repeated
for L layers and we use the final output representation to classify the graph.

atoms and their direct bonds) as well as the coarse-grained structure of the molecular graph (e.g.,
groups of atoms and bonds representing functional units in a molecule). This lack of hierarchical
structure is especially problematic for the task of graph classification, where the goal is to predict
the label associated with an entire graph. When applying GNNs to graph classification, the standard
approach is to generate embeddings for all the nodes in the graph and then to globally pool all these
node embeddings together, e.g., using a simple summation or neural network that operates over sets
[7, 11, 15, 25]. This global pooling approach ignores any hierarchical structure that might be present
in the graph, and it prevents researchers from building effective GNN models for predictive tasks
over entire graphs.

Here we propose DIFFPOOL, a differentiable graph pooling module that can be adapted to various
graph neural network architectures in an hierarchical and end-to-end fashion (Figure 1). DIFFPOOL
allows for developing deeper GNN models that can learn to operate on hierarchical representations
of a graph. We develop a graph analogue of the spatial pooling operation in CNNs [23], which
allows for deep CNN architectures to iteratively operate on coarser and coarser representations of
an image. The challenge in the GNN setting—compared to standard CNNs—is that graphs contain
no natural notion of spatial locality, i.e., one cannot simply pool together all nodes in a “m ⇥ m

patch” on a graph, because the complex topological structure of graphs precludes any straightforward,
deterministic definition of a “patch”. Moreover, unlike image data, graph data sets often contain
graphs with varying numbers of nodes and edges, which makes defining a general graph pooling
operator even more challenging.

In order to solve the above challenges, we require a model that learns how to cluster together nodes
to build a hierarchical multi-layer scaffold on top of the underlying graph. Our approach DIFFPOOL
learns a differentiable soft assignment at each layer of a deep GNN, mapping nodes to a set of clusters
based on their learned embeddings. In this framework, we generate deep GNNs by “stacking” GNN
layers in a hierarchical fashion (Figure 1): the input nodes at the layer l GNN module correspond
to the clusters learned at the layer l � 1 GNN module. Thus, each layer of DIFFPOOL coarsens
the input graph more and more, and DIFFPOOL is able to generate a hierarchical representation
of any input graph after training. We show that DIFFPOOL can be combined with various GNN
approaches, resulting in an average 7% gain in accuracy and a new state of the art on four out of
five benchmark graph classification tasks. Finally, we show that DIFFPOOL can learn interpretable
hierarchical clusters that correspond to well-defined communities in the input graphs.

2 Related Work

Our work builds upon a rich line of recent research on graph neural networks and graph classification.

General graph neural networks. A wide variety of graph neural network (GNN) models have
been proposed in recent years, including methods inspired by convolutional neural networks [5,
8, 11, 16, 21, 24, 29, 36], recurrent neural networks [25], recursive neural networks [1, 30] and
loopy belief propagation [7]. Most of these approaches fit within the framework of “neural message
passing” proposed by Gilmer et al. [15]. In the message passing framework, a GNN is viewed as a

2

Components

Layerwise soft cluster assignment matrix: S(k) ∈ IRnk×nk+1

Layerwise input embedding matrix: Z (k) ∈ IRnk×d

Layerwise soft adjacency matrix: A(k+1)

Layerwise output embedding matrix: X (k+1) ∈ IRnk+1×d

Image from Ying et al., 2018

Graph Neural Networks

Graph classification with Differentiable Pooling

Compute A(k+1),X (k+1) given S(k),Z (k)

Computer A(k+1) based on connectivity strength between
nodes in cluster

A(k+1) = S(k)T
A(k)S(k)

Compute X (k+1) as weighted combination of cluster (soft)
members

X (k+1) = S(k)T
Z (k)

Graph Neural Networks

Graph classification with Differentiable Pooling

Compute S(k),Z (k) given A(k),X (k)

Computer Z (k) using a standard GNN module

Z (k) = GNNembed
k (A(k),X (k))

Computer S(k) using a second standard GNN module
followed by a per-row sofmax

S(k) = SOFTMAX
(

GNNpool
k (A(k),X (k))

)

Graph Neural Networks

Graph classification with Differentiable Pooling

Pooling at Layer 1 Pooling at Layer 2

(a) (b) (c)

Figure 2: Visualization of hierarchical cluster assignment in DIFFPOOL, using example graphs from
COLLAB. The left figure (a) shows hierarchical clustering over two layers, where nodes in the second
layer correspond to clusters in the first layer. (Colors are used to connect the nodes/clusters across the
layers, and dotted lines are used to indicate clusters.) The right two plots (b and c) show two more
examples first-layer clusters in different graphs. Note that although we globally set the number of
clusters to be 25% of the nodes, the assignment GNN automatically learns the appropriate number of
meaningful clusters to assign for these different graphs.

high-order moments [37] to distinguish nodes that are similar in structure and feature space. The
overall framework remains unchanged.

Sensitivity of the Pre-defined Maximum Number of Clusters. We found that the assignment
varies according to the depth of the network and C, the maximum number of clusters. With larger C,
the pooling GNN can model more complex hierarchical structure. The trade-off is that very large
C results in more noise and less efficiency. Although the value of C is a pre-defined parameter, the
pooling net learns to use the appropriate number of clusters by end-to-end training. In particular,
some clusters might not be used by the assignment matrix. Column corresponding to unused cluster
has low values for all nodes. This is observed in Figure 2(c), where nodes are assigned predominantly
into 3 clusters.

5 Conclusion

We introduced a differentiable pooling method for GNNs that is able to extract the complex hierarchi-
cal structure of real-world graphs. By using the proposed pooling layer in conjunction with existing
GNN models, we achieved new state-of-the-art results on several graph classification benchmarks.
Interesting future directions include learning hard cluster assignments to further reduce computational
cost in higher layers while also ensuring differentiability, and applying the hierarchical pooling
method to other downstream tasks that require modeling of the entire graph structure.

Acknowledgement

This research has been supported in part by DARPA SIMPLEX, Stanford Data Science Initiative,
Huawei, JD and Chan Zuckerberg Biohub. Christopher Morris is funded by the German Science
Foundation (DFG) within the Collaborative Research Center SFB 876 “Providing Information by
Resource-Constrained Data Analysis”, project A6 “Resource-efficient Graph Mining”. The authors
also thank Marinka Zitnik for help in visualizing the high-level illustration of the proposed methods.

References
[1] M. Bianchini, M. Gori, and F. Scarselli. Processing directed acyclic graphs with recursive neural

networks. IEEE Transactions on Neural Networks, 12(6):1464–1470, 2001.

[2] K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In IEEE International
Conference on Data Mining, pages 74–81, 2005.

[3] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N. Vishwanathan, A. J. Smola, and H.-
P. Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(Supplement
1):i47–i56, 2005.

9

Note
The maximal number of clusters in the following layer (nk+1) is
a hyper-parameter of the model (typically 10-25% of nk).

Image from Ying et al., 2018

Graph Neural Networks

Graph classification with Differentiable Pooling

Side objectives
Training using only graph classification loss can be difficult
(very indirect signal). Two side objectives are introduced at
each layer k :

link prediction Encourage nearby nodes to be pooled together:

LLP = ||A(k) − S(k)S(k)T ||F

where ||M||F =
√∑n

i=1
∑m

j=1 |Mi,j |2

cluster entropy Encourage hard assignment of nodes to
clusters:

LE =
1
nk

nk∑

i=1

H(S(k)
i)

where H(S(k)
i) is the entropy of the i th row of S(k).

Graph Neural Networks

Representational power of GNN

Theorem (Xu et al., 2019)

Let F : G → IRd be a GNN. With enough GNN layers, F maps
any graphs G1 and G2 judged non-isomorphic by the
Weisfeiler-Lehman test to different embeddings if:

F aggregates and updates node features iteratively with

h(k)
v = φ

(
h(k−1)

v , f
({

h(k−1)
u : u ∈ N (v)

}))

where f and φ are injective functions
F computes the graph-level readout using an injective
function over node features

{
h(k)

v

}

Note
No GNN can have a higher representational power than the
Weisfeiler-Lehman test of isomorphism.

Graph Neural Networks

Representational power of GNN

Corollary (simplified)

Any function g(c,X) with c ∈ X and X ⊂ X can be
decomposed as:

g(c,X) = φ

(
(1 + ε)f (c) +

∑

x∈X

f (x)

)

for some functions f and φ and infinitely many choices of ε

Problem
Assumes countable X (no real values).
Leverages universal approximation theorem of MLPs,
learnability can be hard in practice.

Graph Neural Networks

Graph Isomorphism Networks (GIN)

Definition
Update node representation by:

h(k)
v = MLP(k)


(1 + ε(k))h(k−1)

v +
∑

u∈N (v)

h(k−1)
u




Compute graph readout as:

hG = CONCAT

(∑

v∈G

h(k)
v

∣∣∣∣∣ k = 0, . . . ,K

)

Note
Definition guarantees maximal representational power
achievable for a GNN (other choices are possible)

Graph Neural Networks

Graph Isomorphism Networks (GIN)

Notes

The MLP(k)) jointly models f (k+1) ◦ φ(k) (universal
approximator)
ε(k) can be replaced by a fixed scalar
CONCAT is used to collect all structural information. It
could be replaced by the latest representation (layer K).

Graph Neural Networks

Attention Mechanisms for GNN

What is Attention
Attention is a mechanism that allows a network to focus on
certain parts of the input when processing it
In multi-layered networks attention mechanisms can be
applied at all layers
It is useful to deal with variable-sized inputs (e.g.
sequences)

Graph Neural Networks

Attention Mechanisms for GNN

Why Attention in GNN
GNN compute node representations from representations
of neighbours
Nodes can have largely different neighbourhood sizes
Not all neighbours have relevant information for a certain
node
Attention mechanism allow to adaptively weight the
contribution of each neighbour when updating a node

Graph Neural Networks

Graph Attention Networks (GAT)

Attention coefficients

αij =
f (Whi ,Whj)∑

j ′∈N (i) f (Whi ,Whj ′)

Models importance of node j for i as a function of their
representations
Node representations are first transformed using W
An attentional mechanism f , shared for all nodes computes
attention of i for j
Attention coefficient is normalized over neighbours of i
(including i itself)

Graph Neural Networks

Graph Attention Networks (GAT)

Image from Veličković, et al., 2018

Published as a conference paper at ICLR 2018

↵ij

~a

so
ft

m
ax

j

W~hi W~hj

~h1

~h2

~h3

~h4

~h5

~h6

~↵
16

~↵11

~↵
12

~↵13

~↵ 14

~↵
1
5

~h0
1

concat/avg

Figure 1: Left: The attention mechanism a(W~hi,W~hj) employed by our model, parametrized
by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are
concatenated or averaged to obtain ~h0

1.

applying a nonlinearity, �):

~h0
i = �

0
@X

j2Ni

↵ijW~hj

1
A . (4)

To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h0
i =

K

k
k=1

�

0
@X

j2Ni

↵k
ijW

k~hj

1
A (5)

where k represents concatenation, ↵k
ij are normalized attention coefficients computed by the k-th

attention mechanism (ak), and Wk is the corresponding input linear transformation’s weight matrix.
Note that, in this setting, the final returned output, h0, will consist of KF 0 features (rather than F 0)
for each node.

Specially, if we perform multi-head attention on the final (prediction) layer of the network, concate-
nation is no longer sensible—instead, we employ averaging, and delay applying the final nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h0
i = �

0
@ 1

K

KX

k=1

X

j2Ni

↵k
ijW

k~hj

1
A (6)

The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it is highly efficient: the operation of the self-attentional layer can be par-
allelized across all edges, and the computation of output features can be parallelized across

4

Attention mechanism

f (Whi ,Whj) = LEAKYRELU
(

aT [Whi ;Whj
])

Graph Neural Networks

Graph Attention Networks (GAT)

Node update

h(k)
i = σ


 ∑

j∈N (i)

αijWh(k−1)
j




Node is updated as the sum of neighbour (updated)
representations, each weighted by its attention coefficient
A non-linearity σ is (possibly) applied to this updated
representation

Graph Neural Networks

Graph Attention Networks (GAT)

Multi-head attention

h(k)
i = CONCAT


σ


 ∑

j∈N (i)

α`
ijW

`h(k−1)
j



∣∣∣∣∣∣
` = 1, . . . ,L




Multi-head attention works by having multiple (L)
simultaneous attention mechanisms
Can be beneficial to stabilize learning (see Transformers)
Updated node representation is concatenation of
representations from different heads.
CONCAT is replaced by MEAN in output layer

Graph Neural Networks

References

Bibliography

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,
Chengqi Zhang, Philip S. Yu, A Comprehensive Survey on
Graph Neural Networks, ArXiv, 2019.

William L. Hamilton, Rex Ying, Jure Leskovec, Inductive
Representation Learning on Large Graphs. In NIPS 2017.

J. Gilmer, S. Schoenholz, P. Riley, O. Vinyals, and G. Dahl,
Neural message passing for Quantum chemistry. In ICML 2017.

R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J.
Leskovec, Hierarchical graph representation learning with
differentiable pooling. In NIPS, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka, How
Powerful are Graph Neural Networks?. In ICLR, 2019.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò and Y.
Bengio, Graph Attention Networks. In ICLR, 2018.

Graph Neural Networks

References

Software Libraries
PyTorch Geometric (PyG)
[github.com/rusty1s/pytorch_geometric]
Deep Graph Library (dgl) [www.dgl.ai]

Graph Neural Networks

github.com/rusty1s/pytorch_geometric
www.dgl.ai

