
An overview on Quantum Machine Learning

Davide Pastorello

Department of Information Engineering and Computer Science
University of Trento

Advanced Topics in Machine Learning and Optimization

Dec 9, 2021



Introduction
Quantum Machine Learning (QML): ML with quantum computers.

First proposals (20 years ago)
Quantum associative memories and pattern recognition.
D. Ventura, T. Martinez, Information Sciences 124 (2000)
R. Schützhold, Phys. Rev. A 67 (2003)

Main results on QML (since 2013)
Algorithm Quantum speedup
K -medians Quadratic/Exponential

Hierarchical clustering Quadratic
K -means Exponential

Principal component analysis Exponential
Support vector machines Exponential

Nearest neighbors Quadratic / Exponential
Neural networks ?

Current challenge
Devising quantum learning mechanisms for available or near-term quantum
machines.



Introduction

Implementing the Quantum Fourier transform, the chessboard
structure can be found easily by a quantum computer.



Introduction

Data processing based on quantum effects like
quantum superposition and quantum entanglement.

Examples of quantum advantages

• Calculation of Euclidean distance in Rd :

Classical time complexity O(d).
Quantum time complexity O(log d).

• Search in an unstructured database of N items:

Query complexity of exhaustive search: O(N).
Query complexity of Grover’s algorithm: O(

√
N).

Qdist and Grover are typical subroutine of QML algorithms.



Introduction

Examples of quantum computers:

D-Wave IBMQ



Introduction

Examples of qubits:
• Particle with spin 1/2;
• Polarized Photons;
• Controlled superconducting circuits.



Introduction

Qubit as a superconducting circuit:



Qubits

Quantum state superposition
The state of a qubit is a unit vector in C2:

|ψ〉 = α|0〉+ β|1〉 α, β ∈ C , |α|2 + |β|2 = 1

{|0〉, |1〉} computational basis.

A measurement process affects the qubit state
Measurement of a qubit (e.g. we measure the polarization of a photon)

P(0) = |α|2 P(1) = |β|2

The qubit state after the measurement is |i〉 if the outcome is i = 0, 1.

Remark:
The vectors |ψ〉 and e iθ|ψ〉 with θ ∈ R represent the same physical state.



Qubits

Tensor product

|ψ〉 =

(
α
β

)
∈ C2 |ϕ〉 =

(
γ
δ

)
∈ C2

|ψ〉 ⊗ |ϕ〉 =


αγ
αδ
βγ
βδ

 ∈ C4

2 qubits (as a composite system) are described in:

C2 ⊗ C2 := span{|ψ〉 ⊗ |ϕ〉 : |ψ〉, |ϕ〉 ∈ C2} = C4.

n qubits (as a composite system) are described in:

(C2)⊗n = C2n

.



Entangled qubits

Let |Ψ〉 ∈ C2 ⊗ C2 be the state of a qubit pair.

|Ψ〉 is said to be:
• separable if it has form |Ψ〉 = |ψ〉 ⊗ |ϕ〉 ≡ |ψϕ〉;
• entangled otherwise.

Example
Entangled state:

|Ψ〉 =
1√
2

(|00〉+ |11〉)

Measure the first qubit:
• The probability of measuring 0 is 1

2 .
• If the outcome is 0 then the post-measurement state is |Ψ0〉 = |00〉.
• Non-local action on the second qubit (quantum correlation).

EPR paradox: inconsistency with QM and Einstein’s locality.



A new kind of information

Empirical evidence:
Quantum randomness, state superpositions, entanglement are
physical phenomena not simply theoretical interpretations.

⇓

Encoding information into qubits (or more general quantum
objects) allows completely new kinds of:

information processing, telecommunication, data security...



Quantum encoding

Basis encoding
Elements of X = {0, 1}n encoded into the states of n qubits

{0, 1}n 3 (x1 · · · xn) 7→ |x1〉 ⊗ · · · ⊗ |xn〉 ≡ |x1 · · · xn〉 ∈ C2n

Observation:

The system (n-qubit register) can be prepared in a superposition of data
that can be processed in parallel by linearity.

The register can be initialized in a superposition of all data:

|Ψ〉 =
2n−1∑
x=0

|x〉



Quantum encoding

Amplitude encoding
x ∈ Cd with ‖ x ‖:=

√∑d
i=1 |xi |2 = 1.

Consider a quantum register of log d qubits.

Components of x encoded into the amplitudes of a quantum state |ψx〉

Let {|i〉}i=1,...,d be the computational basis:

|ψx〉 =
d∑

i=1

xi |i〉.

Remark:
Quantum amplitudes cannot be directly observed.
From |ψx〉 we can retrieve only |xi |2.



Quantum gates

Let {|0〉, |1〉} be the computational basis
• Hadamard gate:

|x〉 H
1√
2

(|0〉+ (−1)x |1〉)

• Phase gate:

α|0〉+ β|1〉 Pφ α|0〉+ e iφβ|1〉

• CNOT gate:
|x〉 • |x〉

|y〉 |x ⊕ y〉

Theorem: {H,Pπ/4,CNOT} is a universal set for quantum computation.



A quantum binary classifier

The model
Let {(xi , yi )}i=0,...,N−1 be a training set where:
xi ∈ Rd and yi ∈ {−1, 1} for any i = 0, ...,N − 1

y(x) := sgn

(
N−1∑
i=0

yi cos(xi , x)

)
cos(x, z) :=

x · z
‖ x ‖‖ z ‖ x, z ∈ Rd .

Quantum implementation on the IBM ibmq_melbourne

• Quantum superposition of training vectors;
• Test instance in quantum superposition of the two classes;
• Cosine similarities computed by SWAP test.

Classical complexity: O(Nd)
Quantum complexity: O(log(Nd))



A quantum binary classifier

Training set stored in a n-qubit register within the amplitude encoding.
logN-qubit register, with Hilbert space Hindex ' (C2)⊗ log N , to encode the
indexes of training data vectors.

We can construct the state:

|X 〉 =
1√
N

N−1∑
i=0

|i〉|xi 〉|bi 〉 ∈ Hindex ⊗Hn ⊗Hl ,

where Hl is a 1-qubit register encoding the labels with bi = 1−yi
2 ∈ {0, 1}.

We can construct also:

|ψx〉 =
1√
N

N−1∑
i=0

|i〉|x〉|−〉 ∈ Hindex ⊗Hn ⊗Hl ,

where |−〉 = |0〉−|1〉√
2

.



A quantum binary classifier

Add 1 ancillary qubit to the registers and construct:

|Ψ〉 1√
2

(|X 〉|0〉+ |ψx〉|1〉) ∈ Hindex ⊗Hn ⊗Hl ⊗Ha,

that can be retrieved from the QRAM in time O(log(Nd)).

Perform the SWAP test:

c H • H

b ×

a ×

where qubit b is prepared in |+〉 = |0〉+|1〉√
2

and qubit c is prepared in |0〉.



A quantum binary classifier
The probability of measuring 1 on qubit c is:

P(1) =
1
4
(1− 〈X |ψx〉)

(Check as an exercise!)

〈X |ψx〉 =
1
N

N−1∑
i,k=0

〈i |k〉〈xi |x〉〈bi |−〉 =
1

N
√

2

N−1∑
i=0

〈xi |x〉(〈bi |0〉 − 〈bi |1〉)

=
1

N
√

2

N−1∑
i=0

yi cos(xi , x),

〈i |k〉 = δik and 〈bi |0〉 − 〈bi |1〉 = 1− 2bi = yi for any i = 0, ...,N − 1

The model:

y(x) := sgn

(
N−1∑
i=0

yi cos(xi , x)

)
,

Quantum implementation of the model based on:

y(x) = sgn [1− 4P(1)] .



A quantum binary classifier

Input: training set X = {xi , yi}i=0,...,N−1, unclassified instance x.
Result: label y of x.

1 repeat
2 initialize the register Hindex ⊗Hn ⊗Hl and an ancillary qubit a in the

state |Ψ〉;
3 initialize a qubit b in the state |−〉;
4 perform the SWAP test on a and b with control qubit c prepared in |0〉;
5 measure qubit c;
6 until desired accuracy on the estimation of P(1);
7 Estimate P(1) as the relative frequency P̂ of outcome 1;
8 if P̂ > 0.25 then
9 return y = −1

10 else
11 return y = 1
12 end

Overall complexity within an error ε in the estimation of P(1): O(ε−2 log (Nd))



Quantum clustering
Qdist is a quantum algorithm based on the SWAP test to calculate Euclidean
distance in logarithmic time.

Grover is a quantum search algorithm with quadratic speedup.

Example: K-medians clustering
Input: Data set {x1, · · · , xN}, number of clusters K
Result: Partition of {x1, · · · , xN} into K clusters

1 initialize K centroids C1, ...,CK from the elements of the dataset V ;
2 repeat
3 foreach i ← 1, ...,N do
4 Qdist (xi ,Cj) ∀j = 1, ...,K ;
5 find argminj ‖ xi − Cj ‖ with Grover;
6 end
7 construct the cluster Pj = {xi : Cj is the nearest centroid} for all

j = 1, ...,K ;
8 foreach j ← 1, ...,K do
9 use Qdist and Grover for centroid calculation;

10 end
11 until convergence;
12 return P1, ...,PK



Some QML schemes designed for gate-based quantum computers

• Quantum divisive clustering
W. Aïmeur et al. Quantum clustering algorithms ICML ’07: Proceedings
of the 24th international conference on Machine learning (2007)

• Quantum principal component analysis
S. Lloyd, et al. Quantum principal component analysis Nature Physics 10,
631 (2014)

• Quantum support vector machine
P. Rebentrost et al. Quantum support vector machine for big data
classification Phys. Rev. Lett. 113, 130503 (2014)

• Quantum nearest neighbor
N. Wiebe et al. Quantum Algorithms for Nearest-Neighbor Methods for
Supervised and Unsupervised Learning Quantum Information and
Computation 15(3,4): 0318- 0358 (2015)

• Quantum perceptron M. Schuld Simulating a perceptron on a quantum
computer Physics Letters A, 379, pp. 660-663 (2015)

• Quantum meta-learning M. Wilson et al. Optimizing quantum heuristic
with meta-learning Quantum Machine Intelligence 3 (2021)



Quantum Annealing
Quantum Annealers
The hardware is a quantum spin glass, i.e. a collection of qubits arranged
in the vertices of a graph (V ,E ) where edges represent the interactions
between neighbors.

Example: D-Wave Chimera topology



Quantum Annealing

Annealing process (annealing time 20µs)
By energy dissipation the quantum system evolves in the ground state
(the less energetic state) corresponding to the solution of a given
optimization problem.

Quantum Annealer task
Minimization (w.r.t. z) of the cost function (Ising model):

E (θ, z) = θ0 +
∑
i∈V

θizi +
∑

(i,j)∈E

θijzizj z ∈ {−1, 1}|V | , θ0, θi , θij ∈ R

Initialization of the machine

• Assignment of the weights θ;
• Mapping the binary variables into the qubits.

QA vs Simulated Annealing
QA employs the tunnel effect to escape from local minima.
SA employs thermal hill-climbing.



Quantum Annealing



ML with quantum annealers

• Boltzmann machine implementation
M.H. Amin Quantum Boltzmann machine Phys. Rev. X 8, 021050 (2018)

• Classification
N. T. Nguyen et al. Image classification using quantum inference on the
D-wave 2X. In: 2018 IEEE International Conference on Rebooting
Computing (ICRC), pp. 1-7. IEEE (2018)

• Clustering
V. Kumar et al. Quantum Annealing for Combinatorial Clustering
Quantum Inf Process (2018) 17: 39

• Training of a SVM
D. Willsch et al. Support vector machines on the D-wave quantum
annealer Computer Physics Communications 248, 107006 (2020)



Quantum-inspired ML

Using quantum formalism to devise classical ML algorithms
Quantum-inspired classifiers:
• Data encoding into density operators (quantum states);
• Construction of the centroids in the space of quantum states;
• Application of discrimination of quantum states to attach a new data

instance to the most similar centroid.

Example:

Quantum-inspired classifier SVM with linear kernel

Ref.: R. Leporini and D. P.. Support vector machines with quantum state
discrimination. Quantum Reports vol. 3, n. 3 (2021)



Conclusions

Goals of the scientific research on QML:

• Exploiting exponential improvements in time and space of quantum
techniques to find new strategies to deal with big data.

• Finding promising commercial applications of quantum computing.
(Nowadays attraction of investments has strong impact also on
research in the academy... like it or not!)

• Increasing our knowledge about the connection between the
abstract concept of learning and the quantum nature of the World.

• Devising learning mechanisms of new quantum algorithms, since
providing efficient quantum algorithms is an extremely difficult task.

In other words, quantum machines must learn how to solve
problems on their own...


