
Scientific Programming

Lecture A04 – Functions

Andrea Passerini

Università degli Studi di Trento

2019/06/26

Acknowledgments: Alberto Montresor

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

references

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Table of contents

1 Defining functions
2 Functions for problem decomposition
3 Namespaces
4 Passing arguments

Defining functions

How to define a function

Functions

Functions are named blocks of code. They take inputs and produce
outputs.

Abstract syntax

def f(arg1, arg2, ...):
the code
return <result-exp>

The arguments (arg1, arg2, etc.)
are variables that specify how
many inputs the function takes.

is returned from the function to
its caller.

Calling a function

the_result = f(value1, value2, ...)

Andrea Passerini (UniTN) SP - Functions 2019/06/26 1 / 47

Defining functions

Example

def plus(a, b):
r = a + b
return r

x = 5
y = 10

z = plus(x, y)
print(z)

Andrea Passerini (UniTN) SP - Functions 2019/06/26 2 / 47

Defining functions

Why functions?

Motivations

Creating a new function gives you an opportunity to name a group
of statements, which makes your program easier to read and debug.

Functions can make a program smaller by eliminating repetitive
code. Later, if you make a change, you only have to make it in one
place.

Dividing a long program into functions allows you to debug the
parts one at a time and then assemble them into a working whole.

Well-designed functions are often useful for many programs. Once
you write and debug one, you can reuse it.

Andrea Passerini (UniTN) SP - Functions 2019/06/26 3 / 47

Defining functions

Fruitful vs void functions
from math import sqrt

def hypotenuse(side1,side2):
return sqrt(side1**2 + side2**2)

def printWarnings():
print("I never said most of the things I said.")
print("Yogi Berra")

x = hypotenuse(3,4)
y = printWarnings()
print(x,y)

I never said most of the things I said.
Yogi Berra
5.0 None

Andrea Passerini (UniTN) SP - Functions 2019/06/26 4 / 47

Defining functions

A first explanation about naming

The name of the variables passed to the function has nothing to do
with the name of the arguments

In the example, the values of the
variables x,y are visible inside the
function as a,b:

When called,
a takes the value of x
b takes the value of y

def plus(a, b):
r = a + b
return r

x = 5
y = 10

z = plus(x, y)
print(z)

Andrea Passerini (UniTN) SP - Functions 2019/06/26 5 / 47

Defining functions

A first explanation about naming

The name of the variables used to store the result inside and outside
the call has nothing to do with each other

In the example, the result is stored
in variable r inside the function
in variable z by the caller.

When the call is concluded,
z takes the value of r

def plus(a, b):
r = a + b
return r

x = 5
y = 10

z = plus(x, y)
print(z)

Andrea Passerini (UniTN) SP - Functions 2019/06/26 6 / 47

Defining functions

A first explanation about naming

Andrea Passerini (UniTN) SP - Functions 2019/06/26 7 / 47

Defining functions

A first explanation about naming

Andrea Passerini (UniTN) SP - Functions 2019/06/26 7 / 47

Defining functions

A first explanation about naming

Andrea Passerini (UniTN) SP - Functions 2019/06/26 7 / 47

Defining functions

A first explanation about naming

Andrea Passerini (UniTN) SP - Functions 2019/06/26 7 / 47

Defining functions

A first explanation about naming

Andrea Passerini (UniTN) SP - Functions 2019/06/26 7 / 47

Defining functions

Function definition

A function does nothing until it is called

print("beginning")

def f():
print("I do stuff")

print("end")

beginning
end

Andrea Passerini (UniTN) SP - Functions 2019/06/26 8 / 47

Defining functions

Function definition

If called after its definition, the function is executed without pro-
blems

print("beginning")

def f():
print("I do stuff")

f()
print("end")

beginning
I do stuff
end

Andrea Passerini (UniTN) SP - Functions 2019/06/26 9 / 47

Defining functions

Function definition

Functions must be defined before they are called

print("beginning")
f()

def f():
print("I do stuff")

print("end")

beginning
Traceback (most recent call last):

File "lecture.py", line 3, in <module>
f()

NameError: name ’f’ is not defined

Andrea Passerini (UniTN) SP - Functions 2019/06/26 10 / 47

Defining functions

Function definition: some explanations

Unlike many languages, def is a statement that:
creates a new object of type function by reading the code
indented after def
assign it to a variable called as the name of the function

The name of the function is like any other variable; can be copied
in other variables, used as a function parameters, etc.

print("beginning")
def f():

print("I do stuff")
print(type(f))
fun = f
fun()
print("end")

beginning
<class ’function’>
I do stuff
end

Andrea Passerini (UniTN) SP - Functions 2019/06/26 11 / 47

Defining functions

Exercise

Problem

Write a function that given in input a positive integer n, returns the
factorial of n.

def fact(n):
res = 1
for k in range(1, n + 1):

res = res * k
return res

factorials = [fact(n) for n in range(1,11)]
print(factorials)

[1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]

Andrea Passerini (UniTN) SP - Functions 2019/06/26 12 / 47

Defining functions

Multiple results

A function may return multiple results

def multiresult():
result_1 = "AA"
result_2 = 0.12
result_3 = "*"
return result_1, result_2, result_3

Internally, Python interprets the return statement as returning a
tuple. In practice, the above code is equivalent to:

def multiresult():
return ("first result", 0.12, "something else")

Andrea Passerini (UniTN) SP - Functions 2019/06/26 13 / 47

Defining functions

Multiple results

When a “multi-result” function is called, the resulting tuple can be
assigned to a variable; elements have to be extracted individually

def multiresult():
return ("first result", 0.12, "something else")

result = multiresult()
res0 = result[0]
res1 = result[1]
res2 = result[2]
print(res0+res2, res1)

first resultsomething else 0.12

Andrea Passerini (UniTN) SP - Functions 2019/06/26 14 / 47

Defining functions

Multiple results

Otherwise, the “automatic unpacking” feature of Python can be
used

def multiresult():
return ("first result", 0.12, "something else")

res0, res1, res2 = multiresult()
print(res0+res2, res1)

first resultsomething else 0.12

Andrea Passerini (UniTN) SP - Functions 2019/06/26 15 / 47

Defining functions

Multiple results

Automatic unpacking only works with the same number of elements

def multiresult():
return ("first result", 0.12, "something else")

res0, res1 = multiresult()

Traceback (most recent call last):
File "prova.py", line 4, in <module>

x,y = fun()
ValueError: too many values to unpack (expected 2)

Andrea Passerini (UniTN) SP - Functions 2019/06/26 16 / 47

Defining functions

Exercise

Problem

Write a function that takes two lists as input and returns their
intersection, i.e. the objects that appear in both of them.

def intersect(seq1, seq2):
res = []
for x in seq1:

if x in seq2:
res.append(x)

return res

Andrea Passerini (UniTN) SP - Functions 2019/06/26 17 / 47

Defining functions

Polymorphism

Like all good functions in Python, intersect() is polymorphic.
That is, it works on arbitrary types, as long as they support the
expected interface - being iterable.

print(intersect([1,2,3], [2,3,4]))
print(intersect("ABC", "CBO"))
print(intersect((1,2,4), [3,4,1]))

[2, 3]
[’B’, ’C’]
[1, 4]

Andrea Passerini (UniTN) SP - Functions 2019/06/26 18 / 47

Functions for problem decomposition

Problem decomposition

Andrea Passerini (UniTN) SP - Functions 2019/06/26 19 / 47

Functions for problem decomposition

Problem decomposition

def read_fasta(path):
"""Takes a path to a FASTA file, returns a
header->sequence dict."""
return #"1A3A:A", "MANLFKLG..."

def read_sequences(paths):
"""Reads a bunch of FASTA files, returns a
list of dicts."""
header_to_seq = {}
for path in paths:

header, seq = read_fasta(path)
header_to_seq[header] = seq

return header_to_seq

Andrea Passerini (UniTN) SP - Functions 2019/06/26 20 / 47

Functions for problem decomposition

Problem decomposition

def read_interactions(path):
"""Reads physical protein interactions from a
file. Returns a list of pairs of strings."""
return #[("1A3A:A", "5AA3:F"), ("5AA3:F", "5K9C:A")]

def compute_aa_stats(seq1, seq2):
"""Compute amino acid statistics, e.g.
co-occurrence."""
return #cooccurrence, #mutual_information

Andrea Passerini (UniTN) SP - Functions 2019/06/26 21 / 47

Functions for problem decomposition

Problem decomposition

def compute_avg_stats(sequences, interactions):
"""Takes a list of statistics (in some format) and
computes the average statistics."""
stats = []
for prot1, prot2 in interactions:

if prot1 in sequences and prot2 in sequences:
seq1 = sequences[prot1]
seq2 = sequences[prot2]
stats.append(compute_aa_stats(seq1, seq2))

return #Compute statistics

Andrea Passerini (UniTN) SP - Functions 2019/06/26 22 / 47

Functions for problem decomposition

Problem decomposition

def main():
"""The whole (fake) program."""

Read the sequence files
paths = []
ans = input("path to FASTA file: ")
while len(ans) > 0:

paths.append(ans)
ans = input("path to FASTA file: ")

sequences = read_sequences(paths)

Read the interaction file
ans = input("path to interaction data: ")
interactions = read_interactions(ans)

Print the average stats
print("average stats =", compute_avg_stats(sequences, interactions))

main()

Andrea Passerini (UniTN) SP - Functions 2019/06/26 23 / 47

Namespaces

Namespaces and scopes

Namespace

A namespace (sometimes also called a context) is a naming system
for making names unique to avoid ambiguity.

Naming people: firstname surname [birthday][birthplace]
Naming websites: subdomain.domain.top-level-domain

Scope

The scope of a name is the area of a program where this name can
be unambiguously used, for example inside of a function.

Andrea Passerini (UniTN) SP - Functions 2019/06/26 24 / 47

Namespaces

Namespaces and scopes

To associate a name, with a particular namespace, Python uses the
location of the assignment of such name

In other words, the place where you assign a name in your source
determines the namespace it will live in, and hence its scope of visibility.

Andrea Passerini (UniTN) SP - Functions 2019/06/26 25 / 47

Namespaces

Local variables

By default, all names assigned inside a function are associated with
that function’s namespace (local namespace)

def func():
x = 88
print("Inside", x)

func()
print("Outside", x)

Names assigned inside a def
can only be seen by the code
within that def.

x is called a local variable

Inside 88
Traceback (most recent call last):

File "lecture.py", line 6, in <module>
print("Outside", x)

NameError: name ’x’ is not defined
Andrea Passerini (UniTN) SP - Functions 2019/06/26 26 / 47

Namespaces

Global variables

Names defined outside functions are associated with the
global namespace.

Var defined before the
function and the call
x = 88
def func():

print("Inside", x)

func()
print("Outside", x)

Inside 88
Outside 88

Names assigned outside a
def can be seen by functions,
provided that they are defined
before the function is called.

x is called a global variable

Andrea Passerini (UniTN) SP - Functions 2019/06/26 27 / 47

Namespaces

Global variables

Names defined outside functions are associated with the
global namespace.

def func():
print("Inside", x)

Var defined before the call
x = 88
func()
print("Outside", x)

Inside 88
Outside 88

Names assigned outside a
def can be seen by functions,
provided that they are defined
before the function is called.

x is called a global variable

Andrea Passerini (UniTN) SP - Functions 2019/06/26 28 / 47

Namespaces

Global variables

def func():
print("Inside", x)

func()
Var defined after the call
x = 88
print("Outside", x)

Names assigned outside a
def can be seen by functions,
provided that they are defined
before the function is called.

x was not defined before the
call

Inside 88
Traceback (most recent call last):

File "lecture.py", line 2, in func
print("Inside", x)

NameError: name ’x’ is not defined

Andrea Passerini (UniTN) SP - Functions 2019/06/26 29 / 47

Namespaces

Local and global variables

If a variable exists in both the local and global namespace, the copies
are distinct.

x = 99

def func():
x = 88
print("Inside", x)

func()
print("Outside", x)

Inside 88
Outside 99

Inside the function, the local
namespace for x is used.

Outside the function, the
global namespace for x is
used.

Andrea Passerini (UniTN) SP - Functions 2019/06/26 30 / 47

Namespaces

Local variables

Local and global variables may coexist in the same function.

x = 99
y = 100

def func():
x = 88
print("Inside", x, y)

func()
print("Outside", x, y)

Inside 88 100
Outside 99 100

Inside the function, the local
namespace for x is used.

Outside the function, the
global namespace for x is
used.

The global namespace for y
is used

Andrea Passerini (UniTN) SP - Functions 2019/06/26 31 / 47

Namespaces

Local variables

x = 99
y = 100

def func():
x = 88
print("Inside", x, y)
y = y+1

func()
print("Outside", x, y)

Traceback (most recent call last):
File "lecture.py", line 6, in func

y = y+1

If a variable is assigned inside
a function, it becomes a local
variable

At the time of assignment
inside the function, the local
variable y is undefined.

UnboundLocalError: local variable ’y’ referenced before
assignment
Andrea Passerini (UniTN) SP - Functions 2019/06/26 32 / 47

Namespaces

Local variables

Functions may be defined inside other functions. In this case, variables
assigned in enclosing functions are nonlocal to nested functions.

def func():
def func2():

x = 100
print("Inside", x, y)

y = 100
func2()

x = 99 ; y = 99
func()
print("Outside", x, y)

Inside 100 100
Outside 99 99

Inside func(), x is local and y
is non local

Inside func2(), y is local

Outside the functions, x e y
are global.

Andrea Passerini (UniTN) SP - Functions 2019/06/26 33 / 47

Namespaces

Global variables

The global statement tells Python that a function plans to change
one or more global names

x = 99

def func():
global x
x = 88
print("Inside", x)

func()
print("Outside", x)

Inside 88
Outside 88

Both x labels refer to the
same variable in the global
namespace

Andrea Passerini (UniTN) SP - Functions 2019/06/26 34 / 47

Namespaces

Namespaces

If the prior section sounds confusing, it really boils down to three
simple rules. Within a def:

Name assignments create local names by default.

Name references search at most four scopes: local, then enclosing
functions (if any), then global, then built-in (LEGB rule).

Names declared in global and nonlocal statements map assigned
names to enclosing module and function scopes, respectively.

Note

Each call to a function creates a new local scope. Every time you
call a function, you create a new local scope – that is, a namespace
in which the names created inside that function will usually live.

Andrea Passerini (UniTN) SP - Functions 2019/06/26 35 / 47

Namespaces

Rules of thumb

The rules that we have seen and many other that we are not going to
see enable the inexperienced programmer to make a huge mess. The
following are rule of thumbs that you should follow to avoid caos

For the moment, avoid nesting functions and the nonlocal
statement
Always, try to minimize global variables and side effects

Andrea Passerini (UniTN) SP - Functions 2019/06/26 36 / 47

Passing arguments

Argument-passing basic

Basic rules

Arguments are passed by automatically assigning objects to
local variable names

Assigning to argument names inside a function does not affect
the caller.

Changing a mutable object argument in a function may
impact the caller.

Andrea Passerini (UniTN) SP - Functions 2019/06/26 37 / 47

Passing arguments

Argument-passing basic

Immutable arguments are effectively passed “by value.”
Objects such as integers and strings are passed by object reference
instead of by copying, but because you can’t change immutable
objects in place anyhow, the effect is much like making a copy.

Mutable arguments are effectively passed “by pointer”.
Objects such as lists and dictionaries are also passed by object
reference, and the object can be effectively modified.

Andrea Passerini (UniTN) SP - Functions 2019/06/26 38 / 47

Passing arguments

Passing immutable arguments

def func(a):
a = 99

b = 88
func(b)
print(b)

88

Andrea Passerini (UniTN) SP - Functions 2019/06/26 39 / 47

Passing arguments

Passing mutable arguments

def func(a, b):
a = 2
b[0] = 99

X = 1
L = [1,2]
func(X,L)
print(X,L)

1 [99,2]

Andrea Passerini (UniTN) SP - Functions 2019/06/26 40 / 47

Passing arguments

Passing mutable arguments

Figure 18-1. References: arguments. Because arguments are passed by assignment, argument names
in the function may share objects with variables in the scope of the call. Hence, in-place changes to
mutable arguments in a function can impact the caller. Here, a and b in the function initially reference
the objects referenced by variables X and L when the function is first called. Changing the list through
variable b makes L appear different after the call returns.

If you recall our discussions about shared mutable objects in Chapter 6 and Chap-
ter 9, you’ll recognize the phenomenon at work: changing a mutable object in place
can impact other references to that object. Here, the effect is to make one of the argu-
ments work like both an input and an output of the function.

Avoiding Mutable Argument Changes
This behavior of in-place changes to mutable arguments isn’t a bug—it’s simply the
way argument passing works in Python, and turns out to be widely useful in practice.
Arguments are normally passed to functions by reference because that is what we nor-
mally want. It means we can pass large objects around our programs without making
multiple copies along the way, and we can easily update these objects as we go. In fact,
as we’ll see in Part VI, Python’s class model depends upon changing a passed-in “self”
argument in place, to update object state.

If we don’t want in-place changes within functions to impact objects we pass to them,
though, we can simply make explicit copies of mutable objects, as we learned in Chap-
ter 6. For function arguments, we can always copy the list at the point of call, with tools
like list, list.copy as of 3.3, or an empty slice:

L = [1, 2]
changer(X, L[:]) # Pass a copy, so our 'L' does not change

We can also copy within the function itself, if we never want to change passed-in ob-
jects, regardless of how the function is called:

526 | Chapter 18: Arguments

www.it-ebooks.info

Andrea Passerini (UniTN) SP - Functions 2019/06/26 41 / 47

Passing arguments

Avoid changes - use copies

Sometimes, the caller knows that the function is going to modify
mutable objects, but she wants to avoid modifications. The mutable
object must be copied before the call.

def func(a, b):
a = 2
b[0] = 99

X = 1
L = [1,2]
func(X,L[:])
print(X,L) 1 [1,2]

Andrea Passerini (UniTN) SP - Functions 2019/06/26 42 / 47

Passing arguments

Avoid changes - use copies

Sometimes, the functions needs to modify a mutable object (for
example, to sort it), but this change should not be reported back to
the caller. The mutable object must be copied in the function.

def func(a, b):
a = 2
b = b[:]
b[0] = 99

X = 1
L = [1,2]
func(X,L)
print(X,L) 1 [1,2]

Andrea Passerini (UniTN) SP - Functions 2019/06/26 43 / 47

Passing arguments

Passing parameters by name

Knowing the name of the parameters, is it possible to pass the va-
lues by specifying name=value. This is useful in combination with
defining defaults (see next slide).

def f(a, b, c):
print(a, b, c)

f(1, 2, 3)
f(c=1, b=2, a=3)
f(1, c=3, b=2)
print("C", end="++\n")

1 2 3
3 2 1
1 2 3
C++

Andrea Passerini (UniTN) SP - Functions 2019/06/26 44 / 47

Passing arguments

Defining defaults

def f(a, b=2, c=3):
print(a, b, c)

f(1)
f(4,5)
f(2,3,4)
f(1, c=5)

1 2 3
4 5 3
2 3 4
1 2 5

Andrea Passerini (UniTN) SP - Functions 2019/06/26 45 / 47

Passing arguments

Exercise

Problem

Create a function check_alphanumeric() that takes a string and
returns True if and only if the string is alphanumeric (contains only
alphabetic or numeric characters).

def check_alphanumeric(s):
for c in s.upper():

if c not in "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789":
return False

return True

Andrea Passerini (UniTN) SP - Functions 2019/06/26 46 / 47

Passing arguments

Exercise

Problem

Write a function that given a string s, returns True if and only if s
is palindromic.

def palindromic(s):
L = list(s)
L.reverse()
return s == "".join(L)

Andrea Passerini (UniTN) SP - Functions 2019/06/26 47 / 47

	Defining functions
	Functions for problem decomposition
	Namespaces
	Passing arguments

