
Unsupervised Learning

Setting

• Supervised learning requires the availability of labelled examples

• Labelling examples can be an extremely expensive process

• Sometimes we don’t even know how to label examples

• Unsupervised techniques can be employed to group examples into clusters

k-means clustering

Setting

• Assumes examples should be grouped into k clusters

• Each cluster i is represented by its mean µi

Algorithm

1. Initialize cluster means µ1, . . . ,µk

2. Iterate until no mean changes:

(a) Assign each example to cluster with nearest mean

(b) Update cluster means according to assigned examples

How can we define (dis)similarity between examples ?

(Dis)similarity measures

• Standard Euclidean distance in IRd:

d(x,x′) =

√√√√ d∑
i=1

(xi − x′i)2

• Generic Minkowski metric for p ≥ 1:

d(x,x′) =

(
d∑
i=1

|xi − x′i|p
)1/p

• Cosine similarity (cosine of the angle between vectors):

s(x,x′) =
xTx′

||x||||x′||
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How can we define quality of obtained clusters ?

Sum-of-squared error criterion

• Let ni be the number of samples in cluster Di

• Let µi be the cluster sample mean:

µi =
1

ni

∑
x∈Di

x

• The sum-of-squared errors is defined as:

E =

k∑
i=1

∑
x∈Di

||x− µi||2

• Measures the squared error incurred in representing each example with its cluster mean

Gaussian Mixture Model (GMM)

Setting

• Cluster examples using a mixture of Gaussian distributions

• Assume number of Gaussians is given

• Estimate mean and possibly variance of each Gaussian
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Gaussian Mixture Model (GMM)

Parameter Estimation

• Maximum likelihood estimation cannot be applied as cluster assignment of examples is unknown

• Expectation-Maximization approach:

1. Compute expected cluster assignment given current parameter setting

2. Estimate parameters given cluster assignment

3. Iterate

Example: estimating means of k univariate Gaussians

Setting

• A dataset of x1, . . . , xn examples is observed

• For each example xi, cluster assignment is modelled as zi1, . . . , zik binary latent (i.e. unknown) variables

• zij = 1 if Gaussian j generated xi, 0 otherwise.

• Parameters to be estimated are the µ1, . . . , µk Gaussians means

• All Gaussians are assumed to have the same (known) variance σ2

Example: estimating means of k univariate Gaussians

Algorithm

1. Initialize h = 〈µ1, . . . , µk〉

2. Iterate until difference in maximum likelihood (ML) is below a certain threshold:

E-step Calculate expected value E[zij ] of each latent variable assuming current hypothesis h = 〈µ1, . . . , µk〉
holds

M-step Calculate a new ML hypothesis h′ = 〈µ′1, . . . , µ′k〉 assuming values of latent variables are their ex-
pected values just computed. Replace h← h′

Example: estimating means of k univariate Gaussians

Algorithm

E-step The expected value of zij is the probability that xi is generated by Gaussian j assuming hypothesis h =
〈µ1, . . . , µk〉 holds:

E[zij ] =
p(xi|µj)∑k
l=1 p(xi|µl)

=
exp− 1

2σ2 (xi − µj)2∑k
l=1 exp−

1
2σ2 (xi − µl)2

M-step The maximum-likelihood mean µj is the weighted sample mean, each instance being weighted by its proba-
bility of being generated by Gaussian j:

µ′j =

∑n
i=1E[zij ]xi∑n
i=1E[zij ]
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Expectation-Maximization (EM)

Formal setting

• We are given a dataset made of an observed part X and an unobserved part Z

• We wish to estimate the hypothesis maximizing the expected log-likelihood for the data, with expectation taken
over unobserved data:

h∗ = argmaxhEZ [ln p(X,Z|h)]

Problem
The unobserved data Z should be treated as random variables governed by the distribution depending on X and h

Expectation-Maximization (EM)

Generic algorithm

1. Initialize hypothesis h

2. Iterate until convergence

E-step Compute the expected likelihood of an hypothesis h′ for the full data, where the unobserved data distri-
bution is modelled according to the current hypothesis h and the observed data:

Q(h′;h) = EZ [ln p(X,Z|h′)|h,X]

M-step replace the current hypothesis with the one maximizing Q(h′;h)

h← argmaxh′Q(h′;h)

Example: estimating means of k univariate Gaussians

Derivation

• the likelihood of an example is:

p(xi, zi1, . . . , zik|h′) =
1√
2πσ

exp

− k∑
j=1

zij
(xi − µ′j)2

2σ2


• the dataset log-likelihood is:

ln p(X,Z|h) =
n∑
i=1

ln
1√
2πσ

−
k∑
j=1

zij
(xi − µ′j)2

2σ2
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Example: estimating means of k univariate Gaussians

E-step

• the expected log-likelihood (remember linearity of the expectation operator):

EZ [ln p(X,Z|h′)] = EZ

 n∑
i=1

ln
1√
2πσ

−
k∑
j=1

zij
(xi − µ′j)2

2σ2


=

n∑
i=1

ln
1√
2πσ

−
k∑
j=1

E[zij ]
(xi − µ′j)2

2σ2


• The expectation given current hypothesis h and observed data X is computed as:

E[zij ] =
p(xi|µj)∑k
l=1 p(xi|µl)

=
exp− 1

2σ2 (xi − µj)2∑k
l=1 exp−

1
2σ2 (xi − µl)2

Example: estimating means of k univariate Gaussians
M-step

• The likelihood maximization gives:

argmaxh′Q(h′;h) = argmaxh′

n∑
i=1

ln
1√
2πσ

−
k∑
j=1

E[zij ]
(xi − µ′j)2

2σ2


= argminh′

n∑
i=1

k∑
j=1

E[zij ](xi − µ′j)2

• zeroing the derivative wrt to each mean we get:

∂

∂µj
= −2

n∑
i=1

E[zij ](xi − µ′j) = 0

µ′j =

∑n
i=1E[zij ]xi∑n
i=1E[zij ]

How to choose the number of clusters?

Elbow method: idea

• Increasing number of clusters allows for better modeling of data

• Needs to trade-off quality of clusters with quantity

• Stop increasing number of clusters when advantage is limited
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How to choose the number of clusters?

Elbow method: approach

1. Run clustering algorithm for increasing number of clusters

2. Plot clustering evaluation metric (e.g. sum of squared errors) for different k

3. Choose k when there is an angle (making an elbow) in the plot (drop in gain)

How to choose the number of clusters?

Elbow method: problem
The Elbow method can be ambiguous, with multiple candidate points (e.g. k=2 and k=4 in the figure).

How to choose the number of clusters?

Average silhouette method: idea

• Increasing the numbers of clusters makes each cluster more homogeneuous

• Increasing the number of clusters can make different clusters more similar

• Use quality metric that trades-off intra-cluster similarity and inter-cluster dissimilarity
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How to choose the number of clusters?

Silhouette coefficient for example i

1. Compute the average dissimilarity between i and examples of its cluster C:

ai = d(i, C) =
1

|C|
∑
j∈C

d(i, j)

2. Compute the average dissimilarity between i and examples of each cluster C ′ 6= C, take the minimum:

bi = min
C′ 6=C

d(i, C ′)

3. The silhouette coefficient is:
si =

bi − ai
max(ai, bi)

How to choose the number of clusters?

Average silhouette method: approach

1. Run clustering algorithm for increasing number of clusters

2. Plot average (over examples) silhouette coefficient for different k

3. Choose k where the average silhouette coefficient is maximal

Hierarchical clustering

Setting

• Clustering does not need to be flat

• Natural grouping of data is often hierarchical (e.g. biological taxonomy, topic taxonomy, etc.)

• A hierarchy of clusters can be built on examples

• Top-down approach:
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– start from a single cluster with all examples

– recursively split clusters into subclusters

• Bottom-up approach:

– start with n clusters of individual examples (singletons)

– recursively aggregate pairs of clusters

Dendograms

Agglomerative hierarchical clustering

Algorithm

1. Initialize:

• Final cluster number k (e.g. k=1)

• Initial cluster number k̂ = n

• Initial clusters Di = {xi}, i ∈ 1, . . . , n

2. while k̂ > k:

(a) find pairwise nearest clusters Di,Dj
(b) merge Di and Dj
(c) update k̂ = k̂ − 1

Note
Stopping criterion can be threshold on pairwise similarity
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Measuring cluster similarities
Similarity measures

• Nearest-neighbour
dmin(Di,Dj) = min

x∈Di,x′∈Dj

||x− x′||

• Farthest-neighbour
dmax(Di,Dj) = max

x∈Di,x′∈Dj

||x− x′||

• Average distance
davg(Di,Dj) =

1

ninj

∑
x∈Di

∑
x′∈Dj

||x− x′||

• Distance between means
dmean(Di,Dj) = ||µi − µj ||

• dmin and dmax are more sensitive to outliers

Stepwise optimal hierachical clustering

Algorithm

1. Initialize:

• Final cluster number k (e.g. k=1)

• Initial cluster number k̂ = n

• Initial clusters Di = {xi}, i ∈ 1, . . . , n

2. while k̂ > k:

(a) find best clusters Di,Dj to merge according to evaluation criterion

(b) merge Di and Dj
(c) update k̂ = k̂ − 1
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