Unsupervised Learning

Setting

- Supervised learning requires the availability of labelled examples
- Labelling examples can be an extremely expensive process
- Sometimes we don't even know how to label examples
- Unsupervised techniques can be employed to group examples into clusters

k-means clustering

Setting

- Assumes examples should be grouped into k clusters
- Each cluster i is represented by its mean μ_i

Algorithm

- 1. Initialize cluster means μ_1, \ldots, μ_k
- 2. Iterate until no mean changes:
 - (a) Assign each example to cluster with nearest mean
 - (b) Update cluster means according to assigned examples

How can we define (dis)similarity between examples ?

(Dis)similarity measures

• Standard Euclidean distance in \mathbb{R}^d :

$$d(\boldsymbol{x}, \boldsymbol{x}') = \sqrt{\sum_{i=1}^{d} (x_i - x'_i)^2}$$

• Generic Minkowski metric for $p \ge 1$:

$$d(\boldsymbol{x}, \boldsymbol{x}') = \left(\sum_{i=1}^{d} |x_i - x'_i|^p\right)^{1/p}$$

• Cosine similarity (cosine of the angle between vectors):

$$s(x, x') = rac{x^T x'}{||x||||x'||}$$

How can we define quality of obtained clusters ?

Sum-of-squared error criterion

- Let n_i be the number of samples in cluster \mathcal{D}_i
- Let μ_i be the cluster sample mean:

$$\boldsymbol{\mu}_i = rac{1}{n_i} \sum_{\boldsymbol{x} \in \mathcal{D}_i} \boldsymbol{x}$$

• The sum-of-squared errors is defined as:

$$E = \sum_{i=1}^{k} \sum_{\boldsymbol{x} \in \mathcal{D}_i} ||\boldsymbol{x} - \boldsymbol{\mu}_i||^2$$

• Measures the squared error incurred in representing each example with its cluster mean

Gaussian Mixture Model (GMM)

- Cluster examples using a mixture of Gaussian distributions
- Assume number of Gaussians is given
- Estimate mean and possibly variance of each Gaussian

Gaussian Mixture Model (GMM)

Parameter Estimation

- Maximum likelihood estimation cannot be applied as cluster assignment of examples is unknown
- Expectation-Maximization approach:
 - 1. Compute expected cluster assignment given current parameter setting
 - 2. Estimate parameters given cluster assignment
 - 3. Iterate

Example: estimating means of k univariate Gaussians

Setting

- A dataset of x_1, \ldots, x_n examples is observed
- For each example x_i , cluster assignment is modelled as z_{i1}, \ldots, z_{ik} binary latent (i.e. unknown) variables
- $z_{ij} = 1$ if Gaussian j generated x_i , 0 otherwise.
- Parameters to be estimated are the μ_1, \ldots, μ_k Gaussians means
- All Gaussians are assumed to have the same (known) variance σ^2

Example: estimating means of k univariate Gaussians

Algorithm

- 1. Initialize $h = \langle \mu_1, \ldots, \mu_k \rangle$
- 2. Iterate until difference in maximum likelihood (ML) is below a certain threshold:

E-step Calculate expected value $E[z_{ij}]$ of each latent variable assuming current hypothesis $h = \langle \mu_1, \dots, \mu_k \rangle$ holds

M-step Calculate a new ML hypothesis $h' = \langle \mu'_1, \dots, \mu'_k \rangle$ assuming values of latent variables are their expected values just computed. Replace $h \leftarrow h'$

Example: estimating means of k univariate Gaussians

Algorithm

E-step The expected value of z_{ij} is the probability that x_i is generated by Gaussian j assuming hypothesis $h = \langle \mu_1, \ldots, \mu_k \rangle$ holds:

$$\mathbf{E}[z_{ij}] = \frac{p(x_i|\mu_j)}{\sum_{l=1}^k p(x_i|\mu_l)} = \frac{\exp{-\frac{1}{2\sigma^2}(x_i - \mu_j)^2}}{\sum_{l=1}^k \exp{-\frac{1}{2\sigma^2}(x_i - \mu_l)^2}}$$

M-step The maximum-likelihood mean μ_j is the weighted sample mean, each instance being weighted by its probability of being generated by Gaussian *j*:

$$\mu'_{j} = \frac{\sum_{i=1}^{n} E[z_{ij}] x_{i}}{\sum_{i=1}^{n} E[z_{ij}]}$$

Expectation-Maximization (EM)

Formal setting

- We are given a dataset made of an observed part X and an unobserved part Z
- We wish to estimate the hypothesis maximizing the expected log-likelihood for the data, with expectation taken over unobserved data:

$$h^* = \operatorname{argmax}_h \operatorname{E}_Z[\ln p(X, Z|h)]$$

Problem

The unobserved data Z should be treated as random variables governed by the distribution depending on X and h

Expectation-Maximization (EM)

Generic algorithm

- 1. Initialize hypothesis h
- 2. Iterate until convergence

E-step Compute the expected likelihood of an hypothesis h' for the full data, where the unobserved data distribution is modelled according to the current hypothesis h and the observed data:

$$Q(h';h) = \mathbb{E}_Z[\ln p(X,Z|h')|h,X]$$

M-step replace the current hypothesis with the one maximizing Q(h'; h)

$$h \leftarrow \operatorname{argmax}_{h'}Q(h';h)$$

Example: estimating means of *k* **univariate Gaussians**

Derivation

• the likelihood of an example is:

$$p(x_i, z_{i1}, \dots, z_{ik} | h') = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\sum_{j=1}^k z_{ij} \frac{(x_i - \mu'_j)^2}{2\sigma^2}\right]$$

• the dataset log-likelihood is:

$$\ln p(X, Z|h) = \sum_{i=1}^{n} \left(\ln \frac{1}{\sqrt{2\pi\sigma}} - \sum_{j=1}^{k} z_{ij} \frac{(x_i - \mu'_j)^2}{2\sigma^2} \right)$$

Example: estimating means of *k* **univariate Gaussians**

E-step

• the expected log-likelihood (remember linearity of the expectation operator):

$$E_{Z}[\ln p(X, Z|h')] = E_{Z} \left[\sum_{i=1}^{n} \left(\ln \frac{1}{\sqrt{2\pi\sigma}} - \sum_{j=1}^{k} z_{ij} \frac{(x_{i} - \mu'_{j})^{2}}{2\sigma^{2}} \right) \right]$$
$$= \sum_{i=1}^{n} \left(\ln \frac{1}{\sqrt{2\pi\sigma}} - \sum_{j=1}^{k} E[z_{ij}] \frac{(x_{i} - \mu'_{j})^{2}}{2\sigma^{2}} \right)$$

• The expectation given current hypothesis h and observed data X is computed as:

$$\mathbf{E}[z_{ij}] = \frac{p(x_i|\mu_j)}{\sum_{l=1}^k p(x_i|\mu_l)} = \frac{\exp{-\frac{1}{2\sigma^2}(x_i - \mu_j)^2}}{\sum_{l=1}^k \exp{-\frac{1}{2\sigma^2}(x_i - \mu_l)^2}}$$

Example: estimating means of k univariate Gaussians M-step

• The likelihood maximization gives:

$$\operatorname{argmax}_{h'}Q(h';h) = \operatorname{argmax}_{h'}\sum_{i=1}^{n} \left(\ln \frac{1}{\sqrt{2\pi\sigma}} - \sum_{j=1}^{k} E[z_{ij}] \frac{(x_i - \mu'_j)^2}{2\sigma^2} \right)$$
$$= \operatorname{argmin}_{h'}\sum_{i=1}^{n}\sum_{j=1}^{k} E[z_{ij}](x_i - \mu'_j)^2$$

• zeroing the derivative wrt to each mean we get:

$$\frac{\partial}{\partial \mu_j} = -2\sum_{i=1}^n E[z_{ij}](x_i - \mu'_j) = 0$$
$$\mu'_j = \frac{\sum_{i=1}^n E[z_{ij}]x_i}{\sum_{i=1}^n E[z_{ij}]}$$

How to choose the number of clusters?

Elbow method: idea

- · Increasing number of clusters allows for better modeling of data
- Needs to trade-off quality of clusters with quantity
- Stop increasing number of clusters when advantage is limited

How to choose the number of clusters?

Elbow method: approach

- 1. Run clustering algorithm for increasing number of clusters
- 2. Plot clustering evaluation metric (e.g. sum of squared errors) for different k
- 3. Choose k when there is an angle (making an elbow) in the plot (drop in gain)

How to choose the number of clusters?

The Elbow method can be ambiguous, with multiple candidate points (e.g. k=2 and k=4 in the figure).

How to choose the number of clusters?

Average silhouette method: idea

- Increasing the numbers of clusters makes each cluster more homogeneuous
- Increasing the number of clusters can make different clusters more similar
- Use quality metric that trades-off intra-cluster similarity and inter-cluster dissimilarity

How to choose the number of clusters?

Silhouette coefficient for example i

1. Compute the average dissimilarity between i and examples of its cluster C:

$$a_i = d(i, C) = \frac{1}{|C|} \sum_{j \in C} d(i, j)$$

2. Compute the average dissimilarity between i and examples of each cluster $C' \neq C$, take the minimum:

$$b_i = \min_{C' \neq C} d(i, C')$$

3. The silhouette coefficient is:

$$s_i = \frac{b_i - a_i}{\max(a_i, b_i)}$$

How to choose the number of clusters?

Average silhouette method: approach

- 1. Run clustering algorithm for increasing number of clusters
- 2. Plot average (over examples) silhouette coefficient for different k
- 3. Choose k where the average silhouette coefficient is maximal

Hierarchical clustering

Setting

- Clustering does not need to be *flat*
- Natural grouping of data is often hierarchical (e.g. biological taxonomy, topic taxonomy, etc.)
- A hierarchy of clusters can be built on examples
- Top-down approach:

- start from a single cluster with all examples
- recursively split clusters into subclusters
- Bottom-up approach:
 - start with *n* clusters of individual examples (singletons)
 - recursively aggregate pairs of clusters

Dendograms

Agglomerative hierarchical clustering

Algorithm

- 1. Initialize:
 - Final cluster number k (e.g. k=1)
 - Initial cluster number $\hat{k} = n$
 - Initial clusters $\mathcal{D}_i = \{x_i\}, i \in 1, \dots, n$
- 2. while $\hat{k} > k$:
 - (a) find pairwise nearest clusters $\mathcal{D}_i, \mathcal{D}_j$
 - (b) merge \mathcal{D}_i and \mathcal{D}_j
 - (c) update $\hat{k} = \hat{k} 1$

Note

Stopping criterion can be threshold on pairwise similarity

Measuring cluster similarities Similarity measures

• Nearest-neighbour

• Farthest-neighbour

$$d_{min}(\mathcal{D}_i, \mathcal{D}_j) = \min_{\boldsymbol{x} \in \mathcal{D}_i, \boldsymbol{x}' \in \mathcal{D}_j} ||\boldsymbol{x} - \boldsymbol{x}'||$$

$$d_{max}(\mathcal{D}_i, \mathcal{D}_j) = \max_{\boldsymbol{x} \in \mathcal{D}_i, \boldsymbol{x}' \in \mathcal{D}_j} ||\boldsymbol{x} - \boldsymbol{x}'||$$

• Average distance

$$d_{avg}(\mathcal{D}_i, \mathcal{D}_j) = rac{1}{n_i n_j} \sum_{oldsymbol{x} \in \mathcal{D}_i} \sum_{oldsymbol{x}' \in \mathcal{D}_j} ||oldsymbol{x} - oldsymbol{x}'||$$

• Distance between means

$$d_{mean}(\mathcal{D}_i, \mathcal{D}_j) = ||\boldsymbol{\mu}_i - \boldsymbol{\mu}_j||$$

• d_{min} and d_{max} are more sensitive to *outliers*

Stepwise optimal hierachical clustering

Algorithm

- 1. Initialize:
 - Final cluster number k (e.g. k=1)
 - Initial cluster number $\hat{k} = n$
 - Initial clusters $\mathcal{D}_i = \{x_i\}, i \in 1, \dots, n$
- 2. while $\hat{k} > k$:
 - (a) find best clusters $\mathcal{D}_i, \mathcal{D}_j$ to merge according to evaluation criterion
 - (b) merge \mathcal{D}_i and \mathcal{D}_j
 - (c) update $\hat{k} = \hat{k} 1$

References

• R.O. Duda, P.E. Hart and D.G. Stork, *Pattern Classification (2nd edition)*, Wiley-Interscience, 2001 (chapter 10)