Support Vector Machine

Andrea Passerini
passerini@disi.unitn.it

Machine Learning

Support Vector Machine

Support vector machines

In a nutshell

@ Linear classifiers selecting hyperplane maximizing
separation margin between classes (large margin
classifiers)

@ Solution only depends on a small subset of training
examples (support vectors)

@ Sound generalization theory (bounds or error based on
margin)

@ Can be easily extended to nonlinear separation (kernel
machines)

Support Vector Machine

Maximum margin classifier

Support Vector Machine

Maximum margin classifier

Classifier margin

@ Given a training set D, a classifier confidence margin is:

p = min(x y)epyf(X)
@ It is the minimal confidence margin (for predicting the true
label) among training examples
@ A classifier geometric margin is:

yf(x)

P
[|wi]

Tw]| = Mnyen

Support Vector Machine

Maximum margin classifier

Canonical hyperplane

@ There is an infinite number of equivalent formulation for the
same hyperplane:

wix+w = 0
awix+wy) = 0 Ya#0
@ The canonical hyperplane is the hyperplane having
confidence margin equal to 1:
p = min(x y)epyf(X) =1
@ lts geometric margin is:

o _ 1

[wil — [lwl]

Support Vector Machine

Maximum margin classifier

wix+wy=1
wlix 4wy =0

wlix +wy=—1%

Support Vector Machine

Hard margin SVM

Theorem (Margin Error Bound)

Consider the set of decision functions f(x) = signw’x with
[lw|| < A and ||x|| < R, for some R,\ > 0. Moreover, let p > 0
and v denote the fraction of training examples with margin
smaller than p/||w||, referred to as the margin error.

For all distributions P generating the data, with probability at
least 1 — § over the drawing of the m training patterns, and for
any p >0 andé € (0, 1), the probability that a test pattern
drawn from P will be misclassified is bound from above by

c (RPN,
V+\/m(p In m+ln(1/5)>.

Here, c is a universal constant.

Support Vector Machine

Hard margin SVM
Margin Error Bound: interpretation

c (RPN,
z/+\/m< 2 In m+ln(1/6)>.

The probability of test error depends on (among other
components):

@ number of margin errors v (examples with margin smaller
than p/||w]|)

o= 2
@ number of training examples (error depends on 1“m’”)

@ size of the margin (error depends on 1/,?)

If p is fixed to 1 (canonical hyperplane), maximizing margin
corresponds to minimizing ||w/]|

Support Vector Machine

Hard margin SVM
Learning problem

. 1
minw, Wl

subject to:
yi(w'x; + wp) > 1
v(x;,yi) € D

@ constraints guarantee that all points are correctly classified
(plus canonical form)

@ minimization corresponds to maximizing the (squared)
margin

@ quadratic optimization problem (objective is quadratic,
points satisfying constraints form a convex set)

Support Vector Machine

Hard margin SVM
Learning problem

. 1
minw, Wl

subject to:
yi(w'x; + wp) > 1
v(x;,yi) € D

@ constraints guarantee that all points are correctly classified
(plus canonical form)

@ minimization corresponds to maximizing the (squared)
margin

@ quadratic optimization problem (objective is quadratic,
points satisfying constraints form a convex set)

Support Vector Machine

Digression: constrained optimization

Karush-Kuhn-Tucker (KKT) approach

@ A constrained optimization problem can be addressed by
converting it into an unconstrained problem with the same
solution

@ Let’s have a constrained optimization problem as:

min; f(2)
subject to:
gi(z)>0Vi
@ Let’s introduce a non-negative variable «;; > 0 (called

Lagrange multiplier) for each constraint and rewrite the
optimization problem as (Lagrangian):

min; maxe>o f(Z g a;gi(z

Support Vector Machine

Digression: constrained optimization

Karush-Kuhn-Tucker (KKT) approach

min; maxg:>0 f(z Z @;gi(Z

The optimal solutions z* for this problem are the same as the
optimal solutions for the original (constrained) problem:

@ If for a given Z' at least one constraint is not satisfied, i.e.
gi(Z’) < 0 for some i, maximizing over «; leads to an
infinite value (not a minimum, unless there is no
non-infinite minimum)

o If all constraints are satisfied (i.e. gi(z’) > 0 for all i),
maximization over the a will set all elements of the
summation to zero, so that z’ is a solution of min,f(z).

Support Vector Machine

Hard margin SVM

Karush-Kuhn-Tucker (KKT) approach

minw o 5IWIP
subject to:
yi(wTx; + wp) > 1
v(xi,yi) € D

@ The constraints can be included in the minimization using
Lagrange multipliers «; > 0 (m = |D)):

m

’
L(w, wp,) = §||W|\2 =Y aiyiwTx; + wp) —1)
e

@ The Lagrangian is minimized wrt w, wy and maximized wrt
«a; (solution is a saddle point)

Support Vector Machine

Hard margin SVM

Dual formulation

1 m
L(w, wp, @) = éHsz — Y ailyi(wTx;+ wp) —1)

i=1

@ Vanishing derivatives wrt primal variables we get:

a m
8—WOL(W,W0,a)_0 = ga,y,-_o

9 m
awa(W, Wo,a) =0 = w= iz;a,-y,-x,-

Support Vector Machine

Hard margin SVM
Dual formulation

@ Substituting in the Lagrangian we get:

1 m
§||W||2 =) ai(yi(wxi+ wp) —1) =
i—

1 m . m .
E Z Oz,'Oéjy,'ij,- Xj = Z Cv,'Oéjy,'ij,- Xj =

ij=1 ij=1
m m
Zai}/iwo +Zai =
i=1 i=1
N——
=0

1 ¢ r
; oj — E i; ;oYX Xj = L(a)

@ which is to be maximized wrt the dual variables o

Support Vector Machine

Hard margin SVM
Dual formulation

m m
3 1 3 T
max oj — é a,-ajy,-ij,- Xj
i=1

acR™ =
ij=1

subject to ai>0 i=1,....m
m
> aiyi=0
i=1

@ The resulting maximization problem including the
constraints

@ Still a quadratic optimization problem

Support Vector Machine

Hard margin SVM

@ The dual formulation has simpler contraints (box), easier to
solve

@ The primal formulation has d + 1 variables (number of
features +1):

) 1
minw W]

@ The dual formulation has m variables (number of training
examples):

m

m
1 T
o 2= 3 2 el

@ One can choose the primal formulation if it has much less
variables (problem dependent)

Support Vector Machine

Hard margin SVM

Decision function

@ Substituting w = "7, a;y;X; in the decision function we
get:

m
f(X) = WX+ wo = ajyx]x+ wy
i=1
@ The decision function is linear combination of dot products
between training points and the test point
@ dot product is kind of similarity between points

@ Weights of the combination are «;y;: large «; implies large
contribution towards class y; (times the similarity)

Support Vector Machine

Hard margin SVM

Karush-Khun-Tucker conditions (KKT)

1 m
L(w, wp,) = EHWHZ = ailyi(wTx; + wp) —1)

i=1
@ At the saddle point it holds that for all /:
ai(yi(w'xi+ wo) —1)=0

@ Thus, either the example does not contribute to the final
f(x):
aj=0
@ or the example stays on the minimal confidence
hyperplane from the decision one:

YiwTx; + wp) =1

Support Vector Machine

Hard margin SVM

A

Support vectors

@ points staying on the minimal confidence hyperplanes are
called support vectors

@ All other points do not contribute to the final decision
function (i.e. they could be removed from the training set)

@ SVM are sparse i.e. they typically have few support vectors

Support Vector Machine

Hard margin SVM

@ The bias wy can be computed from the KKT conditions

@ Given an arbitrary support vector x; (with a; > 0) the KKT
conditions imply:

Yiw'x; + wp) =1
ywx; + yiwo = 1
1 — yw’x;
WO _ ylw xl
Yi

@ For robustness, the bias is usually averaged over all
support vectors

Support Vector Machine

Support Vector Machine

Soft margin SVM

. 1, . i
min —||wl|c+ C ;
vl ccpn ZIMIE+COD 6
subject to
yi(WTX;+W0) >1-¢ i=1,....m

>0 i=1,....m

@ A slack variable &; represents the penalty for example x;
not satisfying the margin constraint

@ The sum of the slacks is minimized together to the inverse
margin

@ The regularization parameter C > 0 trades-off data fitting
and size of the margin

Support Vector Machine

Soft margin SVM

. 1 &
min EHWHZ +CY Ly, f(x7)
e

wWeEX WoER, EER™

@ Regularized loss minimization problem
@ The loss term accounts for error minimization

@ The margin maximization term accounts for regularization
i.e. solutions with larger margin are preferred

@ Regularization is a standard approach to prevent overfitting

@ It corresponds to a prior for simpler (more regular,
smoother) solutions

Support Vector Machine

Soft margin SVM

[T —yf(x)|+

1 yf(x)
0yi (X)) = [1 = yif(x) |+ = [1 — yi(W'x; + wo)|+

@ |z|; = zif z > 0 and 0 otherwise (positive part)

@ it corresponds to the slack variable &; (violation of margin
costraint)

@ all examples not violating margin costraint have zero loss
(sparse set of support vectors)

Support Vector Machine

Soft margin SVM

L_ngl *Hw”z Zal (yi(w xl+ wo) —1+¢&) Z/Blt

@ where a; >0and 5 >0

@ Vanishing derivatives wrt primal variables we get:

0

—L= =
e 0 = ;a,y, 0
9 m
aWL =0 = w= ;a,y/x,
90120 = Coaj—B=0
8{,]]

Support Vector Machine

Soft margin SVM

@ Substituting in the Lagrangian we get

m
CZSI *HWHZ Zal yi(w Xl+ wo) —1+¢) ZBIE'_
i—1

i=1

m m

1
> & (C —ai—Bi)+s > aiayyiyx] XJ*E aiogyiyiX! X;
= g

~ ij=1 ij=1

m m
Zaiyi Wo +Zai =
i=1 i=1

=0

m 1 m
T
;Oz,‘ — E Z oo yiyiX; Xj = L(a)

=

Support Vector Machine

Soft margin SVM

Dual formulation

m m
1 T
max ai— = Y aiYiyiX X
TR, D 0img D ey,
i=1 ij=1
subjectto O0<ao;<C i=1,....,m

m
> aiyi=0
i=1

@ The box constraint for «; comes from C — «; — 3, = 0 (and
the fact that both «; > 0 and 3; > 0)

Support Vector Machine

Soft margin SVM

Karush-Khun-Tucker conditions (KKT)

L—CZ{, *Hsz Za/ YI W X,—|— Wo _1+§/ Zﬂ/f/

i=1 =1

@ At the saddle point it holds that for all /:

ai(yi(wxi+ wo) —1+¢) =
Bi&i =0

@ Thus, support vectors («; > 0) are examples for which
(y,'(WTX,' + W) <1

Support Vector Machine

Soft margin SVM

Support Vectors

ai(yiw'x;+ wo) —1+&)=0
Bi&i =0

(*] Ifa,-<C,C—a,-—,@,-annd,8,-5,~:0implythat§,-:0

e These are called unbound SV ((yi(Ww™x; + wp) = 1, they
stay on the confidence one hyperplane

@ If aj = C (bound SV) then ¢&; can be greater the zero, in
which case the SV are margin errors

Support Vector Machine

Support vectors

N margin errors (& > 0)

Support Vector Machine

Large-scale SVM learning

Stochastic gradient descent

A e 1T
‘TE'E‘(EHWH +miz1|1 — Yi{w, X;) |+

@ Obijective for a single example (x;, y;):

A
E(w; (x;,yi)) = §HW||2 + 1 — yi(w, x;) |+

@ Subgradient:

VwE(W; (Xj, i) = AW — 1[y(w, X;) < 1]y;X;

Support Vector Machine

Large-scale SVM learning

@ Indicator function

1 if yi(w, x;) < 1
0 otherwise

1y (w,x;) < 1] = {

@ The subgradient of a function f at a point Xq is any vector v
such that for any x:

f(x) — f(x0) > v (x — Xo)

Support Vector Machine

Large-scale SVM learning
Pseudocode (pegasus)

@ Initialize wy =0

Q fort=1toT:
© Randomly choose (x;, y;) from D
@ Setn = Alt
© Update w:

Wi = Wi — 0t VwE(W; (X5, ¥3,))

©Q Return wr 4

The choice of the learning rate allows to bound the runtime for
an e-accurate solution to O(d/\e) with d maximum number of
non-zero features in an example.

v

Support Vector Machine

References

@ C. Burges, A tutorial on support vector machines for
pattern recognition, Data Mining and Knowledge
Discovery, 2(2), 121-167, 1998.

@ S. Shalev-Shwartz et al., Pegasos: primal estimated
sub-gradient solver for SVM, Mathematical Programming,
127(1), 3-30, 2011.

@ svm module in scikit-learn
http://scikit-learn.org/stable/index.html

@ libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

@ svmlight http://svmlight. joachims.org/

Support Vector Machine

http://scikit-learn.org/stable/index.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://svmlight.joachims.org/

APPENDIX

Appendix
Additional reference material

Support Vector Machine

Large-scale SVM learning

Dual version

@ Itis easy to show that:

t

1
Wt+1 —)\—t Z H[yit<wt7xf1> < 1]y’tx’1
i=1

@ We can represent w4 implicitly by storing in vector a4
the number of times each example was selected and had a
non-zero loss, i.e.:

arll] =t < toiy = j A yiwe, %)) < 1}]

Support Vector Machine

Large-scale SVM learning

Pseudocode (pegasus dual)

@ Initialize a1 =0
Q fort=1toT:

© Randomly choose (x;, y;) from D
Q Set Qi1 = O

© I yisg Yoy adlilyiix;, x;) <1
Q awfi] = arli] +1
©Q Return ar,q

This will be useful when combined with kernels.

Support Vector Machine

