
Vector space

Definition (over reals)
A set X is called a vector space over IR if addition and scalar multiplication are defined and satisfy for all x,y, z ∈

X and λ, µ ∈ IR:

• Addition:

associative x + (y + z) = (x + y) + z

commutative x + y = y + x

identity element ∃0 ∈ X : x + 0 = x

inverse element ∀x ∈ X ∃x′ ∈ X : x + x′ = 0

• Scalar multiplication:

distributive over elements λ(x + y) = λx + λy

distributive over scalars (λ+ µ)x = λx + µx

associative over scalars λ(µx) = (λµ)x

identity element ∃1 ∈ IR : 1x = x

Properties and operations in vector spaces

subspace Any non-empty subset of X being itself a vector space (E.g. projection)

linear combination given λi ∈ IR,xi ∈ X
n∑

i=1

λixi

span The span of vectors x1, . . . ,xn is defined as the set of their linear combinations
{

n∑

i=1

λixi, λi ∈ IR

}

Basis in vector space

Linear independency
A set of vectors xi is linearly independent if none of them can be written as a linear combination of the others

Basis

• A set of vectors xi is a basis forX if any element inX can be uniquely written as a linear combination of vectors
xi.

• Necessary condition is that vectors xi are linearly independent

• All bases of X have the same number of elements, called the dimension of the vector space.
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Linear maps

Definition
Given two vector spaces X ,Z , a function f : X → Z is a linear map if for all x,y ∈ X , λ ∈ IR:

• f(x + y) = f(x) + f(y)

• f(λx) = λf(x)

Linear maps as matrices

A linear map between two finite-dimensional spaces X ,Z of dimensions n,m can always be written as a matrix:

• Let {x1, . . . ,xn} and {z1, . . . , zm} be some bases for X and Z respectively.

• For any x ∈ X we have:

f(x) = f(

n∑

i=1

λixi) =

n∑

i=1

λif(xi)

f(xi) =

m∑

j=1

ajizj

f(x) =

n∑

i=1

m∑

j=1

λiajizj =

m∑

j=1

(

n∑

i=1

λiaji)zj =

m∑

j=1

µjzj

Linear maps as matrices

• Matrix of basis transformation

M ∈ IRm×n =




a11 . . . a1n
...

...
...

am1 . . . amn




• Mapping from basis coefficients to basis coefficients

Mλ = µ

Change of Coordinate Matrix
2D example

• let B =

{[
1
0

]
,

[
0
1

]}
be the standard basis in IR2

• let B′ =

{[
3
1

]
,

[
−2

1

]}
be an alternative basis

• The change of coordinate matrix from B′ to B is:

P =

[
3 −2
1 1

]
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• So that:
[v]B = P · [v]B′ and [v]B′ = P−1 · [v]B

Note

• For arbitrary B and B′, P ’s columns must be the B′ vectors written in terms of the B ones (straightforward
here)

Matrix properties

transpose Matrix obtained exchanging rows with columns (indicated with MT ). Properties:

(MN)T = NTMT

trace Sum of diagonal elements of a matrix

tr(M) =
n∑

i=1

Mii

inverse The matrix which multiplied with the original matrix gives the identity

MM−1 = I

rank The rank of an n×m matrix is the dimension of the space spanned by its columns

Matrix derivatives

∂Mx

∂x
= M

∂yTMx

∂x
= MTy

∂xTMx

∂x
= (MT +M)x

∂xTMx

∂x
= 2Mx if M is symmetric

∂xTx

∂x
= 2x

Note
Results are column vectors. Transpose them if row vectors are needed instead.

Metric structure

Norm
A function || · || : X → IR+

0 is a norm if for all x,y ∈ X , λ ∈ IR:

• ||x + y|| ≤ ||x||+ ||y||

• ||λx|| = |λ| ||x||

• ||x|| > 0 if x 6= 0
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Metric
A norm defines a metric d : X × X → IR+

0 :

d(x,y) = ||x− y||

Note
The concept of norm is stronger than that of metric: not any metric gives rise to a norm

Dot product

Bilinear form
A function Q : X × X → IR is a bilinear form if for all x,y, z ∈ X , λ, µ ∈ IR:

• Q(λx + µy, z) = λQ(x, z) + µQ(y, z)

• Q(x, λy + µz) = λQ(x,y) + µQ(x, z)

A bilinear form is symmetric if for all x,y ∈ X :

• Q(x,y) = Q(y,x)

Dot product

Dot product
A dot product 〈·, ·〉 : X × X → IR is a symmetric bilinear form which is positive semi-definite:

〈x,x〉 ≥ 0 ∀x ∈ X
A positive definite dot product satisfies

〈x,x〉 = 0 iff x = 0

Norm
Any dot product defines a corresponding norm via:

||x|| =
√
〈x,x〉

Properties of dot product
angle The angle θ between two vectors is defined as:

cosθ =
〈x, z〉
||x|| ||z||

orthogonal Two vectors are orthogonal if 〈x,y〉 = 0

orthonormal A set of vectors {x1, . . . ,xn} is orthonormal if

〈xi,xj〉 = δij

where δij = 1 if i = j, 0 otherwise.

Note
If x and y are n-dimensional column vectors, their dot product is computed as:

〈x,y〉 = xTy =

n∑

i=1

xiyi
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Eigenvalues and eigenvectors
Definition

Given an n×nmatrixM , the real value λ and (non-zero) vector x are an eigenvalue and corresponding eigenvector
of M if

Mx = λx

Cardinality

• An n× n matrix has n eigenvalues (roots of characteristic polynomial)

• An n× n matrix can have less than n distinct eigenvalues

• An n× n matrix can have less than n linear independent eigenvectors (also fewer then the number of distinct
eigenvalues)

Eigenvalues and eigenvectors

Singular matrices

• A matrix is singular if it has a zero eigenvalue

Mx = 0x = 0

• A singular matrix has linearly dependent columns:

Eigenvalues and eigenvectors

Symmetric matrices
Eigenvectors corresponding to distinct eigenvalues are orthogonal:

λ〈x, z〉 = 〈Ax, z〉
= (Ax)T z

= xTAT z

= xTAz

= 〈x, Az〉
= µ〈x, z〉

Eigen-decomposition

Raleigh quotient

Ax = λx

xTAx

xTx
= λ

xTx

xTx
= λ

Finding eigenvector
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1. Maximize eigenvalue:

x = maxv
vTAv

vTv

2. Normalize eigenvector (solution is invariant to rescaling)

x← x

||x||

Eigen-decomposition

Deflating matrix
Ã = A− λxxT

• Deflation turns x into a zero-eigenvalue eigenvector:

Ãx = Ax− λxxTx (x is normalized)

= Ax− λx = 0

• Other eigenvalues are unchanged as eigenvectors with distinct eigenvalues are orthogonal (symmetric matrix):

Ãz = Az− λxxT z (x and z orthonormal)

Ãz = Az

Eigen-decomposition

Iterating

• The maximization procedure is repeated on the deflated matrix (until solution is zero)

• Minimization is iterated to get eigenvectors with negative eigevalues

• Eigenvectors with zero eigenvalues are obtained extending the obtained set to an orthonormal basis

Eigen-decomposition

Eigen-decomposition

• Let V = [v1 . . .vn] be a matrix with orthonormal eigenvectors as columns

• Let Λ be the diagonal matrix of corresponding eigenvalues

• A square simmetric matrix can be diagonalized as:

V TAV = Λ

proof follows..

Note

• A diagonalized matrix is much simpler to manage and has the same properties as the original one (e.g. same
eigen-decomposition)

• E.g. change of coordinate system
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Eigen-decomposition

Proof

A [v1 . . .vn] = [v1 . . .vn]



λ1 0

. . .

0 λn




AV = V Λ

V −1AV = V −1V Λ

V TAV = Λ

Note
V is a unitary matrix (orthonormal columns), for which:

V −1 = V T

Positive semi-definite matrix

Definition
An n× n symmetrix matrix M is positive semi-definite if all its eigenvalues are non-negative.

Alternative sufficient and necessary conditions

• for all x ∈ IRn

xTMx ≥ 0

• there exists a real matrix B s.t.
M = BTB

Understanding eigendecomposition
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Scaling transformation in standard basis
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• let x1 = [1, 0],x2 = [0, 1] be the standard orthonormal basis in IR2

• let x = [x1, x2] be an arbitrary vector in IR2

• A linear transformation is a scaling transformation if it only stretches x along its directions

Understanding eigendecomposition
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Scaling transformation in eigenbasis

• let A be a non-scaling linear transformation in IR2.

• let {v1,v2} be an eigenbasis for A.

• By representing vectors in IR2 in terms of the {v1,v2} basis (instead of the standard {x1,x2}), A becomes a
scaling transformation

Principal Component Analysis (PCA)

Description

• Let X be a data matrix with correlated coordinates.
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• PCA is a linear transformation mapping data to a system of uncorrelated coordinates.

• It corresponds to fitting an ellipsoid to the data, whose axes are the coordinates of the new space.

Principal Component Analysis (PCA)
Procedure (1)

Given a dataset X ∈ IRn×d in d dimensions.

1 Compute the mean of the data (Xi is ith row vector of X):

x̄ =
1

n

n∑

i=1

Xi

2 Center the data into the origin:

X −




x̄
...
x̄




3 Compute the data covariance: C = 1
nX

TX

Principal Component Analysis (PCA)

Procedure (2)

4 Compute the (orthonormal) eigendecomposition of C:

V TCV = Λ

5 Use it as the new coordinate system:
x′ = V −1x = V Tx

( V −1 = V T as V is unitary)

Warning

• It assumes linear correlations (and Gaussian distributions)

Principal Component Analysis (PCA)

Dimensionality reduction

• Each eigenvalue corresponds to the amount of variance in that direction

• Select only the k eigenvectors with largest eigenvalues for dimensionality reduction (e.g. visualization)

Procedure

1 W = [v1, . . . ,vk]

2 x′ = WTx
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