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Evaluation

Basic concepts
Evaluation requires to define performance measures to be
optimized
Performance of learning algorithms cannot be evaluated
on entire domain (generalization error)→ approximation
needed
Performance evaluation is needed for:

tuning hyperparameters of learning method (e.g. type of
kernel and parameters, learning rate of perceptron)
evaluating quality of learned predictor
computing statistical significance of difference between
learning algorithms
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Performance measures

Training Loss and performance measures
The training loss function measures the cost paid for
predicting f (x) for output y
It is designed to boost effectiveness and efficiency of
learning algorithm (e.g. hinge loss for SVM):

it is not necessarily the best measure of final performance
e.g. misclassification cost is never used as it is piecewise
constant (not amenable to gradient descent)

Multiple performance measures could be used to evaluate
different aspects of a learner
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Performance measures

Binary classification

True\ Pred Positive Negative
Positive TP FN
Negative FP TN

The confusion matrix reports true (on rows) and predicted
(on column) labels
Each entry contains the number of examples having label
in row and predicted as column:

tp True positives: positives predicted as positives
tn True negatives: negatives predicted as

negatives
fp False positives: negatives predicted as

positives
fn False negatives: positives predicted as

negatives
Evaluation



Binary classification

Accuracy

Acc =
TP + TN

TP + TN + FP + FN

Accuracy is the fraction of correctly labelled examples
among all predictions
It is one minus the misclassification cost

Problem
For strongly unbalanced datasets (typically negatives
much more than positives) it is not informative:

Predictions are dominated by the larger class
Predicting everything as negative often maximizes accuracy

One possibility consists of rebalancing costs (e.g. a single
positive counts as N/P where N=TN+FP and P=TP+FN)
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Binary classification

Precision

Pre =
TP

TP + FP

It is the fraction of positives among examples predicted as
positives
It measures the precision of the learner when precting
positive

Recall or Sensitivity

Rec =
TP

TP + FN

It is the fraction of positive examples predicted as positives
It measures the coverage of the learner in returning
positive examples
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Binary Classification

F-measure

Fβ =
(1 + β2)(Pre ∗ Rec)

β2Pre + Rec

Precision and recall are complementary: increasing
precision typically reduces recall
F-measure combines the two measures balancing the two
aspects
β is a parameter trading-off precision and recall

F1

F1 =
2(Pre ∗ Rec)

Pre + Rec

It is the F-measure for β = 1
It is the harmonic mean of precision and recall
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Binary Classification

Precision-recall curve
Classifiers often provide a confidence in the prediction
(e.g. margin of SVM)
A hard decision is made setting a threshold on the
classifier (zero for SVM)
Acc,Pre,Rec,F1 all measure peformance of a classifier for
a specific threshold
It is possible to change the threshold if interested in
maximizing a specific performance (e.g. recall)
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Binary Classification

Precision-recall curve
By varying threshold from min to max possible value, we
obtain a curve of performance measures
This curve can be shown plotting one measure (recall)
against the complementary one (precision)
It is possible to investigate the performance of the learner
in different scenarios (e.g. at high precision)
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Binary Classification

Area under Pre-Rec curve
A single aggregate value can be obtained taking the area
under the curve
It combines the performance of the algorithm for all
possible thresholds (without preference)
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Performance measures
Multiclass classification

T\P y1 y2 y3
y1 n11 n12 n13
y2 n21 n22 n23
y3 n31 n32 n33

Confusion matrix is generalized version of binary one
nij is the number of examples with class yi predicted as yj .
The main diagonal contains true positives for each class
The sum of off-diagonal elements along a column is the
number of false positives for the column label
The sum of off-diagonal elements along a row is the
number of false negatives for the row label

FPi =
∑
j 6=i

nji FNi =
∑
j 6=i

nij
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Performance measures

Multiclass classification
ACC,Pre,Rec,F1 carry over to a per-class measure
considering as negatives examples from other classes.
E.g.:

Prei =
nii

nii + FPi
Reci =

nii

nii + FNi

Multiclass accuracy is the overall fraction of correctly
classified examples:

MAcc =

∑
i nii∑

i
∑

j nij
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Performance measures
Regression

Root mean squared error (for dataset D with n = |D|):

RMSE =

√√√√1
n

n∑
i=1

(f (xi)− yi)2

Pearson correlation coefficient (random variables X ,Y ):

ρ =
cov(X ,Y )

σXσY
=

E [(X − X̄ )(Y − Ȳ )]√
E [(X − X̄ )2]E [(Y − Ȳ )2]

Pearson correlation coefficient (for regression on D):

ρ =

∑n
i=1(f (xi)− f̄ (xi))(yi − ȳi)√∑n

i=1(f (xi)− f̄ (xi))2
∑n

i=1(yi − ȳi)2

where z̄ is the average of z on D.
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Performance estimation
Hold-out procedure

Computing performance measure on training set would be
optimistically biased
Need to retain an independent set on which to compute
performance:

validation set when used to estimate performance of
different algorithmic settings (i.e.
hyperparameters)

test set when used to estimate final performance of
selected model

E.g.: split dataset in 40%/30%/30% for training, validation
and testing

Problem
Hold-out procedure depends on the specific test (and
validation) set chosen (esp. for small datasets)
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Performance estimation

k-fold cross validation
Split D in k equal sized disjoint subsets Di .
For i ∈ [1, k ]

train predictor on Ti = D \ Di
compute score S of predictor L(Ti ) on test set Di :

Si = SDi [L(Ti )]

return average score across folds

S̄ =
1
k

k∑
i=1

Si
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Performance estimation
k-fold cross validation: Variance

The variance of the average score is computed as
(assuming independent folds):

Var [S̄] = Var [
S1 + · · ·+ Sk

k
] =

1
k2

k∑
j=1

Var [Sj ]

We cannot exactly compute Var [Sj ], so we approximate it
with the unbiased variance across folds:

Var [Sj ] = Var [Sh] ≈ 1
k − 1

k∑
i=1

(Si − S̄)2

giving

Var [S̄] ≈ 1
k2

k∑
j=1

1
k − 1

k∑
i=1

(Si− S̄)2 =
1

k�2
�k

k − 1

k∑
i=1

(Si− S̄)2
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Comparing learning algorithms

Hipothesis testing
We want to compare generalization performance of two
learning algorithms
We want to know whether observed different in
performance is statistically significant (and not due to
some noisy evaluation)
Hypothesis testing allows to test the statistical significance
of a hypothesis (e.g. the two predictors have different
performance)
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Hypothesis testing

Test statistic
null hypothesis H0 default hypothesis, for rejecting which

evidence should be provided
test statistic Given a sample of k realizations of random

variables X1, . . . ,Xk , a test statistic is a statistic
T = h(X1, . . . ,Xk ) whose value is used to decide
wether to reject H0 or not.

Example
Given a set of measurements X1, . . . ,Xk , decide wether the
actual value to be measured is zero.

null hypothesis the actual value is zero
test statistic sample mean:

T = h(X1, . . . ,Xk ) =
1
k

k∑
i=1

Xi = X̄
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Hypothesis testing

Glossary
tail probability probability that T is at least as great (right tail) or

at least as small (left tail) as the observed value t .
p-value the probability of obtaining a value T at least as

extreme as the one observed t , in case H0 is true.
Type I error reject the null hypothesis when it’s true
Type II error accept the null hypothesis when it’s false
significance level the largest acceptable probability for

committing a type I error
critical region set of values of T for which we reject the null

hypothesis
critical values values on the boundary of the critical region
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t-test

The test
The test statistics is given by the standardized (also called
studentized) mean:

T =
X̄ − µ0√
Ṽar [X̄ ]

where Ṽar [X̄ ] is the approximated variance (using
unbiased sample one)
Assuming the samples come from an unknown Normal
distribution, the test statistics has a tk−1 distribution under
the null hypothesis
The null hypothesis can be rejected at significance level α
if:

T ≤ −tk−1,α/2 or T ≥ tk−1,α/2
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t-test

tk−1 distribution

bell-shaped distribution similar to the Normal one
wider and shorter: reflects greater variance due to using
Ṽar [X̄ ] instead of the true unknown variance of the
distribution.
k − 1 is the number of degrees of freedom of the
distribution (related to number of independent events
observed)
tk−1 tends to the standardized normal z for k →∞.
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Comparing learning algorithms

Hypothesis testing
Run k-fold cross validation procedure for algorithms A and
B
Compute mean performance difference for the two
algorithms:

δ̂ =
1
k

k∑
i=1

δi =
1
k

k∑
i=1

SDi [LA(Ti)]− SDi [LB(Ti)]

Null hypothesis is that mean difference is zero
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Comparing learning algorithms: t-test

t-test
at significance level α:

δ̄√
Ṽar [δ̄]

≤ −tk−1,α/2 or
δ̄√

Ṽar [δ̄]
≥ tk−1,α/2

where: √
Ṽar [δ̄] =

√√√√ 1
k(k − 1)

k∑
i=1

(δi − δ̄)2

Note
paired test the two hypotheses where evaluated over identical

samples
two-tailed test if no prior knowledge can tell the direction of

difference (otherwise use one-tailed test)
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t-test example

10-fold cross validation
Test errors:

Di SDi [LA(Ti )] SDi [LB(Ti )] δi
D1 0.81 0.80 0.01
D2 0.82 0.77 0.05
D3 0.84 0.70 0.14
D4 0.78 0.83 -0.05
D5 0.85 0.80 0.05
D6 0.86 0.78 0.08
D7 0.82 0.75 0.07
D8 0.83 0.80 0.03
D9 0.82 0.78 0.04
D10 0.81 0.77 0.04

Average error difference:

δ̄ =
1

10

10∑
i=1

δi = 0.046
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t-test example

10-fold cross validation
Unbiased estimate of standard deviation:

√
Ṽar [δ̄] =

√√√√ 1
10 · 9

10∑
i=1

(δi − δ̄)2 = 0.0154344

Standardized mean error difference:

δ̄√
Ṽar [δ̄]

=
0.046

0.0154344
= 2.98

t distribution for α = 0.05 and k = 10:

tk−1,α/2 = t9,0.025 = 2.262 < 2.98

Null hypothesis rejected, classifiers are different
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t-test example
t-Distribution Table

t

The shaded area is equal to α for t = tα .

d f t.100 t.050 t.025 t.010 t.005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
32 1.309 1.694 2.037 2.449 2.738
34 1.307 1.691 2.032 2.441 2.728
36 1.306 1.688 2.028 2.434 2.719
38 1.304 1.686 2.024 2.429 2.712
∞ 1.282 1.645 1.960 2.326 2.576

Gilles Cazelais. Typeset with LATEX on April 20, 2006.
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