#### **Evaluation**

#### **Basic concepts**

- Evaluation requires to define performance measures to be optimized
- Performance of learning algorithms cannot be evaluated on entire domain (generalization error) → approximation needed
- Performance evaluation is needed for:
  - tuning hyperparameters of learning method (e.g. type of kernel and parameters, learning rate of perceptron)
  - evaluating quality of learned predictor
  - computing statistical significance of difference between learning algorithms

#### Performance measures

#### Training Loss and performance measures

- The training loss function measures the cost paid for predicting  $f(\mathbf{x})$  for output y
- It is designed to boost effectiveness and efficiency of learning algorithm (e.g. hinge loss for SVM):
  - it is not necessarily the best measure of final performance
  - e.g. misclassification cost is never used as it is piecewise constant (not amenable to gradient descent)
- Multiple performance measures could be used to evaluate different aspects of a learner

#### **Performance measures**

#### **Binary classification**

| True\ Pred | Positive | Negative |
|------------|----------|----------|
| Positive   | TP       | FN       |
| Negative   | FP       | TN       |

- The confusion matrix reports true (on rows) and predicted (on column) labels
- Each entry contains the number of examples having label in row and predicted as column:

**tp** True positives: positives predicted as positives

tn True negatives: negatives predicted as negatives

fp False positives: negatives predicted as positives

fn False negatives: positives predicted as negatives

## **Binary classification**

## **Accuracy**

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

- Accuracy is the fraction of correctly labelled examples among all predictions
- It is one minus the misclassification cost

#### Problem

- For strongly unbalanced datasets (typically negatives much more than positives) it is not informative:
  - Predictions are dominated by the larger class
  - Predicting everything as negative often maximizes accuracy
- One possibility consists of *rebalancing* costs (e.g. a single positive counts as N/P where N=TN+FP and P=TP+FN)

## **Binary classification**

#### **Precision**

$$Pre = \frac{TP}{TP + FP}$$

- It is the fraction of positives among examples predicted as positives
- It measures the *precision* of the learner when precting positive

## **Recall or Sensitivity**

$$Rec = \frac{TP}{TP + FN}$$

- It is the fraction of positive examples predicted as positives
- It measures the *coverage* of the learner in returning positive examples

#### **Binary Classification**

#### F-measure

$$F_{\beta} = \frac{(1+\beta^2)(Pre*Rec)}{\beta^2 Pre + Rec}$$

- · Precision and recall are complementary: increasing precision typically reduces recall
- F-measure combines the two measures balancing the two aspects
- $\beta$  is a parameter trading-off precision and recall

 $F_1$ 

$$F_1 = \frac{2(Pre * Rec)}{Pre + Rec}$$

- It is the F-measure for  $\beta = 1$
- It is the harmonic mean of precision and recall

## **Binary Classification**

## **Precision-recall curve**

- Classifiers often provide a confidence in the prediction (e.g. margin of SVM)
- A hard decision is made setting a threshold on the classifier (zero for SVM)
- Acc,Pre,Rec, $F_1$  all measure performance of a classifier for a specific threshold
- It is possible to change the threshold if interested in maximizing a specific performance (e.g. recall)

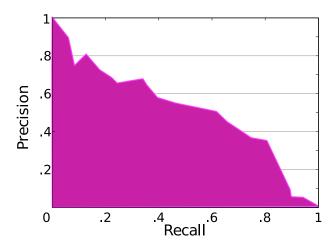
## **Binary Classification**



## Precision-recall curve

- By varying threshold from min to max possible value, we obtain a curve of performance measures
- This curve can be shown plotting one measure (recall) against the complementary one (precision)
- It is possible to investigate the performance of the learner in different scenarios (e.g. at high precision)

## **Binary Classification**



#### Area under Pre-Rec curve

- A single aggregate value can be obtained taking the area under the curve
- It combines the performance of the algorithm for all possible thresholds (without preference)

## Performance measures Multiclass classification

$$\begin{array}{cccccccc} T \backslash P & y_1 & y_2 & y_3 \\ \hline y_1 & n_{11} & n_{12} & n_{13} \\ y_2 & n_{21} & n_{22} & n_{23} \\ y_3 & n_{31} & n_{32} & n_{33} \end{array}$$

- · Confusion matrix is generalized version of binary one
- $n_{ij}$  is the number of examples with class  $y_i$  predicted as  $y_j$ .
- The main diagonal contains true positives for each class
- The sum of off-diagonal elements along a column is the number of false positives for the column label
- The sum of off-diagonal elements along a row is the number of false negatives for the row label

$$FP_i = \sum_{j \neq i} n_{ji}$$
  $FN_i = \sum_{j \neq i} n_{ij}$ 

#### Performance measures

## **Multiclass classification**

- ACC,Pre,Rec,F1 carry over to a per-class measure considering as negatives examples from other classes.
- E.g.:

$$Pre_i = \frac{n_{ii}}{n_{ii} + FP_i} \qquad Rec_i = \frac{n_{ii}}{n_{ii} + FN_i}$$

• Multiclass accuracy is the overall fraction of correctly classified examples:

$$MAcc = \frac{\sum_{i} n_{ii}}{\sum_{i} \sum_{j} n_{ij}}$$

## Performance measures

#### Regression

• Root mean squared error (for dataset  $\mathcal{D}$  with  $n = |\mathcal{D}|$ ):

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (f(\mathbf{x}_i) - y_i)^2}$$

• Pearson correlation coefficient (random variables X, Y):

$$\rho = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X-\bar{X})(Y-\bar{Y})]}{\sqrt{E[(X-\bar{X})^2]E[(Y-\bar{Y})^2]}}$$

• Pearson correlation coefficient (for regression on  $\mathcal{D}$ ):

$$\rho = \frac{\sum_{i=1}^{n} (f(\mathbf{x}_i) - \bar{f}(\mathbf{x}_i))(y_i - \bar{y}_i)}{\sqrt{\sum_{i=1}^{n} (f(\mathbf{x}_i) - \bar{f}(\mathbf{x}_i))^2 \sum_{i=1}^{n} (y_i - \bar{y}_i)^2}}$$

• where  $\bar{z}$  is the average of z on  $\mathcal{D}$ .

# Performance estimation Hold-out procedure

- · Computing performance measure on training set would be optimistically biased
- Need to retain an independent set on which to compute performance:
  validation set when used to estimate performance of different algorithmic settings (i.e. hyperparameters)
  test set when used to estimate final performance of selected model
- E.g.: split dataset in 40%/30%/30% for training, validation and testing

#### Problem

• Hold-out procedure depends on the specific test (and validation) set chosen (esp. for small datasets)

#### **Performance estimation**

#### k-fold cross validation

- Split  $\mathcal{D}$  in k equal sized disjoint subsets  $\mathcal{D}_i$ .
- For  $i \in [1, k]$ 
  - train predictor on  $\mathcal{T}_i = \mathcal{D} \setminus \mathcal{D}_i$
  - compute score S of predictor  $L(\mathcal{T}_i)$  on test set  $\mathcal{D}_i$ :

$$S_i = S_{\mathcal{D}_i}[L(\mathcal{T}_i)]$$

· return average score across folds

$$\bar{S} = \frac{1}{k} \sum_{i=1}^{k} S_i$$

#### **Performance estimation**

#### k-fold cross validation: Variance

• The variance of the average score is computed as (assuming independent folds):

$$Var[\bar{S}] = Var[\frac{S_1 + \dots + S_k}{k}] = \frac{1}{k^2} \sum_{j=1}^{k} Var[S_j]$$

• We cannot exactly compute  $Var[S_j]$ , so we approximate it with the *unbiased* variance across folds:

$$Var[S_j] = Var[S_h] \approx \frac{1}{k-1} \sum_{i=1}^{k} (S_i - \bar{S})^2$$

• giving

$$Var[\bar{S}] \approx \frac{1}{k^2} \sum_{i=1}^k \frac{1}{k-1} \sum_{i=1}^k (S_i - \bar{S})^2 = \frac{1}{k^2} \frac{\cancel{k}}{k-1} \sum_{i=1}^k (S_i - \bar{S})^2$$

## Comparing learning algorithms

#### **Hipothesis testing**

- We want to compare generalization performance of two learning algorithms
- We want to know whether observed different in performance is *statistically significant* (and not due to some noisy evaluation)
- Hypothesis testing allows to test the statistical significance of a hypothesis (e.g. the two predictors have different performance)

## Hypothesis testing

## **Test statistic**

**null hypothesis**  $H_0$  default hypothesis, for rejecting which evidence should be provided

**test statistic** Given a sample of k realizations of random variables  $X_1, \ldots, X_k$ , a *test statistic* is a statistic  $T = h(X_1, \ldots, X_k)$  whose value is used to decide wether to reject  $H_0$  or not.

## Example

Given a set of measurements  $X_1, \ldots, X_k$ , decide wether the actual value to be measured is zero.

null hypothesis the actual value is zero

test statistic sample mean:

$$T = h(X_1, \dots, X_k) = \frac{1}{k} \sum_{i=1}^k X_i = \bar{X}$$

## **Hypothesis testing**

## Glossary

 ${f tail}$  probability probability that T is at least as great (right tail) or at least as small (left tail) as the observed value t.

**p-value** the probability of obtaining a value T at least as extreme as the one observed t, in case  $H_0$  is true.

Type I error reject the null hypothesis when it's true

Type II error accept the null hypothesis when it's false

significance level the largest acceptable probability for committing a type I error

**critical region** set of values of T for which we reject the null hypothesis

critical values values on the boundary of the critical region

#### t-test

#### The test

• The test statistics is given by the standardized (also called *studentized*) mean:

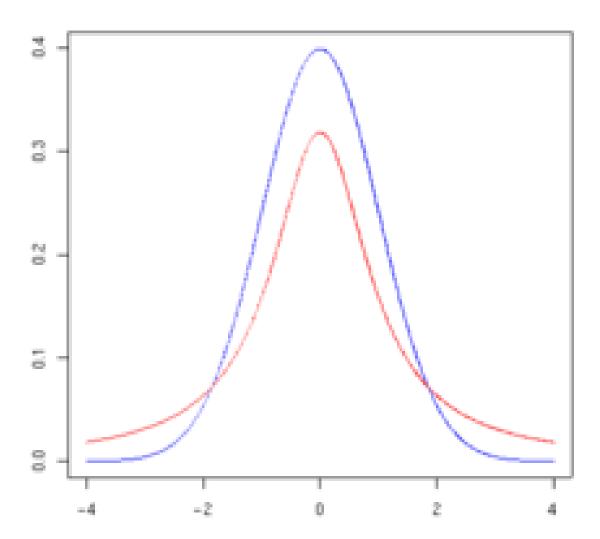
$$T = \frac{\bar{X} - \mu_0}{\sqrt{\tilde{Var}[\bar{X}]}}$$

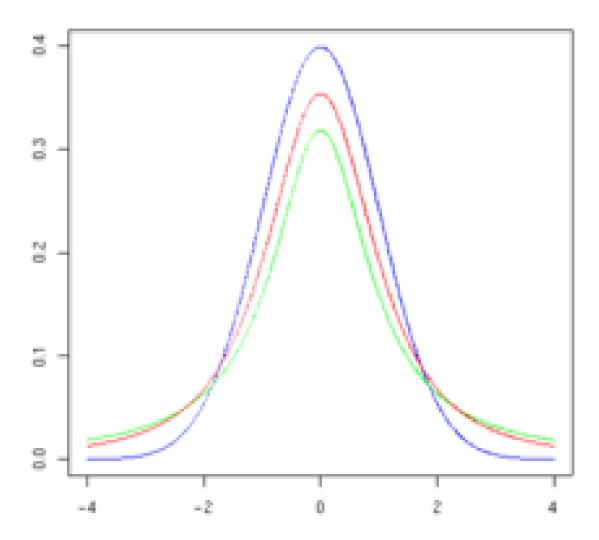
where  $\tilde{Var}[\bar{X}]$  is the approximated variance (using unbiased sample one)

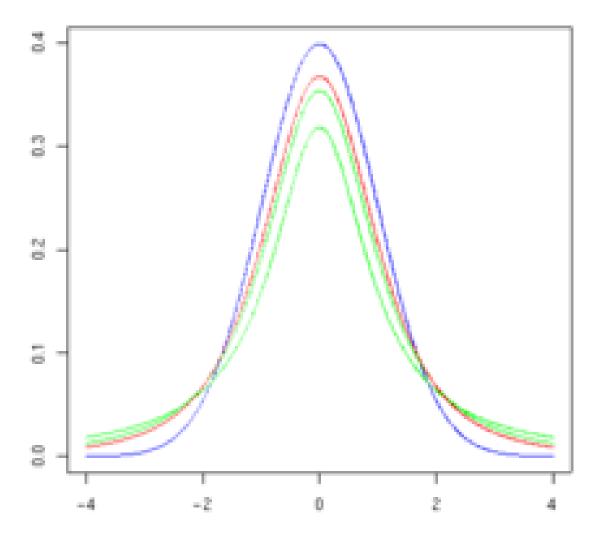
- Assuming the samples come from an unknown Normal distribution, the test statistics has a  $t_{k-1}$  distribution under the null hypothesis
- The null hypothesis can be rejected at significance level  $\alpha$  if:

$$T \le -t_{k-1,\alpha/2}$$
 or  $T \ge t_{k-1,\alpha/2}$ 

t-test







 $t_{k-1}$  distribution

- bell-shaped distribution similar to the Normal one
- wider and shorter: reflects greater variance due to using  $\tilde{Var}[\bar{X}]$  instead of the true unknown variance of the distribution.
- $\bullet$  k-1 is the number of degrees of freedom of the distribution (related to number of independent events observed)
- $\mathbf{t}_{k-1}$  tends to the standardized normal z for  $k \to \infty$ .

## Comparing learning algorithms

## Hypothesis testing

- Run k-fold cross validation procedure for algorithms A and B
- Compute mean performance difference for the two algorithms:

$$\hat{\delta} = \frac{1}{k} \sum_{i=1}^{k} \delta_i = \frac{1}{k} \sum_{i=1}^{k} S_{\mathcal{D}_i}[L_A(\mathcal{T}_i)] - S_{\mathcal{D}_i}[L_B(\mathcal{T}_i)]$$

• Null hypothesis is that mean difference is zero

## Comparing learning algorithms: t-test

#### t-test

at significance level  $\alpha$ :

$$\frac{\bar{\delta}}{\sqrt{\tilde{Var}[\bar{\delta}]}} \le -t_{k-1,\alpha/2} \qquad \text{or} \qquad \frac{\bar{\delta}}{\sqrt{\tilde{Var}[\bar{\delta}]}} \ge t_{k-1,\alpha/2}$$

where:

$$\sqrt{\tilde{Var}[\bar{\delta}]} = \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k} (\delta_i - \bar{\delta})^2}$$

Note

paired test the two hypotheses where evaluated over identical samples

two-tailed test if no prior knowledge can tell the direction of difference (otherwise use one-tailed test)

## t-test example

10-fold cross validation

• Test errors:

| ${\cal D}_i$       | $S_{\mathcal{D}_i}[L_A(\mathcal{T}_i)]$ | $S_{\mathcal{D}_i}[L_B(\mathcal{T}_i)]$ | $\delta_i$ |
|--------------------|-----------------------------------------|-----------------------------------------|------------|
| $\mathcal{D}_1$    | 0.81                                    | 0.80                                    | 0.01       |
| ${\cal D}_2$       | 0.82                                    | 0.77                                    | 0.05       |
| $\mathcal{D}_3$    | 0.84                                    | 0.70                                    | 0.14       |
| $\mathcal{D}_4$    | 0.78                                    | 0.83                                    | -0.05      |
| $\mathcal{D}_5$    | 0.85                                    | 0.80                                    | 0.05       |
| $\mathcal{D}_6$    | 0.86                                    | 0.78                                    | 0.08       |
| $\mathcal{D}_7$    | 0.82                                    | 0.75                                    | 0.07       |
| $\mathcal{D}_8$    | 0.83                                    | 0.80                                    | 0.03       |
| $\mathcal{D}_9$    | 0.82                                    | 0.78                                    | 0.04       |
| $\mathcal{D}_{10}$ | 0.81                                    | 0.77                                    | 0.04       |

• Average error difference:

$$\bar{\delta} = \frac{1}{10} \sum_{i=1}^{10} \delta_i = 0.046$$

## t-test example

10-fold cross validation

• Unbiased estimate of standard deviation:

$$\sqrt{\tilde{Var}[\bar{\delta}]} = \sqrt{\frac{1}{10 \cdot 9} \sum_{i=1}^{10} (\delta_i - \bar{\delta})^2} = 0.0154344$$

• Standardized mean error difference:

$$\frac{\bar{\delta}}{\sqrt{\tilde{Var}[\bar{\delta}]}} = \frac{0.046}{0.0154344} = 2.98$$

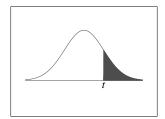
• t distribution for  $\alpha = 0.05$  and k = 10:

$$t_{k-1,\alpha/2} = t_{9,0.025} = 2.262 < 2.98$$

• Null hypothesis rejected, classifiers are different

## t-test example

# t-Distribution Table



The shaded area is equal to  $\alpha$  for  $t = t_{\alpha}$ .

| df | t.100 | t.050 | t.025  | t.010  | t.005  |
|----|-------|-------|--------|--------|--------|
| 1  | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 |
| 2  | 1.886 | 2.920 | 4.303  | 6.965  | 9.925  |
| 3  | 1.638 | 2.353 | 3.182  | 4.541  | 5.841  |
| 4  | 1.533 | 2.132 | 2.776  | 3.747  | 4.604  |
| 5  | 1.476 | 2.015 | 2.571  | 3.365  | 4.032  |
| 6  | 1.440 | 1.943 | 2.447  | 3.143  | 3.707  |
| 7  | 1.415 | 1.895 | 2.365  | 2.998  | 3.499  |
| 8  | 1.397 | 1.860 | 2.306  | 2.896  | 3.355  |
| 9  | 1.383 | 1.833 | 2.262  | 2.821  | 3.250  |
| 10 | 1.372 | 1.812 | 2.228  | 2.764  | 3.169  |
| 11 | 1.363 | 1.796 | 2.201  | 2.718  | 3.106  |
| 12 | 1.356 | 1.782 | 2.179  | 2.681  | 3.055  |
| 13 | 1.350 | 1.771 | 2.160  | 2.650  | 3.012  |
| 14 | 1.345 | 1.761 | 2.145  | 2.624  | 2.977  |
| 15 | 1.341 | 1.753 | 2.131  | 2.602  | 2.947  |
| 16 | 1.337 | 1.746 | 2.120  | 2.583  | 2.921  |
| 17 | 1.333 | 1.740 | 2.110  | 2.567  | 2.898  |
| 18 | 1.330 | 1.734 | 2.101  | 2.552  | 2.878  |
| 19 | 1.328 | 1.729 | 2.093  | 2.539  | 2.861  |
| 20 | 1.325 | 1.725 | 2.086  | 2.528  | 2.845  |
| 21 | 1.323 | 1.721 | 2.080  | 2.518  | 2.831  |
| 22 | 1.321 | 1.717 | 2.074  | 2.508  | 2.819  |
| 23 | 1.319 | 1.714 | 2.069  | 2.500  | 2.807  |
| 24 | 1.318 | 1.711 | 2.064  | 2.492  | 2.797  |
| 25 | 1.316 | 1.708 | 2.060  | 2.485  | 2.787  |
| 26 | 1.315 | 1.706 | 2.056  | 2.479  | 2.779  |
| 27 | 1.314 | 1.703 | 2.052  | 2.473  | 2.771  |
| 28 | 1.313 | 1.701 | 2.048  | 2.467  | 2.763  |
| 29 | 1.311 | 1.699 | 2.045  | 2.462  | 2.756  |
| 30 | 1.310 | 1.697 | 2.042  | 2.457  | 2.750  |
| 32 | 1.309 | 1.694 | 2.037  | 2.449  | 2.738  |
| 34 | 1.307 | 1.691 | 2.032  | 2.441  | 2.728  |
| 36 | 1.306 | 1.688 | 2.028  | 2.434  | 2.719  |
| 38 | 1.304 | 1.686 | 2.024  | 2.429  | 2.712  |
| ∞  | 1.282 | 1.645 | 1.960  | 2.326  | 2.576  |

Gilles Cazelais. Typeset with IATEX on April 20, 2006.

# References

**Hypothesis testing** T. Mitchell, *Machine Learning*, McGraw Hill, 1997 (chapter 5)