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Similarity between structured data

@ Kernels allow to generalize notion of dot product (i.e.
similarity) to arbitrary (non-vector) spaces

@ Decomposition kernels suggest a constructive way to build
kernels considering parts of objects

@ Kernels have been developed for the most general
structural representations: sequences, trees, graphs.
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Sequences for data representation
@ Variable length objects where order of elements matters
@ Biological sequences (DNA, RNA)
@ Text documents as sequences of words
@ Sequences of sensor readings for human activity
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Spectrum kernel

@ Feature space is space of all possible k-grams
(subsequences)

@ An efficient procedure based on suffix trees allows to
compute kernel without explicitly building feature maps
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Spectrum kernel: problem

@ Feature space representation can be very sparse (many
zero features, especially for high k)

@ Sparse feature maps tend to produce orthogonal examples
(an example is only similar to itself)
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Mismatch string kernel

@ Allows for approximate matches between k-grams

@ Defines a (k-m)-neighbourhood of a k-gram as all k-grams
with at most m mismatches to it

@ Each k-gram counts as a feature for its entire
(k-m)-neighbourhood

@ The kernel can be efficiently computed using a
(k-m)-mismatch tree (similar to suffix tree)
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X = ABAABA x' = AAABB

AAA 0 1 4 2
AAB 1 1 1 3
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BBA 0 0 2 0
BBB 0 0 0 1

Mismatch string kernel
@ The feature map is denser than that of the spectrum kernel

Kernels on structures



Kernels on trees

Trees for data representation

@ Objects having hierarchical internal representation

@ Taxonomies of concepts in a domain

@ E.g. phylogenetic trees representing evolution of
organisms

@ Parse trees representing syntactic structure of sentences
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Subset tree kernel

@ A subset tree is a subtree having either all or no children of
a node (and is not a single node)

@ A subset tree kernel corresponds to a feature map of all
subset trees

@ ltis a special type of tree-fragment kernel (many other
exist), justified by grammatical considerations (do not
break a grammar rule)
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Subset tree kernel

k(t,t) Zd» (Oi(t) = > C(mi, )

n,-etnj’.et’

@ The subset tree kernel is the product of the subset tree
mapping ¢(-) of the two trees t and t'.

@ It can be computed summing the number of common
subtrees C(n;, nj’-) rooted at nodes nj;, nj’., for all n; and n/’.
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Subset tree: node matching

@ Two nodes n,-,n/’. match if:

@ they have the same label

Q they have the same number of children

© each child of n; has the same label of the corresponding
child of nj’-

4
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Recursive procedure for C(nj, )

e If n; and n/’- don’t match C(n;, n]’.) =0.
e if n; and n]’. match, and they are both pre-terminals (parents
of leaves) C(n;, m) = 1.

@ Else

ne(n;)
Cmi,m) = [T (1 + Cleh(n;, j), ch(r, )))
j=1
where nc(n;) is the number of children of n; (equal to that
of nj’. for the definition of match) and ch(n;, j) is the ™ child
of n;.
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Dominant diagonal

@ The kernel value strongly depends on the size of the tree
(normalize!!)

@ It is difficult that very large portion of trees are identical in
different examples

@ Similary of example to itself tend to be orders of magnitude
higher than to any other example (dominant diagonal
problem)

@ One solution consists of downweighting larger subtrees:

e simply replace 1 by 0 < A < 1 in previous procedure
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Graphs for data representation

@ graphs are a powerful formalism allowing to represent data
with arbitrary structures

@ Chemical molecules are commonly represented as graphs
made of atoms and bonds

@ Networked data (e.g. a web site, the Internet) can be
naturally encoded as graphs

Kernels on structures



Kernels on graphs

oo
(o)

— Og

"o

Bag of subgraphs
@ One feature for all possible subgraphs up to a certain size
(2 in figure)
@ Feature value is frequency of occurrence of subgraph
@ PB of graph isomorphisms (ok for small subgraphs)
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Main definitions

@ Agraph G = (V,€) is afinite set of vertices (or nodes) V
andedges £ €V xV

@ A (node)labelled graph is a graph whose nodes are
labelled with symbols /abel(v;) = ¢; from L.

@ A (node)labelled graph can be also encoded with:

e A square adjacency matrix A such that A; = 1if (v;,vj) € £
and 0 otherwise

e A (node)label matrix L such that L; = 1 if label(v;) = ¢; and
zero otherwise
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@ A walkin a graph is a sequence of nodes {vq,...,Vyi1}
such that (v;, vj, 1) € Eforall i

@ The length of a walk is the number of its edges
@ The set of all walks of length nis written as W,(G)
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Walk kernels

@ A possible walk kernels compares graphs considering the
set of walks starting and ending with the same labels

gstart,gend-

@ This corresponds to having a feature for all possible label
pairs ¢;, £; with value:

¢E,,€ Z)‘HH V1,...,Vn+1) € Wn(G)
) = 6 A K(vng1) = 6

@ i.e. a weighted (by A\, > 0 for all n) sum of the number of
walks starting with label /; and ending with label /;
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Walk kernels

@ The n' power of the adjacency matrix, A”, computes the
number of walks of length n between any two nodes.

@ le. (A"); is the number of walks of length n between v;
and v;

@ This can be used to efficiently compute the overall feature

map as:
,6,(G) = <Z An A"LT>

0
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Walk kernels

@ The corresponding kernel is:

k(G,G) = (Z)\ A’) L (Z)\ A’/) L'm

where the dot product between two matrices M, M’ is
defined as:

(M, M) = ZM,-/-M;]-.

Exponential graph kernel

@ An example of walk kernel is:
kep(G, G') = (LePALT L' L'T)

where $ € R is a parameter
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