
Kernels on structures

Similarity between structured data

• Kernels allow to generalize notion of dot product (i.e. similarity) to arbitrary (non-vector) spaces

• Decomposition kernels suggest a constructive way to build kernels considering parts of objects

• Kernels have been developed for the most general structural representations: sequences, trees, graphs.

Kernels on sequences

Sequences for data representation

• Variable length objects where order of elements matters

• Biological sequences (DNA, RNA)

• Text documents as sequences of words

• Sequences of sensor readings for human activity

Kernels on sequences

Spectrum kernel

• Feature space is space of all possible k-grams (subsequences)

• An efficient procedure based on suffix trees allows to compute kernel without explicitly building feature maps
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Kernels on sequences

Spectrum kernel: problem

• Feature space representation can be very sparse (many zero features, especially for high k)

• Sparse feature maps tend to produce orthogonal examples (an example is only similar to itself)

Kernels on sequences

Mismatch string kernel

• Allows for approximate matches between k-grams

• Defines a (k-m)-neighbourhood of a k-gram as all k-grams with at most m mismatches to it

• Each k-gram counts as a feature for its entire (k-m)-neighbourhood

• The kernel can be efficiently computed using a (k-m)-mismatch tree (similar to suffix tree)

Kernels on sequences

x = ABAABA x' = AAABB

Mismatch string kernel

• The feature map is denser than that of the spectrum kernel
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Kernels on trees

Trees for data representation

• Objects having hierarchical internal representation

• Taxonomies of concepts in a domain

• E.g. phylogenetic trees representing evolution of organisms

• Parse trees representing syntactic structure of sentences

Kernels on trees

Subset tree kernel

• A subset tree is a subtree having either all or no children of a node (and is not a single node)

• A subset tree kernel corresponds to a feature map of all subset trees

• It is a special type of tree-fragment kernel (many other exist), justified by grammatical considerations (do not
break a grammar rule)

Kernels on trees

Subset tree kernel

k(t, t′) =

M∑
i=1

φi(t)φi(t
′) =

∑
ni∈t

∑
n′
j∈t′

C(ni, n
′
j)

• The subset tree kernel is the product of the subset tree mapping Φ(·) of the two trees t and t′.

• It can be computed summing the number of common subtrees C(ni, n
′
j) rooted at nodes ni, n′j , for all ni and

n′j
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Kernels on trees

Subset tree: node matching

• Two nodes ni,n′j match if:

1. they have the same label

2. they have the same number of children

3. each child of ni has the same label of the corresponding child of n′j

Kernels on trees

Recursive procedure for C(ni, n
′
j)

• If ni and n′j don’t match C(ni, n
′
j) = 0.

• if ni and n′j match, and they are both pre-terminals (parents of leaves) C(ni, n
′
j) = 1.

• Else

C(ni, n
′
j) =

nc(ni)∏
j=1

(1 + C(ch(ni, j), ch(n′j , j)))

where nc(ni) is the number of children of ni (equal to that of n′j for the definition of match) and ch(ni, j) is
the jth child of ni.

Kernels on trees
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Kernels on trees

Dominant diagonal

• The kernel value strongly depends on the size of the tree (normalize!!)

• It is difficult that very large portion of trees are identical in different examples

• Similary of example to itself tend to be orders of magnitude higher than to any other example (dominant diagonal
problem)

• One solution consists of downweighting larger subtrees:

– simply replace 1 by 0 ≤ λ ≤ 1 in previous procedure

Kernels on graphs

Graphs for data representation

• graphs are a powerful formalism allowing to represent data with arbitrary structures

• Chemical molecules are commonly represented as graphs made of atoms and bonds

• Networked data (e.g. a web site, the Internet) can be naturally encoded as graphs
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Kernels on graphs
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Bag of subgraphs

• One feature for all possible subgraphs up to a certain size (2 in figure)

• Feature value is frequency of occurrence of subgraph

• PB of graph isomorphisms (ok for small subgraphs)

Kernels on graphs

Main definitions

• A graph G = (V, E) is a finite set of vertices (or nodes) V and edges E ∈ V × V

• A (node)labelled graph is a graph whose nodes are labelled with symbols label(vj) = `i from L.

• A (node)labelled graph can be also encoded with:

– A square adjacency matrix A such that Aij = 1 if (vi, vj) ∈ E and 0 otherwise

– A (node)label matrix L such that Lij = 1 if label(vj) = `i and zero otherwise

Kernels on graphs: definitions
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Kernels on graphs

Walk kernels

• A walk in a graph is a sequence of nodes {v1, . . . , vn+1} such that (vi, vi+1) ∈ E for all i

• The length of a walk is the number of its edges

• The set of all walks of length n is written as Wn(G)

Kernels on graphs

Walk kernels

• A possible walk kernels compares graphs considering the set of walks starting and ending with the same labels
`start,`end.
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• This corresponds to having a feature for all possible label pairs `i, `j with value:

φ`i,`j (G) =

∞∑
n=1

λn|{(v1, . . . , vn+1) ∈Wn(G)

: l(v1) = `i ∧ l(vn+1) = `j}|

• i.e. a weighted (by λn ≥ 0 for all n) sum of the number of walks starting with label `i and ending with label `j

Kernels on graphs

Walk kernels

• The nth power of the adjacency matrix, An, computes the number of walks of length n between any two nodes.

• I.e. (An)ij is the number of walks of length n between vi and vj

• This can be used to efficiently compute the overall feature map as:

φ`i,`j (G) =

( ∞∑
n=1

λnLA
nLT

)
`i,`j

Kernels on graphs
Walk kernels

• The corresponding kernel is:

k(G,G′) = 〈L

( ∞∑
i=1

λiA
i

)
LT , L′

 ∞∑
j=1

λjA
′j

L′T 〉

where the dot product between two matrices M,M ′ is defined as:

〈M,M ′〉 =
∑
i,j

MijM
′
ij .

Exponential graph kernel

• An example of walk kernel is:
kexp(G,G

′) = 〈LeβALT , L′eβA
′
L′T 〉

where β ∈ IR is a parameter

References

string kernels J.Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press,
2004 (Section 9)

tree kernels M. Collins and N. Duffy. Convolution kernels for natural language. In , Advances in Neural Information
Processing Systems 14, Cambridge, MA, 2002. MIT Press.
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