Kernels on structures

Similarity between structured data
» Kernels allow to generalize notion of dot product (i.e. similarity) to arbitrary (non-vector) spaces
* Decomposition kernels suggest a constructive way to build kernels considering parts of objects

» Kernels have been developed for the most general structural representations: sequences, trees, graphs.

Kernels on sequences

Sequences for data representation

* Variable length objects where order of elements matters
* Biological sequences (DNA, RNA)
» Text documents as sequences of words

* Sequences of sensor readings for human activity
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Spectrum kernel

* Feature space is space of all possible k-grams (subsequences)

* An efficient procedure based on suffix trees allows to compute kernel without explicitly building feature maps
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Spectrum kernel: problem
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» Feature space representation can be very sparse (many zero features, especially for high k)

* Sparse feature maps tend to produce orthogonal examples (an example is only similar to itself)

Kernels on sequences

Mismatch string kernel

* Allows for approximate matches between k-grams

* Defines a (k-m)-neighbourhood of a k-gram as all k-grams with at most m mismatches to it

* Each k-gram counts as a feature for its entire (k-m)-neighbourhood

¢ The kernel can be efficiently computed using a (k-m)-mismatch tree (similar to suffix tree)
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Mismatch string kernel

* The feature map is denser than that of the spectrum kernel
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Kernels on trees
Trees for data representation
* Objects having hierarchical internal representation
» Taxonomies of concepts in a domain
» E.g. phylogenetic trees representing evolution of organisms

* Parse trees representing syntactic structure of sentences
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Subset tree kernel
* A subset tree is a subtree having either all or no children of a node (and is not a single node)

* A subset tree kernel corresponds to a feature map of all subset trees

* It is a special type of tree-fragment kernel (many other exist), justified by grammatical considerations (do not
break a grammar rule)

Kernels on trees

Subset tree kernel
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* The subset tree kernel is the product of the subset tree mapping ®(-) of the two trees ¢ and ¢'.

* It can be computed summing the number of common subtrees C'(n;, ;) rooted at nodes n;, n’;, for all n; and
/!
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Subset tree: node matching

* Two nodes nin; match if:

1. they have the same label
2. they have the same number of children

3. each child of n; has the same label of the corresponding child of n;

Kernels on trees
Recursive procedure for C(n;,n’;)

* If n; and n; don’t match C'(n;,n;) = 0.

* if n; and n/;

" match, and they are both pre-terminals (parents of leaves) C(n;,n;) = 1.

e Else

n,“ _] H 1+C Ch TL“ )7Ch(n;7])))

where nc(n;) is the number of children of n; (equal to that of n/; for the definition of match) and ch(n;, j) is
the j*" child of n;.
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Kernels on trees

Dominant diagonal

* The kernel value strongly depends on the size of the tree (normalize!!)

* It is difficult that very large portion of trees are identical in different examples
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 Similary of example to itself tend to be orders of magnitude higher than to any other example (dominant diagonal

problem)

* One solution consists of downweighting larger subtrees:

— simply replace 1 by 0 < A < 1 in previous procedure

Kernels on graphs

Graphs for data representation

* graphs are a powerful formalism allowing to represent data with arbitrary structures

* Chemical molecules are commonly represented as graphs made of atoms and bonds

» Networked data (e.g. a web site, the Internet) can be naturally encoded as graphs



Kernels on graphs

Tt

* One feature for all possible subgraphs up to a certain size (2 in figure)

Bag of subgraphs

* Feature value is frequency of occurrence of subgraph

* PB of graph isomorphisms (ok for small subgraphs)

Kernels on graphs

Main definitions

* A graph G = (V, ) is a finite set of vertices (or nodes) V and edges £ € V x V
* A (node)labelled graph is a graph whose nodes are labelled with symbols label(v;) = ¢; from L.
* A (node)labelled graph can be also encoded with:

- A square adjacency matrix A such that A;; = 1if (v;,v;) € £ and 0 otherwise

- A (node)label matrix L such that L;; = 1 if label(v;) = ¢; and zero otherwise

Kernels on graphs: definitions
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Kernels on graphs

Walk kernels
* A walk in a graph is a sequence of nodes {v1, ..., v,41} such that (v;,v;41) € € for all ¢
¢ The length of a walk is the number of its edges

* The set of all walks of length n is written as W,,(G)

Kernels on graphs

Walk kernels

* A possible walk kernels compares graphs considering the set of walks starting and ending with the same labels
gstart’gend-




* This corresponds to having a feature for all possible label pairs ¢;, ¢; with value:

‘WMJ(G) = Z Anl{(v1, .0 vng1) € Wi(G)
. l(’Ul) = El A l(’l}n+1) = éj}|

* i.e. a weighted (by A\, > 0 for all n) sum of the number of walks starting with label ¢; and ending with label ¢;
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Walk kernels
* The n'" power of the adjacency matrix, A™, computes the number of walks of length n between any two nodes.
* Le. (A™),; is the number of walks of length n between v; and v,
* This can be used to efficiently compute the overall feature map as:
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Walk kernels

* The corresponding kernel is:
k(G,G") = (L (Z Mu‘) L7 LY \AT ) D7)
i=1 j=1

where the dot product between two matrices M, M’ is defined as:

(M, My =>" M Mj;.
]

Exponential graph kernel

* A le of walk kernel is: /
n example of walk kernel is Foap (G, G) = (LePALT /e /T

where 5 € 1R is a parameter
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