Kernels on structures

Similarity between structured data

- · Kernels allow to generalize notion of dot product (i.e. similarity) to arbitrary (non-vector) spaces
- Decomposition kernels suggest a constructive way to build kernels considering parts of objects
- Kernels have been developed for the most general structural representations: sequences, trees, graphs.

Kernels on sequences

Sequences for data representation

- · Variable length objects where order of elements matters
- Biological sequences (DNA, RNA)
- · Text documents as sequences of words
- Sequences of sensor readings for human activity

Kernels on sequences

Х	= ABAABA		x' = AAABB	
	$\Phi(x)$		$\oint \Phi(x')$	
	AAA AAB ABA BAA BAA BBA BBA BBB	$ \left(\begin{array}{c} 0\\ 1\\ 2\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0 \end{array}\right) $	$ \left(\begin{array}{c} 1\\ 1\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array}\right) $	k(x, x') = 1

Spectrum kernel

- Feature space is space of all possible k-grams (subsequences)
- An efficient procedure based on suffix trees allows to compute kernel without explicitly building feature maps

Kernels on sequences

Spectrum kernel: problem

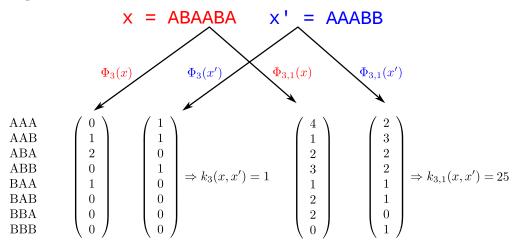
- Feature space representation can be very sparse (many zero features, especially for high k)
- Sparse feature maps tend to produce orthogonal examples (an example is only similar to itself)

Kernels on sequences

Mismatch string kernel

- Allows for approximate matches between k-grams
- Defines a (k-m)-neighbourhood of a k-gram as all k-grams with at most m mismatches to it
- Each k-gram counts as a feature for its entire (k-m)-neighbourhood
- The kernel can be efficiently computed using a (k-m)-mismatch tree (similar to suffix tree)

Kernels on sequences



Mismatch string kernel

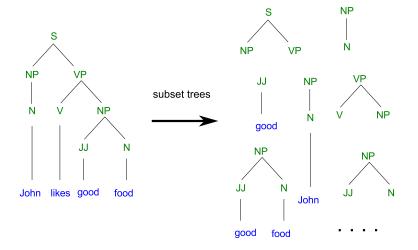
• The feature map is denser than that of the spectrum kernel

Kernels on trees

Trees for data representation

- · Objects having hierarchical internal representation
- Taxonomies of concepts in a domain
- E.g. phylogenetic trees representing evolution of organisms
- Parse trees representing syntactic structure of sentences

Kernels on trees



Subset tree kernel

- A subset tree is a subtree having either all or no children of a node (and is not a single node)
- A subset tree kernel corresponds to a feature map of all subset trees
- It is a special type of tree-fragment kernel (many other exist), justified by grammatical considerations (do not break a grammar rule)

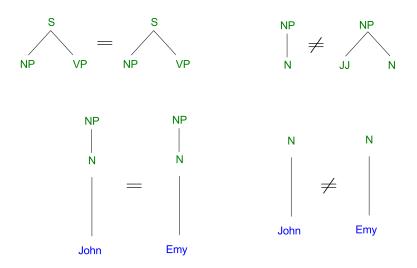
Kernels on trees

Subset tree kernel

$$k(t,t') = \sum_{i=1}^{M} \phi_i(t)\phi_i(t') = \sum_{n_i \in t} \sum_{n'_j \in t'} C(n_i, n'_j)$$

- The subset tree kernel is the product of the subset tree mapping $\Phi(\cdot)$ of the two trees t and t'.
- It can be computed summing the number of common subtrees $C(n_i, n'_j)$ rooted at nodes n_i, n'_j , for all n_i and n'_j

Kernels on trees



Subset tree: node matching

- Two nodes n_i, n'_j match if:
 - 1. they have the same label
 - 2. they have the same number of children
 - 3. each child of n_i has the same label of the corresponding child of n'_j

Kernels on trees

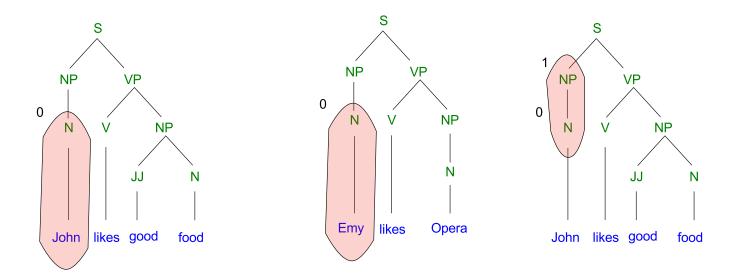
Recursive procedure for $C(n_i,n_j^\prime)$

- If n_i and n'_j don't match $C(n_i, n'_j) = 0$.
- if n_i and n'_j match, and they are both pre-terminals (parents of leaves) $C(n_i, n'_j) = 1$.
- Else

$$C(n_i, n'_j) = \prod_{j=1}^{nc(n_i)} (1 + C(ch(n_i, j), ch(n'_j, j)))$$

where $nc(n_i)$ is the number of children of n_i (equal to that of n'_j for the definition of match) and $ch(n_i, j)$ is the j^{th} child of n_i .

Kernels on trees



Kernels on trees

Dominant diagonal

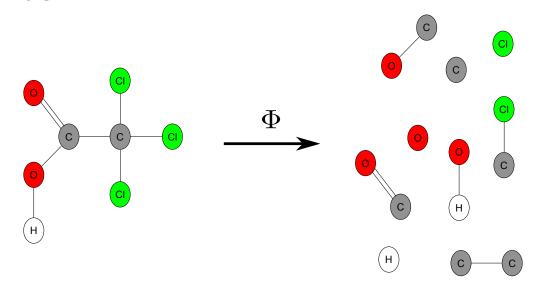
- The kernel value strongly depends on the size of the tree (normalize!!)
- It is difficult that very large portion of trees are identical in different examples
- Similary of example to itself tend to be orders of magnitude higher than to any other example (*dominant diagonal* problem)
- One solution consists of downweighting larger subtrees:
 - simply replace 1 by $0 \leq \lambda \leq 1$ in previous procedure

Kernels on graphs

Graphs for data representation

- graphs are a powerful formalism allowing to represent data with arbitrary structures
- · Chemical molecules are commonly represented as graphs made of atoms and bonds
- Networked data (e.g. a web site, the Internet) can be naturally encoded as graphs

Kernels on graphs



Bag of subgraphs

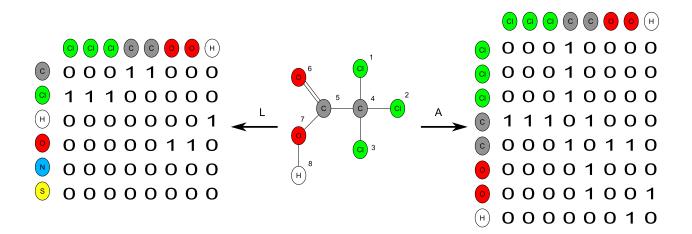
- One feature for all possible subgraphs up to a certain size (2 in figure)
- Feature value is frequency of occurrence of subgraph
- PB of graph isomorphisms (ok for small subgraphs)

Kernels on graphs

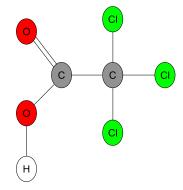
Main definitions

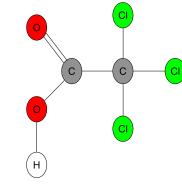
- A graph $G = (\mathcal{V}, \mathcal{E})$ is a finite set of vertices (or nodes) \mathcal{V} and edges $\mathcal{E} \in \mathcal{V} \times \mathcal{V}$
- A (node)labelled graph is a graph whose nodes are labelled with symbols $label(v_j) = \ell_i$ from \mathcal{L} .
- A (node)labelled graph can be also encoded with:
 - A square *adjacency* matrix A such that $A_{ij} = 1$ if $(v_i, v_j) \in \mathcal{E}$ and 0 otherwise
 - A (node)label matrix L such that $L_{ij} = 1$ if $label(v_j) = \ell_i$ and zero otherwise

Kernels on graphs: definitions



Kernels on graphs





Walk kernels

- A walk in a graph is a sequence of nodes $\{v_1, \ldots, v_{n+1}\}$ such that $(v_i, v_{i+1}) \in \mathcal{E}$ for all i
- The length of a walk is the number of its edges
- The set of all walks of length n is written as $W_n(G)$

Kernels on graphs

Walk kernels

• A possible walk kernels compares graphs considering the set of walks starting and ending with the same labels ℓ_{start}, ℓ_{end} .

• This corresponds to having a feature for all possible label pairs ℓ_i, ℓ_j with value:

$$\phi_{\ell_i,\ell_j}(G) = \sum_{n=1}^{\infty} \lambda_n |\{(v_1, \dots, v_{n+1}) \in W_n(G) \\ : l(v_1) = \ell_i \wedge l(v_{n+1}) = \ell_j\}|$$

• i.e. a weighted (by $\lambda_n \ge 0$ for all n) sum of the number of walks starting with label ℓ_i and ending with label ℓ_i

Kernels on graphs

Walk kernels

- The n^{th} power of the adjacency matrix, A^n , computes the number of walks of length n between any two nodes.
- I.e. $(A^n)_{ij}$ is the number of walks of length n between v_i and v_j
- This can be used to efficiently compute the overall feature map as:

$$\phi_{\ell_i,\ell_j}(G) = \left(\sum_{n=1}^{\infty} \lambda_n L A^n L^T\right)_{\ell_i,\ell_j}$$

Kernels on graphs Walk kernels

• The corresponding kernel is:

$$k(G,G') = \langle L\left(\sum_{i=1}^{\infty} \lambda_i A^i\right) L^T, L'\left(\sum_{j=1}^{\infty} \lambda_j A'^j\right) L'^T \rangle$$

where the dot product between two matrices M, M' is defined as:

$$\langle M, M' \rangle = \sum_{i,j} M_{ij} M'_{ij}$$

Exponential graph kernel

• An example of walk kernel is: $k_{exp}(G,G') = \langle Le^{\beta A}L^T, L'e^{\beta A'}L'^T \rangle$

where $\beta \in {\rm I\!R}$ is a parameter

References

- string kernels J.Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, 2004 (Section 9)
- tree kernels M. Collins and N. Duffy. *Convolution kernels for natural language*. In , Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.
- graph kernels Thomas Gärtner. *Exponential and Geometric Kernels for Graphs*. NIPS Workshop on Unreal Data: Principles of Modeling Nonvectorial Data, 2002