# Kernel Machines 

Andrea Passerini passerini@disi.unitn.it

Machine Learning

## Kernel Machines

## Kernel trick

- Feature mapping $\Phi(\cdot)$ can be very high dimensional (e.g. think of polynomial mapping)
- It can be highly expensive to explicitly compute it
- Feature mappings appear only in dot products in dual formulations
- The kernel trick consists in replacing these dot products with an equivalent kernel function:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\Phi(\mathbf{x})^{T} \Phi\left(\mathbf{x}^{\prime}\right)
$$

- The kernel function uses examples in input (not feature) space


## Kernel trick

## Support vector classification

- Dual optimization problem

$$
\begin{aligned}
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}} & \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} \underbrace{\Phi\left(\mathbf{x}_{i}\right)^{T} \Phi\left(\mathbf{x}_{j}\right)}_{k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)} \\
\text { subject to } & 0 \leq \alpha_{i} \leq C \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} \alpha_{i} y_{i}=0
\end{aligned}
$$

- Dual decision function

$$
f(\mathbf{x})=\sum_{i=1}^{m} \alpha_{i} y_{i} \underbrace{\Phi\left(\mathbf{x}_{i}\right)^{T} \Phi(\mathbf{x})}_{k\left(\mathbf{x}_{i}, \mathbf{x}\right)}
$$

## Kernel trick

## Polynomial kernel

- Homogeneous:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{d}
$$

- E.g. $(d=2)$

$$
\begin{aligned}
& k\left(\binom{x_{1}}{x_{2}},\binom{x_{1}^{\prime}}{x_{2}^{\prime}}\right)=\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2} \\
& =\left(x_{1} x_{1}^{\prime}\right)^{2}+\left(x_{2} x_{2}^{\prime}\right)^{2}+2 x_{1} x_{1}^{\prime} x_{2} x_{2}^{\prime} \\
& =\underbrace{\left(\begin{array}{lll}
x_{1}^{2} & \sqrt{2} x_{1} x_{2} & x_{2}^{2}
\end{array}\right)^{T}}_{\Phi(\mathbf{x})^{T}} \underbrace{\left(\begin{array}{c}
x_{1}^{\prime 2} \\
\sqrt{2} x_{1}^{\prime} x_{2}^{\prime} \\
x_{2}^{\prime 2}
\end{array}\right)}_{\Phi\left(\mathbf{x}^{\prime}\right)}
\end{aligned}
$$

## Kernel trick

## Polynomial kernel

- Inhomogeneous:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(1+\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{d}
$$

- E.g. $(d=2)$

$$
\begin{aligned}
& k\left(\binom{x_{1}}{x_{2}},\binom{x_{1}^{\prime}}{x_{2}^{\prime}}\right)=\left(1+x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2} \\
& =1+\left(x_{1} x_{1}^{\prime}\right)^{2}+\left(x_{2} x_{2}^{\prime}\right)^{2}+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+2 x_{1} x_{1}^{\prime} x_{2} x_{2}^{\prime} \\
& =\underbrace{\left(\begin{array}{llll}
1 & \sqrt{2} x_{1} & \sqrt{2} x_{2} & x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} & x_{2}^{2}
\end{array}\right)^{T}}_{\Phi(\mathbf{x})^{T}} \underbrace{\left(\begin{array}{c}
1 \\
\sqrt{2} x_{1}^{\prime} \\
\sqrt{2} x_{2}^{\prime} \\
x_{1}^{\prime 2} \\
\sqrt{2} x_{1}^{\prime} x_{2}^{\prime} \\
x_{2}^{\prime 2}
\end{array}\right)}_{\Phi\left(\mathbf{x}^{\prime}\right)}
\end{aligned}
$$

## Valid Kernels

Dot product in feature space

- A valid kernel is a (similarity) function defined in cartesian product of input space:

$$
k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}
$$

- corresponding to a dot product in a (certain) feature space:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\Phi(\mathbf{x})^{T} \Phi\left(\mathbf{x}^{\prime}\right)
$$

## Note

- The kernel generalizes the notion of dot product to arbitrary input space (e.g. protein sequences)
- It can be seen as a measure of similarity between objects


## Valid Kernels

## Gram matrix

- Given examples $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$ and kernel function $k$
- The Gram matrix $K$ is the (symmetric) matrix of pairwise kernels between examples:

$$
K_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \quad \forall i, j
$$

## Valid Kernels

## Positive definite matrix

- A symmetric $m \times m$ matrix $K$ is positive definite (p.d.) if

$$
\sum_{i, j=1}^{m} c_{i} c_{j} K_{i j} \geq 0, \quad \forall \mathbf{c} \in \mathbb{R}^{m}
$$

If equality only holds for $\boldsymbol{c}=\mathbf{0}$, the matrix is strictly positive definite (s.p.d)

## Alternative conditions

- All eigenvalues are non-negative (positive for s.p.d.)
- There exists a matrix $B$ such that

$$
K=B^{T} B
$$

## Valid Kernels

## Positive definite kernels

- A positive definite kernel is a function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ giving rise to a p.d. Gram matrix for any $m$ and $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$
- Positive definiteness is necessary and sufficient condition for a kernel to correspond to a dot product of some feature map $\Phi$


## How to verify kernel validity

- Prove its positive definiteness (difficult)
- Find out a corresponding feature map (see polynomial example)
- Use kernel combination properties (we'll see)


## Kernel machines

## Support vector regression

- Dual problem:

$$
\begin{array}{ll}
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}} & -\frac{1}{2} \sum_{i, j=1}^{m}\left(\alpha_{i}^{*}-\alpha_{i}\right)\left(\alpha_{j}^{*}-\alpha_{j}\right) \underbrace{\Phi\left(\mathbf{x}_{i}\right)^{T} \Phi\left(\mathbf{x}_{j}\right)}_{k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)} \\
& -\epsilon \sum_{i=1}^{m}\left(\alpha_{i}^{*}+\alpha_{i}\right)+\sum_{i=1}^{m} y_{i}\left(\alpha_{i}^{*}-\alpha_{i}\right) \\
\text { subject to } & \sum_{i=1}^{m}\left(\alpha_{i}-\alpha_{i}^{*}\right)=0 \quad \alpha_{i}, \alpha_{i}^{*} \in[0, C] \quad \forall i \in[1, m]
\end{array}
$$

- Regression function:

$$
f(\mathbf{x})=\mathbf{w}^{T} \Phi(\mathbf{x})+w_{0}=\sum_{i=1}^{m}\left(\alpha_{i}-\alpha_{i}^{*}\right) \underbrace{\Phi\left(\mathbf{x}_{i}\right)^{T} \Phi(\mathbf{x})}_{k\left(\mathbf{x}_{i}, \mathbf{x}\right)}+w_{0}
$$

## Kernel machines

(Stochastic) Perceptron: $f(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}$
(1) Initialize $\mathbf{w}=\mathbf{0}$
(2) Iterate until all examples correctly classified:

- For each incorrectly classified training example ( $\boldsymbol{x}_{i}, y_{i}$ ):

$$
\mathbf{w} \leftarrow \mathbf{w}+\eta y_{i} \mathbf{x}_{i}
$$

Kernel Perceptron: $f(\mathbf{x})=\sum_{i=1}^{m} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)$
(1) Initialize $\alpha_{i}=0 \forall i$
(2) Iterate until all examples correctly classified:
(1) For each incorrectly classified training example $\left(\boldsymbol{x}_{i}, y_{i}\right)$ :

$$
\alpha_{i} \leftarrow \alpha_{i}+\eta y_{i}
$$

## Kernels

## Basic kernels

- linear kernel:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{T} \mathbf{x}^{\prime}
$$

- polynomial kernel:

$$
k_{d, c}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\mathbf{x}^{T} \mathbf{x}^{\prime}+c\right)^{d}
$$

## Kernels

## Gaussian kernel

$k_{\sigma}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)=\exp \left(-\frac{\mathbf{x}^{\top} \mathbf{x}-2 \mathbf{x}^{\top} \mathbf{x}^{\prime}+\mathbf{x}^{\prime} \mathbf{x}^{\prime}}{2 \sigma^{2}}\right)$

- Depends on a width parameter $\sigma$
- The smaller the width, the more prediction on a point only depends on its nearest neighbours
- Example of Universal kernel: they can uniformly approximate any arbitrary continuous target function (pb of number of training examples and choice of $\sigma$ )


## Kernels

## Kernels on structured data

- Kernels are generalization of dot products to arbitrary domains
- It is possible to design kernels over structured objects like sequences, trees or graphs
- The idea is designing a pairwise function measuring the similarity of two objects
- This measure has to sastisfy the p.d. conditions to be a valid kernel

Match (or delta) kernel

$$
k_{\delta}\left(x, x^{\prime}\right)=\delta\left(x, x^{\prime}\right)= \begin{cases}1 & \text { if } x=x^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

- Simplest kernel on structures
- $x$ does not need to be a vector! (no boldface to stress it)
E.g. string kernel: 3-gram spectrum kernel

$$
\begin{gathered}
\mathrm{X}=\mathrm{ABAABA} \quad \mathrm{X}^{\prime}=\mathrm{AAABB} \\
\Phi(x) \downarrow \\
\begin{array}{l}
\text { AAA } \\
\text { AAB } \\
\text { ABA } \\
\text { ABB } \\
\text { BAA } \\
\text { BAB } \\
\text { BBA } \\
\text { BBB }
\end{array}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right) \quad\left(\begin{array}{l}
1 \\
1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

## Kernels

Kernel combination

- Simpler kernels can combined using certain operators (e.g. sum, product)
- Kernel combination allows to design complex kernels on structures from simpler ones
- Correctly using combination operators guarantees that complex kernels are p.d.


## Note

- Simplest constructive approach to build valid kernels


## Kernel combination

## Kernel Sum

- The sum of two kernels corresponds to the concatenation of their respective feature spaces:

$$
\begin{aligned}
\left(k_{1}+k_{2}\right)\left(x, x^{\prime}\right) & =k_{1}\left(x, x^{\prime}\right)+k_{2}\left(x, x^{\prime}\right) \\
& =\Phi_{1}(x)^{T} \Phi_{1}\left(x^{\prime}\right)+\Phi_{2}(x)^{T} \Phi_{2}\left(x^{\prime}\right) \\
& =\left(\Phi_{1}(x) \Phi_{2}(x)\right)\binom{\Phi_{1}\left(x^{\prime}\right)}{\Phi_{2}\left(x^{\prime}\right)}
\end{aligned}
$$

- The two kernels can be defined on different spaces (direct sum, e.g. string spectrum kernel plus string length)


## Kernel combination

## Kernel Product

- The product of two kernels corresponds to the Cartesian products of their features:

$$
\begin{aligned}
\left(k_{1} \times k_{2}\right)\left(x, x^{\prime}\right) & =k_{1}\left(x, x^{\prime}\right) k_{2}\left(x, x^{\prime}\right) \\
& =\sum_{i=1}^{n} \Phi_{1 i}(x) \Phi_{1 i}\left(x^{\prime}\right) \sum_{j=1}^{m} \Phi_{2 j}(x) \Phi_{2 j}\left(x^{\prime}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m}\left(\Phi_{1 i}(x) \Phi_{2 j}(x)\right)\left(\Phi_{1 i}\left(x^{\prime}\right) \Phi_{2 j}\left(x^{\prime}\right)\right) \\
& =\sum_{k=1}^{n m} \Phi_{12 k}(x) \Phi_{12 k}\left(x^{\prime}\right)=\Phi_{12}(x)^{T} \Phi_{12}\left(x^{\prime}\right)
\end{aligned}
$$

- where $\Phi_{12}(x)=\Phi_{1}(x) \times \Phi_{2}(x)$ is the Cartesian product
- the product can be between kernels in different spaces (tensor product)


## Kernel combination

## Linear combination

- A kernel can be rescaled by an arbitrary positive constant: $k_{\beta}\left(x, x^{\prime}\right)=\beta k\left(x, x^{\prime}\right)$
- We can e.g. define linear combinations of kernels (each rescaled by the desired weight):

$$
k_{\text {sum }}\left(x, x^{\prime}\right)=\sum_{k=1}^{K} \beta_{k} k_{k}\left(x, x^{\prime}\right)
$$

## Note

- The weights of the linear combination can be learned simultaneously to the predictor weights (the alphas)
- This amounts at performing kernel learning


## Kernel combination

## Decomposition kernels

- Use the combination operators (sum and product) to define kernels on structures.
- Rely on a decomposition relationship $R(x)=\left(x_{1}, \ldots, x_{D}\right)$ breaking a structure into its parts
E.g. for strings
- $R(x)=\left(x_{1}, \ldots, x_{D}\right)$ could be break string $x$ into substrings such that $x_{1} \circ \ldots x_{D}=x$ (where $\circ$ is string concatenation)
- E.g. ( $D=3$, empty string not allowed):

$$
x=A A A B B \quad R(x)=\left\{\begin{array}{llll}
A & A & A B B & A A \\
A & B B \\
A & A A & B B & A A \\
A B & B \\
A & A A B & B & A A A \\
B & B
\end{array}\right\}
$$

## Kernel combination

## Convolution kernels

- decomposition kernels defining a kernel as the convolution of its parts:

$$
\left(k_{1} \not \cdots \star k_{D}\right)\left(x, x^{\prime}\right)=\sum_{\left(x_{1}, \ldots, x_{D}\right) \in R(x)} \sum_{\left(x_{1}^{\prime}, \ldots, x_{D}^{\prime}\right) \in R\left(x^{\prime}\right)} \prod_{d=1}^{D} k_{d}\left(x_{d}, x_{d}^{\prime}\right)
$$

- where the sums run over all possible decompositions of $x$ and $x^{\prime}$.


## Convolution kernels

## Set kernel

- Let $R(x)$ be the set membership relationship (written as $\in$ )
- Let $k_{\text {member }}\left(\xi, \xi^{\prime}\right)$ be a kernel defined over set elements
- The set kernel is defined as:

$$
k_{\text {set }}\left(X, X^{\prime}\right)=\sum_{\xi \in X} \sum_{\xi^{\prime} \in X^{\prime}} k_{\text {member }}\left(\xi, \xi^{\prime}\right)
$$

## Set intersection kernel

- For delta membership kernel we obtain:

$$
k_{\cap}\left(X, X^{\prime}\right)=\left|X \cap X^{\prime}\right|
$$

## Kernel combination

## Kernel normalization

- Kernel values can often be influenced by the dimension of objects
- E.g. a longer string has more substrings $\rightarrow$ higher kernel value
- This effect can be reduced normalizing the kernel


## Cosine normalization

- Cosine normalization computes the cosine of the dot product in feature space:

$$
\hat{k}\left(x, x^{\prime}\right)=\frac{k\left(x, x^{\prime}\right)}{\sqrt{k(x, x) k\left(x^{\prime}, x^{\prime}\right)}}
$$

## Kernel combination

## Kernel composition

- Given a kernel over structured data $k\left(x, x^{\prime}\right)$
- it is always possible to use a basic kernel on top of it, e.g.:

$$
\begin{aligned}
\left.\left(k_{d, c} \circ k\right)\right)\left(x, x^{\prime}\right) & =\left(k\left(x, x^{\prime}\right)+c\right)^{d} \\
\left(k_{\sigma} \circ k\right)\left(x, x^{\prime}\right) & =\exp \left(-\frac{k(x, x)-2 k\left(x, x^{\prime}\right)+k\left(x^{\prime}, x^{\prime}\right)}{2 \sigma^{2}}\right)
\end{aligned}
$$

- it corresponds to the composition of the mappings associated with the two kernels
- E.g. all possible conjunctions of up to $d \mathrm{k}$-grams for string kernels


## References

kernel trick C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2(2), 121-167, 1998.
kernel properties J.Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, 2004 (Section 3)
kernels J.Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, 2004 (Section 9)

