Kernel Machines

Kernel trick
* Feature mapping ®(+) can be very high dimensional (e.g. think of polynomial mapping)
* It can be highly expensive to explicitly compute it
 Feature mappings appear only in dot products in dual formulations

* The kernel trick consists in replacing these dot products with an equivalent kernel function:

k(x,x') = ®(x)T®(x)

The kernel function uses examples in input (not feature) space

Kernel trick

Support vector classification

* Dual optimization problem
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¢ Dual decision function
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Kernel trick

Polynomial kernel

* Homogeneous:

E(x,x') = (xTx')?
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Kernel trick
Polynomial kernel

* Inhomogeneous: k(x,x') = (1 +XTX/)d
* Eg (d=2)
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Valid Kernels

Dot product in feature space
e A valid kernel is a (similarity) function defined in cartesian product of input space:

kE:XxX —=1R

* corresponding to a dot product in a (certain) feature space:

E(x,x') = ®(x)Td(x)

Note

* The kernel generalizes the notion of dot product to arbitrary input space (e.g. protein sequences)

* It can be seen as a measure of similarity between objects

Valid Kernels

Gram matrix

* Given examples {x1, ..., X, } and kernel function &k

* The Gram matrix K is the (symmetric) matrix of pairwise kernels between examples:

Kij = k‘(Xi,Xj) V’L,j



Valid Kernels

Positive definite matrix

e A symmetric m X m matrix K is positive definite (p.d.) if

m
Z C,‘C/Kij >0, Ve e R™
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If equality only holds for ¢ = 0, the matrix is strictly positive definite (s.p.d)

Alternative conditions
¢ All eigenvalues are non-negative (positive for s.p.d.)

¢ There exists a matrix B such that

K=B"B

Valid Kernels

Positive definite kernels

¢ A positive definite kernel is a function k£ : X x X — IR giving rise to a p.d. Gram matrix for any m and
{x1,...,xXm}

* Positive definiteness is necessary and sufficient condition for a kernel to correspond to a dot product of some
feature map ®
How to verify kernel validity
* Prove its positive definiteness (difficult)
* Find out a corresponding feature map (see polynomial example)

* Use kernel combination properties (we’ll see)

Kernel machines
Support vector regression

* Dual problem:
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Kernel machines

(Stochastic) Perceptron: f(x) = wlx

1. Initialize w = 0
2. Iterate until all examples correctly classified:
(a) For each incorrectly classified training example (x;, y;):

W 4 W + NY;X;

Kernel Perceptron: f(x) = > ", a;k(x;,x)
1. Initialize o; = 0 Vi
2. Iterate until all examples correctly classified:
(a) For each incorrectly classified training example (x;, y;):

Q; < a; +ny;

Kernels

Basic kernels

e linear kernel:

* polynomial kernel:
kac(x,x") = (xTx" + ¢)?

Kernels

Gaussian kernel

N x —x|2\ xTx — 2xTx" + x'Tx’
ks (x,x") = exp o ) T - 552
* Depends on a width parameter o
e The smaller the width, the more prediction on a point only depends on its nearest neighbours

» Example of Universal kernel: they can uniformly approximate any arbitrary continuous target function (pb of
number of training examples and choice of o)



Kernels
Kernels on structured data

» Kernels are generalization of dot products to arbitrary domains
* Itis possible to design kernels over structured objects like sequences, trees or graphs
* The idea is designing a pairwise function measuring the similarity of two objects

* This measure has to sastisfy the p.d. conditions to be a valid kernel

Match (or delta) kernel

no_ n_ |1 ifz=2d
ks(z,2) = d(x, o) = { 0 otherwise.
» Simplest kernel on structures

¢ x does not need to be a vector! (no boldface to stress it)

E.g. string kernel: 3-gram spectrum kernel
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Kernels
Kernel combination
» Simpler kernels can combined using certain operators (e.g. sum, product)
» Kernel combination allows to design complex kernels on structures from simpler ones

* Correctly using combination operators guarantees that complex kernels are p.d.

Note

» Simplest constructive approach to build valid kernels



Kernel combination

Kernel Sum

* The sum of two kernels corresponds to the concatenation of their respective feature spaces:

(k1 + k2)(z,2") = ki(x,2") + ko(z,2)
O1(2)" @1(a") + Po(2

e
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* The two kernels can be defined on different spaces (direct sum, e.g. string spectrum kernel plus string length)

Kernel combination
Kernel Product

* The product of two kernels corresponds to the Cartesian products of their features:

(k1 X ko)(z,2") = kl(x 2 Vko(z, ')
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* where ®19(x) = @1 (x) X Po(x) is the Cartesian product

* the product can be between kernels in different spaces (tensor product)

Kernel combination

Linear combination

* A kernel can be rescaled by an arbitrary positive constant: kg(x,2’) = Sk(x, z’)

* We can e.g. define linear combinations of kernels (each rescaled by the desired weight):

sum Zﬂkkk Z, :17

Note

* The weights of the linear combination can be learned simultaneously to the predictor weights (the alphas)

 This amounts at performing kernel learning



Kernel combination

Decomposition kernels

» Use the combination operators (sum and product) to define kernels on structures.

* Rely on a decomposition relationship R(x) = (x1, ..., p) breaking a structure into its parts

E.g. for strings

* R(z) = (z1,...,2zp) could be break string x into substrings such that z; o ...zp = x (where o is string
concatenation)

« E.g. (D = 3, empty string not allowed):
A A ABB AA A BB
x = AAABB R(x) = A AA BB AA AB B
A AAB B AAA B B

Kernel combination

Convolution kernels
» decomposition kernels defining a kernel as the convolution of its parts:
D
(ky%---xkp)(z,z') = > > 11 ka(za, ziy)
(z1,--,2p)ER(2) (2., 25 )ER(2’) d=1

 where the sums run over all possible decompositions of x and x’.

Convolution kernels

Set kernel

* Let R(z) be the set membership relationship (written as €)
o Let kmemper (€, €’) be a kernel defined over set elements

¢ The set kernel is defined as:

kset(X;X/) = Z Z kmember(gvg/)

(eX gex’

Set intersection kernel

¢ For delta membership kernel we obtain:

kn(X,X') = |X N X/|



Kernel combination

Kernel normalization

» Kernel values can often be influenced by the dimension of objects
» E.g. alonger string has more substrings — higher kernel value

* This effect can be reduced normalizing the kernel

Cosine normalization

» Cosine normalization computes the cosine of the dot product in feature space:

7 A k(:E,:L’/)
bla, o) = k(xz,z)k(x!, x")

Kernel combination
Kernel composition
* Given a kernel over structured data k(x, ')

* it is always possible to use a basic kernel on top of it, e.g.:
(kacok))(@,a') = (k(z,2")+0)

(hy o )aa') = exp (—HEH B R

* it corresponds to the composition of the mappings associated with the two kernels

¢ E.g. all possible conjunctions of up to d k-grams for string kernels
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