
Kernel Machines

Kernel trick

• Feature mapping Φ(·) can be very high dimensional (e.g. think of polynomial mapping)

• It can be highly expensive to explicitly compute it

• Feature mappings appear only in dot products in dual formulations

• The kernel trick consists in replacing these dot products with an equivalent kernel function:

k(x,x′) = Φ(x)TΦ(x′)

• The kernel function uses examples in input (not feature) space

Kernel trick

Support vector classification

• Dual optimization problem

max
α∈IRm

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj Φ(xi)
TΦ(xj)︸ ︷︷ ︸

k(xi,xj)

subject to 0 ≤ αi ≤ C i = 1, . . . ,m
m∑
i=1

αiyi = 0

• Dual decision function

f(x) =

m∑
i=1

αiyi Φ(xi)
TΦ(x)︸ ︷︷ ︸

k(xi,x)

Kernel trick

Polynomial kernel

• Homogeneous:

k(x,x′) = (xTx′)d

• E.g. (d = 2)

k(

(
x1

x2

)
,

(
x′1
x′2

)
) = (x1x

′
1 + x2x

′
2)2

= (x1x
′
1)2 + (x2x

′
2)2 + 2x1x

′
1x2x

′
2

=
(
x2

1

√
2x1x2 x2

2

)T
︸ ︷︷ ︸

Φ(x)T

 x′21√
2x′1x

′
2

x′22


︸ ︷︷ ︸

Φ(x′)

1



Kernel trick
Polynomial kernel

• Inhomogeneous: k(x,x′) = (1 + xTx′)d

• E.g. (d = 2)

k(

(
x1

x2

)
,

(
x′1
x′2

)
) = (1 + x1x

′
1 + x2x

′
2)2

= 1 + (x1x
′
1)2 + (x2x

′
2)2 + 2x1x

′
1 + 2x2x

′
2 + 2x1x

′
1x2x

′
2

=
(

1
√

2x1

√
2x2 x2

1

√
2x1x2 x2

2

)T
︸ ︷︷ ︸

Φ(x)T



1√
2x′1√
2x′2
x′21√
2x′1x

′
2

x′22


︸ ︷︷ ︸

Φ(x′)

Valid Kernels

Dot product in feature space

• A valid kernel is a (similarity) function defined in cartesian product of input space:

k : X × X → IR

• corresponding to a dot product in a (certain) feature space:

k(x,x′) = Φ(x)TΦ(x′)

Note

• The kernel generalizes the notion of dot product to arbitrary input space (e.g. protein sequences)

• It can be seen as a measure of similarity between objects

Valid Kernels

Gram matrix

• Given examples {x1, . . . ,xm} and kernel function k

• The Gram matrix K is the (symmetric) matrix of pairwise kernels between examples:

Kij = k(xi,xj) ∀i, j

2



Valid Kernels

Positive definite matrix

• A symmetric m×m matrix K is positive definite (p.d.) if

m∑
i,j=1

cicjKij ≥ 0, ∀c ∈ IRm

If equality only holds for c = 0, the matrix is strictly positive definite (s.p.d)

Alternative conditions

• All eigenvalues are non-negative (positive for s.p.d.)

• There exists a matrix B such that

K = BTB

Valid Kernels

Positive definite kernels

• A positive definite kernel is a function k : X × X → IR giving rise to a p.d. Gram matrix for any m and
{x1, . . . ,xm}

• Positive definiteness is necessary and sufficient condition for a kernel to correspond to a dot product of some
feature map Φ

How to verify kernel validity

• Prove its positive definiteness (difficult)

• Find out a corresponding feature map (see polynomial example)

• Use kernel combination properties (we’ll see)

Kernel machines
Support vector regression

• Dual problem:

max
α∈IRm

−1

2

m∑
i,j=1

(α∗i − αi)(α∗j − αj) Φ(xi)
TΦ(xj)︸ ︷︷ ︸

k(xi,xj)

−ε
m∑
i=1

(α∗i + αi) +

m∑
i=1

yi(α
∗
i − αi)

subject to
m∑
i=1

(αi − α∗i ) = 0 αi, α
∗
i ∈ [0, C] ∀i ∈ [1,m]

• Regression function:
f(x) = wTΦ(x) + w0 =

m∑
i=1

(αi − α∗i ) Φ(xi)
TΦ(x)︸ ︷︷ ︸

k(xi,x)

+w0

3



Kernel machines

(Stochastic) Perceptron: f(x) = wTx

1. Initialize w = 0

2. Iterate until all examples correctly classified:

(a) For each incorrectly classified training example (xi, yi):

w← w + ηyixi

Kernel Perceptron: f(x) =
∑m
i=1 αik(xi,x)

1. Initialize αi = 0 ∀i

2. Iterate until all examples correctly classified:

(a) For each incorrectly classified training example (xi, yi):

αi ← αi + ηyi

Kernels

Basic kernels

• linear kernel:
k(x,x′) = xTx′

• polynomial kernel:
kd,c(x,x

′) = (xTx′ + c)d

Kernels

Gaussian kernel

kσ(x,x′) = exp

(
−||x− x′||2

2σ2

)
= exp

(
−xTx− 2xTx′ + x′Tx′

2σ2

)
• Depends on a width parameter σ

• The smaller the width, the more prediction on a point only depends on its nearest neighbours

• Example of Universal kernel: they can uniformly approximate any arbitrary continuous target function (pb of
number of training examples and choice of σ)

4



Kernels
Kernels on structured data

• Kernels are generalization of dot products to arbitrary domains

• It is possible to design kernels over structured objects like sequences, trees or graphs

• The idea is designing a pairwise function measuring the similarity of two objects

• This measure has to sastisfy the p.d. conditions to be a valid kernel

Match (or delta) kernel

kδ(x, x
′) = δ(x, x′) =

{
1 if x = x′

0 otherwise.

• Simplest kernel on structures

• x does not need to be a vector! (no boldface to stress it)

E.g. string kernel: 3-gram spectrum kernel

Kernels
Kernel combination

• Simpler kernels can combined using certain operators (e.g. sum, product)

• Kernel combination allows to design complex kernels on structures from simpler ones

• Correctly using combination operators guarantees that complex kernels are p.d.

Note

• Simplest constructive approach to build valid kernels

5



Kernel combination

Kernel Sum

• The sum of two kernels corresponds to the concatenation of their respective feature spaces:

(k1 + k2)(x, x′) = k1(x, x′) + k2(x, x′)

= Φ1(x)TΦ1(x′) + Φ2(x)TΦ2(x′)

= (Φ1(x) Φ2(x))

(
Φ1(x′)
Φ2(x′)

)
• The two kernels can be defined on different spaces (direct sum, e.g. string spectrum kernel plus string length)

Kernel combination
Kernel Product

• The product of two kernels corresponds to the Cartesian products of their features:

(k1 × k2)(x, x′) = k1(x, x′)k2(x, x′)

=

n∑
i=1

Φ1i(x)Φ1i(x
′)

m∑
j=1

Φ2j(x)Φ2j(x
′)

=

n∑
i=1

m∑
j=1

(Φ1i(x)Φ2j(x))(Φ1i(x
′)Φ2j(x

′))

=

nm∑
k=1

Φ12k(x)Φ12k(x′) = Φ12(x)TΦ12(x′)

• where Φ12(x) = Φ1(x)× Φ2(x) is the Cartesian product

• the product can be between kernels in different spaces (tensor product)

Kernel combination

Linear combination

• A kernel can be rescaled by an arbitrary positive constant: kβ(x, x′) = βk(x, x′)

• We can e.g. define linear combinations of kernels (each rescaled by the desired weight):

ksum(x, x′) =

K∑
k=1

βkkk(x, x′)

Note

• The weights of the linear combination can be learned simultaneously to the predictor weights (the alphas)

• This amounts at performing kernel learning

6



Kernel combination

Decomposition kernels

• Use the combination operators (sum and product) to define kernels on structures.

• Rely on a decomposition relationship R(x) = (x1, . . . , xD) breaking a structure into its parts

E.g. for strings

• R(x) = (x1, . . . , xD) could be break string x into substrings such that x1 ◦ . . . xD = x (where ◦ is string
concatenation)

• E.g. (D = 3, empty string not allowed):

Kernel combination

Convolution kernels

• decomposition kernels defining a kernel as the convolution of its parts:

(k1 ? · · · ? kD)(x, x′) =
∑

(x1,...,xD)∈R(x)

∑
(x′

1,...,x
′
D)∈R(x′)

D∏
d=1

kd(xd, x
′
d)

• where the sums run over all possible decompositions of x and x′.

Convolution kernels

Set kernel

• Let R(x) be the set membership relationship (written as ∈)

• Let kmember(ξ, ξ′) be a kernel defined over set elements

• The set kernel is defined as:

kset(X,X
′) =

∑
ξ∈X

∑
ξ′∈X′

kmember(ξ, ξ
′)

Set intersection kernel

• For delta membership kernel we obtain:

k∩(X,X ′) = |X ∩X ′|

7



Kernel combination

Kernel normalization

• Kernel values can often be influenced by the dimension of objects

• E.g. a longer string has more substrings→ higher kernel value

• This effect can be reduced normalizing the kernel

Cosine normalization

• Cosine normalization computes the cosine of the dot product in feature space:

k̂(x, x′) =
k(x, x′)√

k(x, x)k(x′, x′)

Kernel combination

Kernel composition

• Given a kernel over structured data k(x, x′)

• it is always possible to use a basic kernel on top of it, e.g.:

(kd,c ◦ k))(x, x′) = (k(x, x′) + c)d

(kσ ◦ k)(x, x′) = exp

(
−k(x, x)− 2k(x, x′) + k(x′, x′)

2σ2

)
• it corresponds to the composition of the mappings associated with the two kernels

• E.g. all possible conjunctions of up to d k-grams for string kernels

References

kernel trick C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge
Discovery, 2(2), 121-167, 1998.

kernel properties J.Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University
Press, 2004 (Section 3)

kernels J.Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, 2004
(Section 9)

8


