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Non-linear Support Vector Machines

Non-linearly separable problems
Hard-margin SVM can address linearly separable problems
Soft-margin SVM can address linearly separable problems
with outliers
Non-linearly separable problems need a higher expressive
power (i.e. more complex feature combinations)
We do not want to loose the advantages of linear
separators (i.e. large margin, theoretical guarantees)

Solution
Map input examples in a higher dimensional feature space
Perform linear classification in this higher dimensional
space
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Non-linear Support Vector Machines

feature map

Φ : X → H

Φ is a function mapping each example to a higher
dimensional space H
Examples x are replaced with their feature mapping Φ(x)

The feature mapping should increase the expressive power
of the representation (e.g. introducing features which are
combinations of input features)
Examples should be (approximately) linearly separable in
the mapped space
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Feature map
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Polynomial mapping

Maps features to all possible conjunctions (i.e. products) of
features:

1 of a certain degree d (homogeneous mapping)
2 up to a certain degree (inhomogeneous mapping)
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Feature map

Φ
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Non-linear Support Vector Machines
f (x)

Linear separation in feature space

SVM algorithm is applied just replacing x with Φ(x):

f (x) = wT Φ(x) + w0

A linear separation (i.e. hyperplane) in feature space
corresponds to a non-linear separation in input space, e.g.:

f
(

x1
x2

)
= sgn(w1x2

1 + w2x1x2 + w3x2
2 + w0)
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Support Vector Regression

Rationale
Retain combination of regularization and data fitting
Regularization means smoothness (i.e. smaller weights,
lower complexity) of the learned function
Use a sparsifying loss to have few support vector
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Support Vector Regression

ε-insensitive loss

`(f (x), y) = |y − f (x)|ε =

{
0 if |y − f (x)| ≤ ε
|y − f (x)| − ε otherwise

Tolerate small (ε) deviations from the true value (i.e. no
penalty)
Defines an ε-tube of insensitiveness around true values
This also allows to trade off function complexity with data
fitting (playing on ε value)
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Support Vector Regression

Optimization problem

min
w∈X ,w0∈IR, ξ,ξ∗∈IRm

1
2
||w||2 + C

m∑
i=1

(ξi + ξ∗i )

subject to wT Φ(xi) + w0 − yi ≤ ε+ ξi

yi − (wT Φ(xi) + w0 ) ≤ ε+ ξ∗i
ξi , ξ

∗
i ≥ 0

Note
Two constraints for each example for the upper and lower
sides of the tube
Slack variables ξi , ξ

∗
i penalize predictions out of the

ε-insensitive tube
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Support Vector Regression

Lagrangian
We include constraints in the minimization function using
Lagrange multipliers (αi , αi∗, βi , β

∗
i ≥ 0):

L =
1
2
||w||2 + C

m∑
i=1

(ξi + ξ∗i )−
m∑

i=1

(βiξi + β∗i ξ
∗
i )

−
m∑

i=1

αi(ε+ ξi + yi −wT Φ(xi)− w0)

−
m∑

i=1

α∗i (ε+ ξ∗i − yi + wT Φ(xi) + w0)
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Support Vector Regression

Dual formulation
Vanishing the derivatives wrt the primal variables we
obtain:

∂L
∂w

= w−
m∑

i=1

(α∗i − αi)Φ(xi) = 0→ w =
m∑

i=1

(α∗i − αi)Φ(xi)

∂L
∂w0

=
m∑

i=1

(αi − α∗i ) = 0

∂L
∂ξi

= C − αi − βi = 0→ αi ∈ [0,C]

∂L
∂ξ∗i

= C − α∗i − β
∗
i = 0→ α∗i ∈ [0,C]
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Support Vector Regression
Dual formulation

Substituting in the Lagrangian we get:

1
2

m∑
i,j=1

(α∗i − αi)(α∗j − αj)Φ(xi)
T Φ(xj)︸ ︷︷ ︸

||w||2

+
m∑

i=1

ξi (C − βi − αi)︸ ︷︷ ︸
=0

+
m∑

i=1

ξ∗i (C − β∗i − α
∗
i )︸ ︷︷ ︸

=0

−ε
m∑

i=1

(αi + α∗i ) +
m∑

i=1

yi(α
∗
i − αi) + w0

m∑
i=1

(αi − α∗i )︸ ︷︷ ︸
=0

−
m∑

i,j=1

(α∗i − αi)(α∗j − αj)Φ(xi)
T Φ(xj)
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Support Vector Regression

Dual formulation

max
α∈IRm

−1
2

m∑
i,j=1

(α∗i − αi)(α∗j − αj)Φ(xi)
T Φ(xj)

−ε
m∑

i=1

(α∗i + αi) +
m∑

i=1

yi(α
∗
i − αi)

subject to
m∑

i=1

(αi − α∗i ) = 0

αi , α
∗
i ∈ [0,C] ∀i ∈ [1,m]

Regression function

f (x) = wT Φ(x) + w0 =
m∑

i=1

(αi − α∗i )Φ(xi)
T Φ(x) + w0
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Support Vector Regression

Karush-Khun-Tucker conditions (KKT)
At the saddle point it holds that for all i :

αi(ε+ ξi + yi −wT Φ(xi)− w0) = 0
α∗i (ε+ ξ∗i − yi + wT Φ(xi) + w0) = 0

βiξi = 0
β∗i ξ
∗
i = 0

Combined with C − αi − βi = 0,αi ≥ 0,βi ≥ 0 and
C − α∗i − β

∗
i = 0,α∗i ≥ 0,β∗i ≥ 0 we get

αi ∈ [0,C] α∗i ∈ [0,C]

and
αi = C if ξi > 0 α∗i = C if ξ∗i > 0
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Support Vector Regression

Support Vectors

All patterns within the ε-tube, for which |f (xi)− yi | < ε,
have αi , α

∗
i = 0 and thus don’t contribute to the estimated

function f .
Patterns for which either 0 < αi < C or 0 < α∗i < C are on
the border of the ε-tube, that is |f (xi)− yi | = ε. They are
the unbound support vectors.
The remaining training patterns are margin errors (either
ξi > 0 or ξ∗i > 0), and reside out of the ε-insensitive region.
They are bound support vectors, with corresponding
αi = C or α∗i = C.
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Support Vectors
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Support Vector Regression: example for decreasing ε
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Appendix

Smallest enclosing hypersphere
Support vector ranking
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Smallest Enclosing Hypersphere

Rationale
Characterize a set of examples defining boundaries
enclosing them
Find smallest hypersphere in feature space enclosing data
points
Account for outliers paying a cost for leaving examples out
of the sphere

Usage

One-class classification: model a class when no negative
examples exist
Anomaly/novelty detection: detect test data falling outside
of the sphere and return them as novel/anomalous (e.g.
intrusion detection systems, Alzheimer’s patients
monitoring)
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Smallest Enclosing Hypersphere

Optimization problem

min
R∈IR,o∈H,ξ∈IRm

R2 + C
m∑

i=1

ξi

subject to ||Φ(xi)− o||2 ≤ R2 + ξi i = 1, . . . ,m
ξi ≥ 0, i = 1, . . . ,m

Note
o is the center of the sphere
R is the radius which is minimized
slack variables ξi gather costs for outliers
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Smallest Enclosing Hypersphere

Lagrangian (αi , βi ≥ 0)

L = R2 + C
m∑

i=1

ξi −
m∑

i=1

αi(R2 + ξi − ||Φ(xi)− o||2)−
m∑

i=1

βiξi

Vanishing the derivatives wrt primal variables

∂L
∂R

= 2R(1−
m∑

i=1

αi) = 0→
m∑

i=1

αi = 1

∂L
∂o

= 2
m∑

i=1

αi(Φ(xi)− o)(−1) = 0→ o
m∑

i=1

αi︸ ︷︷ ︸
=1

=
m∑

i=1

αiΦ(xi)

∂L
∂ξi

= C − αi − βi = 0→ αi ∈ [0,C]
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Smallest Enclosing Hypersphere

Dual formulation

R2 (1−
m∑

i=1

αi)︸ ︷︷ ︸
=0

+
m∑

i=1

ξi (C − αi − βi)︸ ︷︷ ︸
=0

+
m∑

i=1

αi(Φ(xi)−
m∑

j=1

αjΦ(xj)︸ ︷︷ ︸
o

)T (Φ(xi)−
m∑

h=1

αhΦ(xh)︸ ︷︷ ︸
o

)
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Smallest Enclosing Hypersphere

Dual formulation

m∑
i=1

αi(Φ(xi)−
m∑

j=1

αjΦ(xj))T (Φ(xi)−
m∑

h=1

αhΦ(xh)) =

=
m∑

i=1

αiΦ(xi)
T Φ(xi)−

m∑
i=1

αiΦ(xi)
T

m∑
h=1

αhΦ(xh)

−
m∑

i=1

αi

m∑
j=1

αjΦ(xj)
T Φ(xi) +

m∑
i=1

αi︸ ︷︷ ︸
=1

m∑
j=1

αjΦ(xj)
T

m∑
h=1

αhΦ(xh) =

=
m∑

i=1

αiΦ(xi)
T Φ(xi)−

m∑
i=1

αiΦ(xi)
T

m∑
j=1

αjΦ(xj)
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Smallest Enclosing Hypersphere
Dual formulation

max
α∈IRm

m∑
i=1

αiΦ(xi)
T Φ(xi)−

m∑
i,j=1

αiαjΦ(xi)
T Φ(xj)

subject to
m∑

i=1

αi = 1, 0 ≤ αi ≤ C, i = 1, . . . ,m.

Distance function
The distance of a point from the origin is:

R2(x) = ||Φ(x)− o||2

= (Φ(x)−
m∑

i=1

αiΦ(xi))T (Φ(x)−
m∑

j=1

αjΦ(xj))

= Φ(x)T Φ(x)− 2
m∑

i=1

αiΦ(xi)
T Φ(x) +

m∑
i,j=1

αiαjΦ(xi)
T Φ(xj)
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Smallest Enclosing Hypersphere

Karush-Khun-Tucker conditions (KKT)
At the saddle point it holds that for all i :

βiξi = 0
αi(R2 + ξi − ||Φ(xi)− o||2) = 0

Support vectors
Unbound support vectors (0 < αi < C), whose images lie
on the surface of the enclosing sphere.
Bound support vectors (αi = C), whose images lie outside
of the enclosing sphere, which correspond to outliers.
All other points (α = 0) with images inside the enclosing
sphere.

Non-linear SVM



Smallest Enclosing Hypersphere
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Smallest Enclosing Hypersphere

Decision function
The radius R∗ of the enclosing sphere can be computed
using the distance function on any unbound support vector
x:

R2(x) = Φ(x)T Φ(x)−2
m∑

i=1

αiΦ(xi)
T Φ(x)+

m∑
i,j=1

αiαjΦ(xi)
T Φ(xj)

A decision function for novelty detection could be:

f (x) = sgn
(

R2(x)− (R∗)2
)

i.e. positive if the examples lays outside of the sphere and
negative otherwise

Non-linear SVM



Support Vector Ranking

Rationale
Order examples by relevance (e.g. email urgence, movie
rating)
Learn scoring function predicting quality of example
Constraint function to score xi higher than xj if it is more
relevant (pairwise comparisons for training)
Easily formalized as a support vector classification task
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Support Vector Ranking

Optimization problem

min
w∈X ,w0∈IR, ξi,j∈IR

1
2
||w||2 + C

∑
i,j

ξi,j

subject to

wT Φ(xi)−wT Φ(xj) ≥ 1− ξi,j

ξi,j ≥ 0
∀i , j : x i ≺ x j

Note
There is one constraint for each pair of examples having
ordering information (x i ≺ x j means the former is comes
first in the ranking)
Examples should be correctly ordered with a large margin
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Support Vector Ranking

Support vector classification on pairs

min
w∈X ,w0∈IR, ξi,j∈IR

1
2
||w||2 + C

∑
i,j

ξi,j

subject to

yi,jwT (Φ(xi)− Φ(xj))︸ ︷︷ ︸
Φ(xij )

≥ 1− ξi,j

ξi,j ≥ 0
∀i , j : x i ≺ x j

where labels are always positive yi,j = 1
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Support Vector Ranking

Decision function

f (x) = wT Φ(x)

Standard support vector classification function (unbiased)
Represents score of example for ranking it
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