
Non-linear Support Vector Machines

Non-linearly separable problems

• Hard-margin SVM can address linearly separable problems

• Soft-margin SVM can address linearly separable problems with outliers

• Non-linearly separable problems need a higher expressive power (i.e. more complex feature combinations)

• We do not want to loose the advantages of linear separators (i.e. large margin, theoretical guarantees)

Solution

• Map input examples in a higher dimensional feature space

• Perform linear classification in this higher dimensional space

Non-linear Support Vector Machines

feature map

Φ : X → H

• Φ is a function mapping each example to a higher dimensional spaceH

• Examples x are replaced with their feature mapping Φ(x)

• The feature mapping should increase the expressive power of the representation (e.g. introducing features which
are combinations of input features)

• Examples should be (approximately) linearly separable in the mapped space
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Polynomial mapping

• Maps features to all possible conjunctions (i.e. products) of features:

1. of a certain degree d (homogeneous mapping)

2. up to a certain degree (inhomogeneous mapping)
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Feature map

Φ

Non-linear Support Vector Machines
f (x)

Linear separation in feature space

• SVM algorithm is applied just replacing x with Φ(x):

f(x) = wTΦ(x) + w0

• A linear separation (i.e. hyperplane) in feature space corresponds to a non-linear separation in input space, e.g.:

f

(
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x2
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= sgn(w1x

2
1 + w2x1x2 + w3x

2
2 + w0)

Support Vector Regression

Rationale

• Retain combination of regularization and data fitting

• Regularization means smoothness (i.e. smaller weights, lower complexity) of the learned function

• Use a sparsifying loss to have few support vector
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Support Vector Regression

ε-insensitive loss

`(f(x), y) = |y − f(x)|ε =

{
0 if |y − f(x)| ≤ ε
|y − f(x)| − ε otherwise

• Tolerate small (ε) deviations from the true value (i.e. no penalty)

• Defines an ε-tube of insensitiveness around true values

• This also allows to trade off function complexity with data fitting (playing on ε value)

Support Vector Regression

Optimization problem

min
w∈X ,w0∈IR, ξ,ξ∗∈IRm

1

2
||w||2 + C

m∑
i=1

(ξi + ξ∗i )

subject to wTΦ(xi) + w0 − yi ≤ ε+ ξi

yi − (wTΦ(xi) + w0 ) ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

Note

• Two constraints for each example for the upper and lower sides of the tube

• Slack variables ξi, ξ∗i penalize predictions out of the ε-insensitive tube

Support Vector Regression

Lagrangian

• We include constraints in the minimization function using Lagrange multipliers (αi, αi∗, βi, β∗i ≥ 0):

L =
1

2
||w||2 + C

m∑
i=1

(ξi + ξ∗i )−
m∑
i=1

(βiξi + β∗i ξ
∗
i )

−
m∑
i=1

αi(ε+ ξi + yi −wTΦ(xi)− w0)

−
m∑
i=1

α∗i (ε+ ξ∗i − yi + wTΦ(xi) + w0)
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Support Vector Regression

Dual formulation

• Vanishing the derivatives wrt the primal variables we obtain:

∂L

∂w
= w −

m∑
i=1

(α∗i − αi)Φ(xi) = 0→ w =

m∑
i=1

(α∗i − αi)Φ(xi)

∂L

∂w0
=

m∑
i=1

(αi − α∗i ) = 0

∂L

∂ξi
= C − αi − βi = 0→ αi ∈ [0, C]

∂L

∂ξ∗i
= C − α∗i − β∗i = 0→ α∗i ∈ [0, C]

Support Vector Regression
Dual formulation

• Substituting in the Lagrangian we get:

1

2

m∑
i,j=1

(α∗i − αi)(α∗j − αj)Φ(xi)
TΦ(xj)︸ ︷︷ ︸

||w||2

+

m∑
i=1

ξi (C − βi − αi)︸ ︷︷ ︸
=0

+

m∑
i=1

ξ∗i (C − β∗i − α∗i )︸ ︷︷ ︸
=0

−ε
m∑
i=1

(αi + α∗i ) +

m∑
i=1

yi(α
∗
i − αi) + w0

m∑
i=1

(αi − α∗i )︸ ︷︷ ︸
=0

−
m∑

i,j=1

(α∗i − αi)(α∗j − αj)Φ(xi)
TΦ(xj)

Support Vector Regression

Dual formulation

max
α∈IRm

−1

2

m∑
i,j=1

(α∗i − αi)(α∗j − αj)Φ(xi)
TΦ(xj)

−ε
m∑
i=1

(α∗i + αi) +

m∑
i=1

yi(α
∗
i − αi)

subject to
m∑
i=1

(αi − α∗i ) = 0

αi, α
∗
i ∈ [0, C] ∀i ∈ [1,m]
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Regression function

f(x) = wTΦ(x) + w0 =

m∑
i=1

(αi − α∗i )Φ(xi)
TΦ(x) + w0

Support Vector Regression

Karush-Khun-Tucker conditions (KKT)

• At the saddle point it holds that for all i:

αi(ε+ ξi + yi −wTΦ(xi)− w0) = 0

α∗i (ε+ ξ∗i − yi + wTΦ(xi) + w0) = 0

βiξi = 0

β∗i ξ
∗
i = 0

• Combined with C − αi − βi = 0,αi ≥ 0,βi ≥ 0 and C − α∗i − β∗i = 0,α∗i ≥ 0,β∗i ≥ 0 we get

αi ∈ [0, C] α∗i ∈ [0, C]

• and
αi = C if ξi > 0 α∗i = C if ξ∗i > 0

Support Vector Regression

Support Vectors

• All patterns within the ε-tube, for which |f(xi) − yi| < ε, have αi, α∗i = 0 and thus don’t contribute to the
estimated function f .

• Patterns for which either 0 < αi < C or 0 < α∗i < C are on the border of the ε-tube, that is |f(xi) − yi| = ε.
They are the unbound support vectors.

• The remaining training patterns are margin errors (either ξi > 0 or ξ∗i > 0), and reside out of the ε-insensitive
region. They are bound support vectors, with corresponding αi = C or α∗i = C.

Support Vectors
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Support Vector Regression: example for decreasing ε
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Appendix

• Smallest enclosing hypersphere

• Support vector ranking

Smallest Enclosing Hypersphere

Rationale

• Characterize a set of examples defining boundaries enclosing them
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• Find smallest hypersphere in feature space enclosing data points

• Account for outliers paying a cost for leaving examples out of the sphere

Usage

• One-class classification: model a class when no negative examples exist

• Anomaly/novelty detection: detect test data falling outside of the sphere and return them as novel/anomalous
(e.g. intrusion detection systems, Alzheimer’s patients monitoring)

Smallest Enclosing Hypersphere

Optimization problem

min
R∈IR,o∈H,ξ∈IRm

R2 + C
m∑
i=1

ξi

subject to ||Φ(xi)− o||2 ≤ R2 + ξi i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m

Note

• o is the center of the sphere

• R is the radius which is minimized

• slack variables ξi gather costs for outliers

Smallest Enclosing Hypersphere

Lagrangian (αi, βi ≥ 0)

L = R2 + C

m∑
i=1

ξi −
m∑
i=1

αi(R
2 + ξi − ||Φ(xi)− o||2)−

m∑
i=1

βiξi

Vanishing the derivatives wrt primal variables

∂L

∂R
= 2R(1−

m∑
i=1

αi) = 0→
m∑
i=1

αi = 1

∂L

∂o
= 2

m∑
i=1

αi(Φ(xi)− o)(−1) = 0→ o

m∑
i=1

αi︸ ︷︷ ︸
=1

=

m∑
i=1

αiΦ(xi)

∂L

∂ξi
= C − αi − βi = 0→ αi ∈ [0, C]
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Smallest Enclosing Hypersphere

Dual formulation

R2 (1−
m∑
i=1

αi)︸ ︷︷ ︸
=0

+

m∑
i=1

ξi (C − αi − βi)︸ ︷︷ ︸
=0

+

m∑
i=1

αi(Φ(xi)−
m∑
j=1

αjΦ(xj)︸ ︷︷ ︸
o

)T (Φ(xi)−
m∑
h=1

αhΦ(xh)︸ ︷︷ ︸
o

)

Smallest Enclosing Hypersphere
Dual formulation

m∑
i=1

αi(Φ(xi)−
m∑
j=1

αjΦ(xj))
T (Φ(xi)−

m∑
h=1

αhΦ(xh)) =

=

m∑
i=1

αiΦ(xi)
TΦ(xi)−

m∑
i=1

αiΦ(xi)
T

m∑
h=1

αhΦ(xh)

−
m∑
i=1

αi

m∑
j=1

αjΦ(xj)
TΦ(xi) +

m∑
i=1

αi︸ ︷︷ ︸
=1

m∑
j=1

αjΦ(xj)
T

m∑
h=1

αhΦ(xh) =

=

m∑
i=1

αiΦ(xi)
TΦ(xi)−

m∑
i=1

αiΦ(xi)
T

m∑
j=1

αjΦ(xj)

Smallest Enclosing Hypersphere
Dual formulation

max
α∈IRm

m∑
i=1

αiΦ(xi)
TΦ(xi)−

m∑
i,j=1

αiαjΦ(xi)
TΦ(xj)

subject to
m∑
i=1

αi = 1, 0 ≤ αi ≤ C, i = 1, . . . ,m.

Distance function

• The distance of a point from the origin is:

R2(x) = ||Φ(x)− o||2

= (Φ(x)−
m∑
i=1

αiΦ(xi))
T (Φ(x)−

m∑
j=1

αjΦ(xj))

= Φ(x)TΦ(x)− 2

m∑
i=1

αiΦ(xi)
TΦ(x) +

m∑
i,j=1

αiαjΦ(xi)
TΦ(xj)
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Smallest Enclosing Hypersphere

Karush-Khun-Tucker conditions (KKT)

• At the saddle point it holds that for all i:

βiξi = 0

αi(R
2 + ξi − ||Φ(xi)− o||2) = 0

Support vectors

• Unbound support vectors (0 < αi < C), whose images lie on the surface of the enclosing sphere.

• Bound support vectors (αi = C), whose images lie outside of the enclosing sphere, which correspond to outliers.

• All other points (α = 0) with images inside the enclosing sphere.

Smallest Enclosing Hypersphere

Smallest Enclosing Hypersphere

Decision function

• The radius R∗ of the enclosing sphere can be computed using the distance function on any unbound support
vector x:

R2(x) = Φ(x)TΦ(x)− 2

m∑
i=1

αiΦ(xi)
TΦ(x) +

m∑
i,j=1

αiαjΦ(xi)
TΦ(xj)
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• A decision function for novelty detection could be:

f(x) = sgn
(
R2(x)− (R∗)2

)
• i.e. positive if the examples lays outside of the sphere and negative otherwise

Support Vector Ranking

Rationale

• Order examples by relevance (e.g. email urgence, movie rating)

• Learn scoring function predicting quality of example

• Constraint function to score xi higher than xj if it is more relevant (pairwise comparisons for training)

• Easily formalized as a support vector classification task

Support Vector Ranking

Optimization problem

min
w∈X ,w0∈IR, ξi,j∈IR

1

2
||w||2 + C

∑
i,j

ξi,j

subject to
wTΦ(xi)−wTΦ(xj) ≥ 1− ξi,j
ξi,j ≥ 0

∀i, j : xi ≺ xj

Note

• There is one constraint for each pair of examples having ordering information (xi ≺ xj means the former is
comes first in the ranking)

• Examples should be correctly ordered with a large margin

Support Vector Ranking

Support vector classification on pairs

min
w∈X ,w0∈IR, ξi,j∈IR

1

2
||w||2 + C

∑
i,j

ξi,j

subject to
yi,jw

T (Φ(xi)− Φ(xj))︸ ︷︷ ︸
Φ(xij)

≥ 1− ξi,j

ξi,j ≥ 0

∀i, j : xi ≺ xj

• where labels are always positive yi,j = 1
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Support Vector Ranking

Decision function

f(x) = wTΦ(x)

• Standard support vector classification function (unbiased)

• Represents score of example for ranking it
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