Non-linear Support Vector Machines
Non-linearly separable problems
e Hard-margin SVM can address linearly separable problems
* Soft-margin SVM can address linearly separable problems with outliers
* Non-linearly separable problems need a higher expressive power (i.e. more complex feature combinations)

* We do not want to loose the advantages of linear separators (i.e. large margin, theoretical guarantees)

Solution
e Map input examples in a higher dimensional feature space

 Perform linear classification in this higher dimensional space

Non-linear Support Vector Machines

feature map
P X > H

* @ is a function mapping each example to a higher dimensional space H
» Examples x are replaced with their feature mapping ®(x)

* The feature mapping should increase the expressive power of the representation (e.g. introducing features which
are combinations of input features)

» Examples should be (approximately) linearly separable in the mapped space

Feature map
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Polynomial mapping
* Maps features to all possible conjunctions (i.e. products) of features:

1. of a certain degree d (homogeneous mapping)

2. up to a certain degree (inhomogeneous mapping)
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Non-linear Support Vector Machines
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Linear separation in feature space
* SVM algorithm is applied just replacing  with ®(x):
F(x) =w'®(x) +wp
* A linear separation (i.e. hyperplane) in feature space corresponds to a non-linear separation in input space, e.g.:

x
f < m; ) = sgn(w1 27 + wox1 T2 + wars + wo)

Support Vector Regression

Rationale
* Retain combination of regularization and data fitting
* Regularization means smoothness (i.e. smaller weights, lower complexity) of the learned function

» Use a sparsifying loss to have few support vector



Support Vector Regression
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e-insensitive loss

() y) =y — F(x)] = { |0y ol ifJy — f(0)] < ¢

otherwise

* Tolerate small (¢) deviations from the true value (i.e. no penalty)
* Defines an e-tube of insensitiveness around true values

* This also allows to trade off function complexity with data fitting (playing on € value)

Support Vector Regression

Optimization problem
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Note
* Two constraints for each example for the upper and lower sides of the tube

* Slack variables &;, £ penalize predictions out of the e-insensitive tube

Support Vector Regression
Lagrangian

* We include constraints in the minimization function using Lagrange multipliers («;, i, 5;, 37 > 0):
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Support Vector Regression

Dual formulation

* Vanishing the derivatives wrt the primal variables we obtain:
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Support Vector Regression
Dual formulation
 Substituting in the Lagrangian we get:
1 - * * T
5 Y (af —ai)(af — ay)P(x:) "B (x;)
ij=1
[lw][?
+Z§¢(C*5i *ai)+zg (C— B —aj)
—€ Z(ai +af)+ ZyL(af — ;) + wy Z(ai —af)
i=1 i=1 i=1
————

m

_Z(a;_

=0

ai) (e — ;)@ (x:) T @ (x;)

_% > (o —ai)(a) — a;)P(x:) T D(x;)

4,J=1

m m

—e> (of + i) + > wila) — o)
i=1 i=1

i,j=1
Support Vector Regression
Dual formulation
max
ocR™
subject to

m

S (ai—ai) =0

i=1

a;,af €0,C)

Vi € [1,m]



Regression function
m

Fx) = wle(x) +wo =) (s — af)(x;) B (x) +wo
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Support Vector Regression

Karush-Khun-Tucker conditions (KKT)
At the saddle point it holds that for all ¢:
ai(e+ & +yi —w' ®(x;) —wg) =0
aj(e+& —yi+ W O(x;) + wp) =0
Bi&i =0
Bi& =0
* Combined with C' — a; — 8; = 0,0; > 0,8, > 0and C — of — BF = 0,0 > 0,5 > 0 we get
a; €[0,C] a; €10,C)

e and

Support Vector Regression

Support Vectors

* All patterns within the e-tube, for which |f(x;) — y;| < €, have a;, @f = 0 and thus don’t contribute to the
estimated function f.

* Patterns for which either 0 < a; < C or 0 < af < C are on the border of the e-tube, that is | f(x;) — y;| = €.
They are the unbound support vectors.

* The remaining training patterns are margin errors (either {; > 0 or £ > 0), and reside out of the e-insensitive
region. They are bound support vectors, with corresponding a; = C or of = C.

Support Vectors




Support Vector Regression: example for decreasing ¢
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Appendix

* Smallest enclosing hypersphere

 Support vector ranking

Smallest Enclosing Hypersphere

Rationale

» Characterize a set of examples defining boundaries enclosing them



* Find smallest hypersphere in feature space enclosing data points

* Account for outliers paying a cost for leaving examples out of the sphere

Usage
* One-class classification: model a class when no negative examples exist

* Anomaly/novelty detection: detect test data falling outside of the sphere and return them as novel/anomalous
(e.g. intrusion detection systems, Alzheimer’s patients monitoring)

Smallest Enclosing Hypersphere

Optimization problem

min R2+C§m:fi
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Note

* o is the center of the sphere
* R is the radius which is minimized

* slack variables &; gather costs for outliers

Smallest Enclosing Hypersphere
Lagrangian (o, 5; > 0)
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Vanishing the derivatives wrt primal variables
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Smallest Enclosing Hypersphere

Dual formulation
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Smallest Enclosing Hypersphere
Dual formulation
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Smallest Enclosing Hypersphere
Dual formulation
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Distance function

* The distance of a point from the origin is:
R*(z) = [|®(x) - ol?

= (®(x) = Y i®(x:)) (P(x) = > a;8(x;))
i=1 j=1
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ij=1



Smallest Enclosing Hypersphere
Karush-Khun-Tucker conditions (KKT)

At the saddle point it holds that for all ¢:

Bi& =0
a;(R*+& — ||®(x;) —o||*) =0

Support vectors

 Unbound support vectors (0 < o; < C'), whose images lie on the surface of the enclosing sphere.
* Bound support vectors (o; = C), whose images lie outside of the enclosing sphere, which correspond to outliers.

* All other points (aw = 0) with images inside the enclosing sphere.

Smallest Enclosing Hypersphere

Smallest Enclosing Hypersphere

Decision function

* The radius R* of the enclosing sphere can be computed using the distance function on any unbound support
vector Xx:

R (x) = (x)Td(x) — QZOQ-(I)(Xi)TCI)(X) + > i 0(x) 0 (x;)

ij=1



* A decision function for novelty detection could be:
f(x) = sgn (R*(x) — (R")?)

* i.e. positive if the examples lays outside of the sphere and negative otherwise

Support Vector Ranking
Rationale
* Order examples by relevance (e.g. email urgence, movie rating)
* Learn scoring function predicting quality of example
* Constraint function to score x; higher than x; if it is more relevant (pairwise comparisons for training)

* Easily formalized as a support vector classification task

Support Vector Ranking

Optimization problem

: 1 2
min §||WH JrCZ&,j
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Note

* There is one constraint for each pair of examples having ordering information (x; < x; means the former is
comes first in the ranking)

» Examples should be correctly ordered with a large margin

Support Vector Ranking

Support vector classification on pairs
. 1 2
min SIwlP +C) &
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subject to
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* where labels are always positive y; ; = 1
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Support Vector Ranking

Decision function
flz) =wTe(x)
» Standard support vector classification function (unbiased)

» Represents score of example for ranking it
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