
Support Vector Machine

Andrea Passerini
passerini@disi.unitn.it

Machine Learning

Support Vector Machine

Support vector machines

In a nutshell
Linear classifiers selecting hyperplane maximizing
separation margin between classes (large margin
classifiers)
Solution only depends on a small subset of training
examples (support vectors)
Sound generalization theory (bounds or error based on
margin)
Can be easily extended to nonlinear separation (kernel
machines)

Support Vector Machine

Maximum margin classifier

Support Vector Machine

Maximum margin classifier

Classifier margin

Given a training set D, a classifier confidence margin is:

ρ = min(x ,y)∈Dyf (x)

It is the minimal confidence margin (for predicting the true
label) among training examples
A classifier geometric margin is:

ρ

||w ||
= min(x ,y)∈D

yf (x)

||w ||

Support Vector Machine

Maximum margin classifier

Canonical hyperplane
There is an infinite number of equivalent formulation for the
same hyperplane:

wT x + w0 = 0
α(wT x + w0) = 0 ∀α 6= 0

The canonical hyperplane is the hyperplane having
confidence margin equal to 1:

ρ = min(x ,y)∈Dyf (x) = 1

Its geometric margin is:

ρ

||w ||
=

1
||w ||

Support Vector Machine

Maximum margin classifier

Support Vector Machine

Hard margin SVM

Theorem (Margin Error Bound)

Consider the set of decision functions f (x) = signwT x with
||w|| ≤ Λ and ||x|| ≤ R, for some R,Λ > 0. Moreover, let ρ > 0
and ν denote the fraction of training examples with margin
smaller than ρ/||w||, referred to as the margin error.
For all distributions P generating the data, with probability at
least 1− δ over the drawing of the m training patterns, and for
any ρ > 0 and δ ∈ (0,1), the probability that a test pattern
drawn from P will be misclassified is bound from above by

ν +

√
c
m

(
R2Λ2

ρ2 ln2m + ln(1/δ)

)
.

Here, c is a universal constant.

Support Vector Machine

Hard margin SVM

Margin Error Bound: interpretation

ν +

√
c
m

(
R2Λ2

ρ2 ln2m + ln(1/δ)

)
.

The probability of test error depends on (among other
components):

number of margin errors ν (examples with margin smaller
than ρ/||w ||)

number of training examples (error depends on
√

ln2m
m)

size of the margin (error depends on 1/ρ2)

Note
If ρ is fixed to 1 (canonical hyperplane), maximizing margin
corresponds to minimizing ||w ||

Support Vector Machine

Hard margin SVM

Learning problem

minw ,w0

1
2
||w ||2

subject to:

yi(wT x i + w0) ≥ 1
∀(x i , yi) ∈ D

Note
constraints guarantee that all points are correctly classified
(plus canonical form)
minimization corresponds to maximizing the (squared)
margin
quadratic optimization problem (objective is quadratic,
points satisfying constraints form a convex set)

Support Vector Machine

Hard margin SVM

Learning problem

minw ,w0

1
2
||w ||2

subject to:

yi(wT x i + w0) ≥ 1
∀(x i , yi) ∈ D

Note
constraints guarantee that all points are correctly classified
(plus canonical form)
minimization corresponds to maximizing the (squared)
margin
quadratic optimization problem (objective is quadratic,
points satisfying constraints form a convex set)

Support Vector Machine

Digression: constrained optimization

Karush-Kuhn-Tucker (KKT) approach
A constrained optimization problem can be addressed by
converting it into an unconstrained problem with the same
solution
Let’s have a constrained optimization problem as:

minz f (z)

subject to:

gi(z) ≥ 0 ∀i

Let’s introduce a non-negative variable αi ≥ 0 (called
Lagrange multiplier) for each constraint and rewrite the
optimization problem as (Lagrangian):

minz maxα≥0 f (z)−
∑

i

αigi(z)

Support Vector Machine

Digression: constrained optimization

Karush-Kuhn-Tucker (KKT) approach

minz maxα≥0 f (z)−
∑

i

αigi(z)

The optimal solutions z∗ for this problem are the same as the
optimal solutions for the original (constrained) problem:

If for a given z ′ at least one constraint is not satisfied, i.e.
gi(z ′) < 0 for some i , maximizing over αi leads to an
infinite value (not a minimum, unless there is no
non-infinite minimum)
If all constraints are satisfied (i.e. gi(z ′) ≥ 0 for all i),
maximization over the α will set all elements of the
summation to zero, so that z ′ is a solution of minz f (z).

Support Vector Machine

Hard margin SVM
Karush-Kuhn-Tucker (KKT) approach

minw ,w0

1
2
||w ||2

subject to:

yi(wT x i + w0) ≥ 1
∀(x i , yi) ∈ D

The constraints can be included in the minimization using
Lagrange multipliers αi ≥ 0 (m = |D|):

L(w,w0,α) =
1
2
||w||2 −

m∑
i=1

αi(yi(wT xi + w0)− 1)

The Lagrangian is minimized wrt w,w0 and maximized wrt
αi (solution is a saddle point)

Support Vector Machine

Hard margin SVM

Dual formulation

L(w,w0,α) =
1
2
||w||2 −

m∑
i=1

αi(yi(wT xi + w0)− 1)

Vanishing derivatives wrt primal variables we get:

∂

∂w0
L(w,w0,α) = 0 ⇒

m∑
i=1

αiyi = 0

∂

∂w
L(w,w0,α) = 0 ⇒ w =

m∑
i=1

αiyixi

Support Vector Machine

Hard margin SVM

Dual formulation
Substituting in the Lagrangian we get:

1
2
||w||2 −

m∑
i=1

αi(yi(wT xi + w0)− 1) =

1
2

m∑
i,j=1

αiαjyiyjxT
i xj −

m∑
i,j=1

αiαjyiyjxT
i xj −

m∑
i=1

αiyi︸ ︷︷ ︸
=0

w0 +
m∑

i=1

αi =

m∑
i=1

αi −
1
2

m∑
i,j=1

αiαjyiyjxT
i xj = L(α)

which is to be maximized wrt the dual variables α

Support Vector Machine

Hard margin SVM

Dual formulation

max
α∈IRm

m∑
i=1

αi −
1
2

m∑
i,j=1

αiαjyiyjxT
i xj

subject to αi ≥ 0 i = 1, . . . ,m
m∑

i=1

αiyi = 0

The resulting maximization problem including the
constraints
Still a quadratic optimization problem

Support Vector Machine

Hard margin SVM

Note
The dual formulation has simpler contraints (box), easier to
solve
The primal formulation has d + 1 variables (number of
features +1):

minw ,w0

1
2
||w ||2

The dual formulation has m variables (number of training
examples):

max
α∈IRm

m∑
i=1

αi −
1
2

m∑
i,j=1

αiαjyiyjxT
i xj

One can choose the primal formulation if it has much less
variables (problem dependent)

Support Vector Machine

Hard margin SVM

Decision function

Substituting w =
∑m

i=1 αiyixi in the decision function we
get:

f (x) = wT x + w0 =
m∑

i=1

αiyixT
i x + w0

The decision function is linear combination of dot products
between training points and the test point
dot product is kind of similarity between points
Weights of the combination are αiyi : large αi implies large
contribution towards class yi (times the similarity)

Support Vector Machine

Hard margin SVM

Karush-Khun-Tucker conditions (KKT)

L(w,w0,α) =
1
2
||w||2 −

m∑
i=1

αi(yi(wT xi + w0)− 1)

At the saddle point it holds that for all i :

αi(yi(wT xi + w0)− 1) = 0

Thus, either the example does not contribute to the final
f (x):

αi = 0

or the example stays on the minimal confidence
hyperplane from the decision one:

yi(wT xi + w0) = 1

Support Vector Machine

Hard margin SVM

Support vectors
points staying on the minimal confidence hyperplanes are
called support vectors
All other points do not contribute to the final decision
function (i.e. they could be removed from the training set)
SVM are sparse i.e. they typically have few support vectors

Support Vector Machine

Hard margin SVM

Decision function bias
The bias w0 can be computed from the KKT conditions
Given an arbitrary support vector xi (with αi > 0) the KKT
conditions imply:

yi(wT xi + w0) = 1
yiwT xi + yiw0 = 1

w0 =
1− yiwT xi

yi

For robustness, the bias is usually averaged over all
support vectors

Support Vector Machine

Soft margin SVM

Support Vector Machine

Soft margin SVM

Slack variables

min
w∈X ,w0∈IR, ξ∈IRm

1
2
||w||2 + C

m∑
i=1

ξi

subject to

yi(wT xi + w0) ≥ 1− ξi i = 1, . . . ,m
ξi ≥ 0 i = 1, . . . ,m

A slack variable ξi represents the penalty for example xi
not satisfying the margin constraint
The sum of the slacks is minimized together to the inverse
margin
The regularization parameter C ≥ 0 trades-off data fitting
and size of the margin

Support Vector Machine

Soft margin SVM

Regularization theory

min
w∈X ,w0∈IR, ξ∈IRm

1
2
||w||2 + C

m∑
i=1

`(yi , f (xi))

Regularized loss minimization problem
The loss term accounts for error minimization
The margin maximization term accounts for regularization
i.e. solutions with larger margin are preferred

Note
Regularization is a standard approach to prevent overfitting
It corresponds to a prior for simpler (more regular,
smoother) solutions

Support Vector Machine

Soft margin SVM

Hinge loss

`(yi , f (xi)) = |1− yi f (xi)|+ = |1− yi(wT xi + w0)|+

|z|+ = z if z > 0 and 0 otherwise (positive part)
it corresponds to the slack variable ξi (violation of margin
costraint)
all examples not violating margin costraint have zero loss
(sparse set of support vectors)

Support Vector Machine

Soft margin SVM

Lagrangian

L = C
m∑

i=1

ξi +
1
2
||w ||2 −

m∑
i=1

αi(yi(wT xi + w0)− 1 + ξi)−
m∑

i=1

βiξi

where αi ≥ 0 and βi ≥ 0
Vanishing derivatives wrt primal variables we get:

∂

∂w0
L = 0 ⇒

m∑
i=1

αiyi = 0

∂

∂w
L = 0 ⇒ w =

m∑
i=1

αiyixi

∂

∂ξi
L = 0 ⇒ C − αi − βi = 0

Support Vector Machine

Soft margin SVM

Dual formulation
Substituting in the Lagrangian we get

C
m∑

i=1

ξi +
1
2
||w ||2 −

m∑
i=1

αi(yi(wT xi + w0)− 1 + ξi)−
m∑

i=1

βiξi =

m∑
i=1

ξi (C − αi − βi)︸ ︷︷ ︸
=0

+
1
2

m∑
i,j=1

αiαjyiyjxT
i xj −

m∑
i,j=1

αiαjyiyjxT
i xj −

m∑
i=1

αiyi︸ ︷︷ ︸
=0

w0 +
m∑

i=1

αi =

m∑
i=1

αi −
1
2

m∑
i,j=1

αiαjyiyjxT
i xj = L(α)

Support Vector Machine

Soft margin SVM

Dual formulation

max
α∈IRm

m∑
i=1

αi −
1
2

m∑
i,j=1

αiαjyiyjxT
i xj

subject to 0 ≤ αi ≤ C i = 1, . . . ,m
m∑

i=1

αiyi = 0

The box constraint for αi comes from C − αi − βi = 0 (and
the fact that both αi ≥ 0 and βi ≥ 0)

Support Vector Machine

Soft margin SVM

Karush-Khun-Tucker conditions (KKT)

L = C
m∑

i=1

ξi +
1
2
||w ||2−

m∑
i=1

αi(yi(wT xi + w0)−1 + ξi)−
m∑

i=1

βiξi

At the saddle point it holds that for all i :

αi(yi(wT xi + w0)− 1 + ξi) = 0
βiξi = 0

Thus, support vectors (αi > 0) are examples for which
(yi(wT xi + w0) ≤ 1

Support Vector Machine

Soft margin SVM

Support Vectors

αi(yi(wT xi + w0)− 1 + ξi) = 0
βiξi = 0

If αi < C, C − αi − βi = 0 and βiξi = 0 imply that ξi = 0

These are called unbound SV ((yi (wT xi + w0) = 1, they
stay on the confidence one hyperplane

If αi = C (bound SV) then ξi can be greater the zero, in
which case the SV are margin errors

Support Vector Machine

Support vectors

Support Vector Machine

Large-scale SVM learning

Stochastic gradient descent

min
w∈X

λ

2
||w||2 +

1
m

m∑
i=1

|1− yi〈w,xi〉|+

Objective for a single example (xi , yi):

E(w; (xi , yi)) =
λ

2
||w||2 + |1− yi〈w,xi〉|+

Subgradient:

∇wE(w; (xi , yi)) = λw− 1[yi〈w,xi〉 < 1]yixi

Support Vector Machine

Large-scale SVM learning

Note
Indicator function

1[yi〈w,xi〉 < 1] =

{
1 if yi〈w,xi〉 < 1
0 otherwise

The subgradient of a function f at a point x0 is any vector v
such that for any x:

f (x)− f (x0) ≥ vT (x− x0)

Support Vector Machine

Large-scale SVM learning

Pseudocode (pegasus)
1 Initialize w1 = 0
2 for t = 1 to T:

1 Randomly choose (xit , yit) from D
2 Set ηt = 1

λt
3 Update w:

wt+1 = wt − ηt∇wE(w; (xit , yit))

3 Return wT+1

Note
The choice of the learning rate allows to bound the runtime for
an ε-accurate solution to O(d/λε) with d maximum number of
non-zero features in an example.

Support Vector Machine

References

Biblio
C. Burges, A tutorial on support vector machines for
pattern recognition, Data Mining and Knowledge
Discovery, 2(2), 121-167, 1998.
S. Shalev-Shwartz et al., Pegasos: primal estimated
sub-gradient solver for SVM, Mathematical Programming,
127(1), 3-30, 2011.

Software
svm module in scikit-learn
http://scikit-learn.org/stable/index.html

libsvm
http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

svmlight http://svmlight.joachims.org/

Support Vector Machine

http://scikit-learn.org/stable/index.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://svmlight.joachims.org/

APPENDIX

Appendix
Additional reference material

Support Vector Machine

Large-scale SVM learning

Dual version
It is easy to show that:

wt+1 =
1
λt

t∑
i=1

1[yit 〈wt ,xit 〉 < 1]yit xit

We can represent wt+1 implicitly by storing in vector αt+1
the number of times each example was selected and had a
non-zero loss, i.e.:

αt+1[j] = |{t ′ ≤ t : it ′ = j ∧ yj〈wt ′ ,xj〉 < 1}|

Support Vector Machine

Large-scale SVM learning

Pseudocode (pegasus dual)
1 Initialize α1 = 0
2 for t = 1 to T:

1 Randomly choose (xit , yit) from D
2 Set αt+1 = αt
3 If yit

1
λt

∑t
j=1 αt [j]yj〈xj ,xit 〉 < 1

1 αt+1[it] = αt+1[it] + 1

3 Return αT+1

Note
This will be useful when combined with kernels.

Support Vector Machine

