Support Vector Machine

Andrea Passerini passerini@disi.unitn.it

Machine Learning

In a nutshell

- Linear classifiers selecting hyperplane maximizing separation margin between classes (*large margin classifiers*)
- Solution only depends on a small subset of training examples (support vectors)
- Sound generalization theory (bounds or error based on margin)
- Can be easily extended to nonlinear separation (kernel machines)

Maximum margin classifier



Classifier margin

• Given a training set \mathcal{D} , a classifier *confidence margin* is:

$$ho = \min_{(\mathbf{X}, \mathbf{y}) \in \mathcal{D}} \mathbf{y} f(\mathbf{X})$$

- It is the minimal confidence margin (for predicting the true label) among training examples
- A classifier geometric margin is:

$$\frac{\rho}{||\boldsymbol{w}||} = \min_{(\boldsymbol{X}, y) \in \mathcal{D}} \frac{yf(\boldsymbol{x})}{||\boldsymbol{w}||}$$

Canonical hyperplane

• There is an infinite number of equivalent formulation for the same hyperplane:

$$\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} + \boldsymbol{w}_{0} = \boldsymbol{0}$$

$$\alpha(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} + \boldsymbol{w}_{0}) = \boldsymbol{0} \quad \forall \alpha \neq \boldsymbol{0}$$

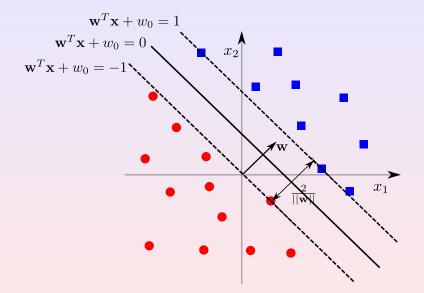
• The *canonical hyperplane* is the hyperplane having confidence margin equal to 1:

$$\rho = \min_{(\boldsymbol{X}, \boldsymbol{y}) \in \mathcal{D}} \boldsymbol{y} f(\boldsymbol{x}) = 1$$

Its geometric margin is:

$$\frac{\rho}{||\boldsymbol{w}||} = \frac{1}{||\boldsymbol{w}||}$$

Maximum margin classifier



Theorem (Margin Error Bound)

Consider the set of decision functions $f(\mathbf{x}) = \operatorname{sign} \mathbf{w}^T \mathbf{x}$ with $||\mathbf{w}|| \leq \Lambda$ and $||\mathbf{x}|| \leq R$, for some $R,\Lambda > 0$. Moreover, let $\rho > 0$ and ν denote the fraction of training examples with margin smaller than $\rho/||\mathbf{w}||$, referred to as the margin error. For all distributions P generating the data, with probability at least $1 - \delta$ over the drawing of the m training patterns, and for any $\rho > 0$ and $\delta \in (0, 1)$, the probability that a test pattern drawn from P will be misclassified is bound from above by

$$u + \sqrt{\frac{c}{m}} \left(\frac{R^2 \Lambda^2}{\rho^2} \ln^2 m + \ln(1/\delta) \right).$$

Here, c is a universal constant.

Margin Error Bound: interpretation

$$u + \sqrt{\frac{c}{m}} \left(\frac{R^2 \Lambda^2}{\rho^2} \ln^2 m + \ln(1/\delta) \right).$$

The probability of test error depends on (among other components):

- number of margin errors ν (examples with margin smaller than $\rho/||\boldsymbol{w}||$)
- number of training examples (error depends on $\sqrt{\frac{\ln^2 m}{m}}$)
- size of the margin (error depends on $1/\rho^2$)

Note

If ρ is fixed to 1 (canonical hyperplane), maximizing margin corresponds to minimizing $||\pmb{w}||$

Learning problem

$$\begin{array}{ll} \min \boldsymbol{w}_{,w_0} & & \displaystyle \frac{1}{2} ||\boldsymbol{w}||^2 \\ \text{subject to:} & & \\ & & y_i(\boldsymbol{w}^T \boldsymbol{x}_i + w_0) \geq 1 \\ & & \forall (\boldsymbol{x}_i, y_i) \in \mathcal{D} \end{array}$$

Note

- constraints guarantee that all points are correctly classified (plus canonical form)
- minimization corresponds to maximizing the (squared) margin
- quadratic optimization problem (objective is quadratic, points satisfying constraints form a convex set)

Learning problem

$$\begin{array}{ll} \min \boldsymbol{w}_{,w_0} & & \displaystyle \frac{1}{2} ||\boldsymbol{w}||^2 \\ \text{subject to:} & & \\ & & y_i(\boldsymbol{w}^T \boldsymbol{x}_i + w_0) \geq 1 \\ & & \forall (\boldsymbol{x}_i, y_i) \in \mathcal{D} \end{array}$$

Note

- constraints guarantee that all points are correctly classified (plus canonical form)
- minimization corresponds to maximizing the (squared) margin
- quadratic optimization problem (objective is quadratic, points satisfying constraints form a convex set)

Digression: constrained optimization

Karush-Kuhn-Tucker (KKT) approach

- A constrained optimization problem can be addressed by converting it into an *unconstrained* problem with the same solution
- Let's have a constrained optimization problem as:

 $\min_{z} \quad f(z)$
subject to:

 $g_i(z) \ge 0 \ \forall i$

 Let's introduce a non-negative variable α_i ≥ 0 (called Lagrange multiplier) for each constraint and rewrite the optimization problem as (Lagrangian):

$$\min_{z} \max_{\alpha \ge 0} f(z) - \sum_{i} \alpha_{i} g_{i}(z)$$

Digression: constrained optimization

Karush-Kuhn-Tucker (KKT) approach

$$\min_{z} \max_{\alpha \geq 0} f(z) - \sum_{i} \alpha_{i} g_{i}(z)$$

The optimal solutions z^* for this problem are the same as the optimal solutions for the original (constrained) problem:

- If for a given z' at least one constraint is *not* satisfied, i.e. g_i(z') < 0 for some i, maximizing over α_i leads to an infinite value (not a minimum, unless there is no non-infinite minimum)
- If all constraints are satisfied (i.e. g_i(z') ≥ 0 for all i), maximization over the α will set all elements of the summation to zero, so that z' is a solution of min_zf(z).

Karush-Kuhn-Tucker (KKT) approach

$$\min_{\boldsymbol{W}, w_0} \qquad \frac{1}{2} ||\boldsymbol{W}||^2$$
ubject to:
$$y_i(\boldsymbol{W}^T \boldsymbol{x}_i + w_0) \ge 1$$

$$\forall (\boldsymbol{x}_i, y_i) \in \mathcal{D}$$

 The constraints can be included in the minimization using Lagrange multipliers α_i ≥ 0 (m = |D|):

$$L(\mathbf{w}, w_0, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^m \alpha_i (y_i (\mathbf{w}^T \mathbf{x}_i + w_0) - 1)$$

The Lagrangian is minimized wrt w, w₀ and maximized wrt α_i (solution is a saddle point)

Dual formulation

$$L(\mathbf{w}, w_0, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^m \alpha_i (y_i (\mathbf{w}^T \mathbf{x}_i + w_0) - 1)$$

• Vanishing derivatives wrt primal variables we get:

$$\frac{\partial}{\partial w_0} L(\mathbf{w}, w_0, \alpha) = 0 \quad \Rightarrow \quad \sum_{i=1}^m \alpha_i y_i = 0$$
$$\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}, w_0, \alpha) = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^m \alpha_i y_i \mathbf{x}_i$$

Dual formulation

• Substituting in the Lagrangian we get:

$$\frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^m \alpha_i (y_i (\mathbf{w}^T \mathbf{x}_i + w_0) - 1) =$$

$$\frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j - \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j -$$

$$\sum_{i=1}^m \alpha_i y_i w_0 + \sum_{i=1}^m \alpha_i =$$

$$\sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m \alpha_j \alpha_j y_j y_j \mathbf{x}_i^T \mathbf{x}_j = L(\alpha)$$

ullet which is to be maximized wrt the dual variables lpha

Dual formulation

 $\max_{\boldsymbol{\alpha} \in \mathbb{R}^m} \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j \mathbf{y}_j \mathbf{y}_j \mathbf{x}_i^T \mathbf{x}_j$ subject to $\alpha_i \ge 0 \quad i = 1, \dots, m$ $\sum_{i=1}^m \alpha_i \mathbf{y}_i = 0$

- The resulting maximization problem including the constraints
- Still a quadratic optimization problem

Note

- The dual formulation has simpler contraints (box), easier to solve
- The primal formulation has *d* + 1 variables (number of features +1):

$$\min_{\boldsymbol{W},w_0}\frac{1}{2}||\boldsymbol{w}||^2$$

• The dual formulation has *m* variables (number of training examples):

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^m} \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j \mathbf{y}_i \mathbf{y}_j \mathbf{x}_i^T \mathbf{x}_j$$

• One can choose the primal formulation if it has much less variables (problem dependent)

Decision function

• Substituting $\mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i$ in the decision function we get:

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = \sum_{i=1}^m \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + w_0$$

- The decision function is linear combination of dot products between training points and the test point
- dot product is kind of *similarity* between points
- Weights of the combination are α_iy_i: large α_i implies large contribution towards class y_i (times the similarity)

Karush-Khun-Tucker conditions (KKT)

$$L(\mathbf{w}, w_0, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^m \alpha_i (y_i(\mathbf{w}^T \mathbf{x}_i + w_0) - 1)$$

• At the saddle point it holds that for all *i*:

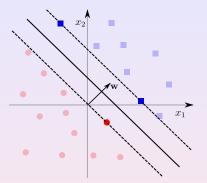
$$\alpha_i(\mathbf{y}_i(\mathbf{w}^T\mathbf{x}_i + \mathbf{w}_0) - 1) = \mathbf{0}$$

• Thus, either the example does not contribute to the final *f*(*x*):

$$\alpha_i = \mathbf{0}$$

• or the example stays on the minimal confidence hyperplane from the decision one:

$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) = 1$$



Support vectors

- points staying on the minimal confidence hyperplanes are called support vectors
- All other points do not contribute to the final decision function (i.e. they could be removed from the training set)
- SVM are *sparse* i.e. they typically have few support vectors

Decision function bias

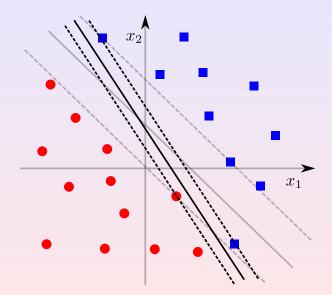
- The bias *w*₀ can be computed from the KKT conditions
- Given an arbitrary support vector **x**_i (with α_i > 0) the KKT conditions imply:

$$y_i(\mathbf{w}^T \mathbf{x}_i + w_0) = 1$$

$$y_i \mathbf{w}^T \mathbf{x}_i + y_i w_0 = 1$$

$$w_0 = \frac{1 - y_i \mathbf{w}^T \mathbf{x}_i}{y_i}$$

 For robustness, the bias is usually averaged over all support vectors



Slack variables

$$\min_{\mathbf{w}\in\mathcal{X}, w_0\in\mathbb{R}, \boldsymbol{\xi}\in\mathbb{R}^m} \qquad \frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^m \xi_i$$

subject to
$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) \ge 1 - \xi_i \quad i = 1, \dots, m$$
$$\xi_i \ge 0 \quad i = 1, \dots, m$$

- A slack variable ξ_i represents the penalty for example x_i not satisfying the margin constraint
- The sum of the slacks is minimized together to the inverse margin
- The regularization parameter C ≥ 0 trades-off data fitting and size of the margin

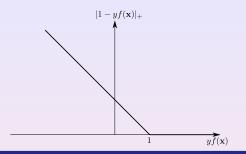
Regularization theory

$$\min_{\mathbf{w}\in\mathcal{X},w_0\in\mathbb{R},\,\boldsymbol{\xi}\in\mathbb{R}^m}\frac{1}{2}||\mathbf{w}||^2+C\sum_{i=1}^m\ell(y_i,f(\mathbf{x}_i))$$

- Regularized loss minimization problem
- The loss term accounts for error minimization
- The margin maximization term accounts for regularization i.e. solutions with larger margin are preferred

Note

- Regularization is a standard approach to prevent overfitting
- It corresponds to a prior for *simpler* (more regular, smoother) solutions



Hinge loss

$$\ell(y_i, f(\mathbf{x}_i)) = |1 - y_i f(\mathbf{x}_i)|_+ = |1 - y_i (\mathbf{w}^T \mathbf{x}_i + w_0)|_+$$

- $|z|_+ = z$ if z > 0 and 0 otherwise (positive part)
- it corresponds to the slack variable ξ_i (violation of margin costraint)
- all examples not violating margin costraint have zero loss (sparse set of support vectors)

Lagrangian

$$L = C \sum_{i=1}^{m} \xi_{i} + \frac{1}{2} ||\mathbf{w}||^{2} - \sum_{i=1}^{m} \alpha_{i} (y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} + \mathbf{w}_{0}) - 1 + \xi_{i}) - \sum_{i=1}^{m} \beta_{i} \xi_{i}$$

- where $\alpha_i \geq 0$ and $\beta_i \geq 0$
- Vanishing derivatives wrt primal variables we get:

$$\frac{\partial}{\partial w_0} L = 0 \quad \Rightarrow \quad \sum_{i=1}^m \alpha_i y_i = 0$$
$$\frac{\partial}{\partial w} L = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^m \alpha_i y_i \mathbf{x}_i$$
$$\frac{\partial}{\partial \xi_i} L = 0 \quad \Rightarrow \quad \mathbf{C} - \alpha_i - \beta_i = 0$$

Dual formulation

• Substituting in the Lagrangian we get

$$C\sum_{i=1}^{m} \xi_{i} + \frac{1}{2} ||\mathbf{w}||^{2} - \sum_{i=1}^{m} \alpha_{i} (y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} + \mathbf{w}_{0}) - 1 + \xi_{i}) - \sum_{i=1}^{m} \beta_{i} \xi_{i} =$$

$$\sum_{i=1}^{m} \xi_{i} \underbrace{(C - \alpha_{i} - \beta_{i})}_{=0} + \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{j} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} - \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} - \sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{w}_{0} + \sum_{i=1}^{m} \alpha_{i} =$$

$$\sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} = L(\alpha)$$

Dual formulation

subject to

 $\max_{\boldsymbol{\alpha} \in \mathbb{R}^m}$

$$\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
$$0 \le \alpha_i \le C \quad i = 1, \dots, m$$
$$\sum_{i=1}^{m} \alpha_i y_i = 0$$

 The box constraint for α_i comes from C − α_i − β_i = 0 (and the fact that both α_i ≥ 0 and β_i ≥ 0)

Karush-Khun-Tucker conditions (KKT)

$$L = C \sum_{i=1}^{m} \xi_{i} + \frac{1}{2} ||\mathbf{w}||^{2} - \sum_{i=1}^{m} \alpha_{i} (\mathbf{y}_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + \mathbf{w}_{0}) - 1 + \xi_{i}) - \sum_{i=1}^{m} \beta_{i} \xi_{i}$$

• At the saddle point it holds that for all *i*:

$$\alpha_i(\mathbf{y}_i(\mathbf{w}^T\mathbf{x}_i + \mathbf{w}_0) - 1 + \xi_i) = \mathbf{0}$$

$$\beta_i\xi_i = \mathbf{0}$$

 Thus, support vectors (α_i > 0) are examples for which (y_i(**w**^T**x**_i + w₀) ≤ 1

Support Vectors

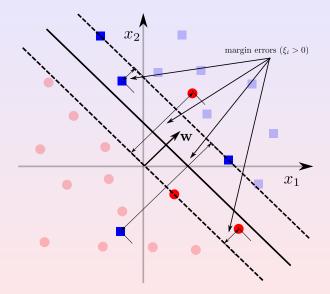
$$\alpha_i(\mathbf{y}_i(\mathbf{w}^T\mathbf{x}_i + \mathbf{w}_0) - 1 + \xi_i) = \mathbf{0}$$

$$\beta_i\xi_i = \mathbf{0}$$

• If $\alpha_i < C$, $C - \alpha_i - \beta_i = 0$ and $\beta_i \xi_i = 0$ imply that $\xi_i = 0$

- These are called *unbound* SV ((y_i(**w**^T**x**_i + w₀) = 1, they stay on the confidence one hyperplane
- If α_i = C (bound SV) then ξ_i can be greater the zero, in which case the SV are margin errors

Support vectors



Stochastic gradient descent

$$\min_{\mathbf{w}\in\mathcal{X}}\frac{\lambda}{2}||\mathbf{w}||^2+\frac{1}{m}\sum_{i=1}^m|1-y_i\langle\mathbf{w},\mathbf{x}_i\rangle|_+$$

• Objective for a single example (**x**_{*i*}, *y*_{*i*}):

$$E(\mathbf{w}; (\mathbf{x}_i, y_i)) = \frac{\lambda}{2} ||\mathbf{w}||^2 + |1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle|_+$$

• Subgradient:

$$abla_{\mathbf{w}} E(\mathbf{w}; (\mathbf{x}_i, y_i)) = \lambda \mathbf{w} - \mathbb{1}[y_i \langle \mathbf{w}, \mathbf{x}_i \rangle < 1] y_i \mathbf{x}_i$$

Large-scale SVM learning

Note

Indicator function

$$\mathbb{1}[y_i \langle \mathbf{w}, \mathbf{x}_i \rangle < 1] = \begin{cases} 1 & \text{if } y_i \langle \mathbf{w}, \mathbf{x}_i \rangle < 1 \\ 0 & \text{otherwise} \end{cases}$$

 The subgradient of a function f at a point x₀ is any vector v such that for any x:

$$f(\mathbf{x}) - f(\mathbf{x}_0) \geq \mathbf{v}^T(\mathbf{x} - \mathbf{x}_0)$$

Pseudocode (pegasus)

• Initialize
$$\mathbf{w}_1 = \mathbf{0}$$

2 for
$$t = 1$$
 to T:

• Randomly choose $(\mathbf{x}_{i_t}, y_{i_t})$ from \mathcal{D}

2 Set
$$\eta_t = \frac{1}{\lambda t}$$

O Update w:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \nabla_{\mathbf{w}} E(\mathbf{w}; (\mathbf{x}_{i_t}, \mathbf{y}_{i_t}))$$

Return w_{T+1}

Note

The choice of the learning rate allows to bound the runtime for an ϵ -accurate solution to $\mathcal{O}(d/\lambda\epsilon)$ with *d* maximum number of non-zero features in an example.

References

Biblio

- C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2(2), 121-167, 1998.
- S. Shalev-Shwartz et al., *Pegasos: primal estimated sub-gradient solver for SVM*, Mathematical Programming, 127(1), 3-30, 2011.

Software

- svm module in scikit-learn
 http://scikit-learn.org/stable/index.html
- libsvm

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

• svmlight http://svmlight.joachims.org/

Appendix

Additional reference material

Dual version

It is easy to show that:

$$\mathbf{w}_{t+1} = \frac{1}{\lambda t} \sum_{i=1}^{t} \mathbb{1}[y_{i_t} \langle \mathbf{w}_t, \mathbf{x}_{i_t} \rangle < 1] y_{i_t} \mathbf{x}_{i_t}$$

 We can represent w_{t+1} implicitly by storing in vector α_{t+1} the number of times each example was selected and had a non-zero loss, i.e.:

$$\alpha_{t+1}[j] = |\{t' \le t : i_{t'} = j \land y_j \langle \mathbf{w}_{t'}, \mathbf{x}_j \rangle < 1\}|$$

Pseudocode (pegasus dual)

- Initialize $\alpha_1 = 0$
- 2 for t = 1 to T:
 - Randomly choose $(\mathbf{x}_{i_t}, y_{i_t})$ from \mathcal{D}

3 Return α_{T+1}

Note

This will be useful when combined with kernels.