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Discriminative learning

Discriminative vs generative

Generative learning assumes knowledge of the distribution
governing the data
Discriminative learning focuses on directly modeling the
discriminant function
E.g. for classification, directly modeling decision
boundaries (rather than inferring them from the modelled
data distributions)
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Discriminative learning

PROS
When data are complex, modeling their distribution can be
very difficult
If data discrimination is the goal, data distribution modeling
is not needed
Focuses parameters (and thus use of available training
examples) on the desired goal

CONS
The learned model is less flexible in its usage
It does not allow to perform arbitrary inference tasks
E.g. it is not possible to efficiently generate new data from
a certain class
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Linear discriminant functions

Description

f (x) = wT x + w0

The discriminant function is a linear combination of
example features
w0 is called bias or threshold
it is the simplest possible discriminant function
Depending on the complexity of the task and amount of
data, it can be the best option available (at least it is the
first to try)
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Linear binary classifier

Description

f (x) = sign(wT x + w0)

It is obtained taking the sign of the linear function
The decision boundary (f (x) = 0) is a hyperplane (H)
The weight vector w is orthogonal to the decision
hyperplane:

∀x ,x ′ : f (x) = f (x ′) = 0
wT x + w0 −wT x ′ − w0 = 0
wT (x − x ′) = 0
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Linear binary classifier

Functional margin

The value f (x) of the function for a certain point x is called
functional margin
It can be seen as a confidence in the prediction

Geometric margin
The distance from x to the hyperplane is called geometric
margin

r x =
f (x)

||w ||
It is a normalize version of the functional margin
The distance from the origin to the hyperplane is:

r0 =
f (0)

||w ||
=

w0

||w ||
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Linear binary classifier

Geometric margin (cont)
A point can be expressed by its projection on H plus its
distance to H times the unit vector in that direction:

x = xp + r x w
||w ||
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Linear binary classifier

Geometric margin (cont)

Then as f (xp) = 0:

f (x) = wT x + w0

= wT (xp + r x w
||w ||

) + w0

= wT xp + w0︸ ︷︷ ︸
f (x p)

+r xwT w
||w ||

= r x ||w ||
f (x)

||w ||
= r x
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Biological motivation

Human Brain
Composed of densely interconnected network of neurons
A neuron is made of:

soma A central body containing the nucleus
dendrites A set of filaments departing from the body

axon a longer filament (up to 100 times body
diameter)

synapses connections between dendrites and axons
from other neurons
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Biological motivation

Human Brain
Electrochemical reactions allow signals to propagate along
neurons via axons, synapses and dendrites
Synapses can either excite on inhibit a neuron potentional
Once a neuron potential exceeds a certain threshold, a
signal is generated and transmitted along the axon
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Perceptron

Single neuron architecture

f (x) = sign(wT x + w0)

Linear combination of input features
Threshold activation function
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Perceptron

Representational power
Linearly separable sets of examples
E.g. primitive boolean functions (AND,OR,NAND,NOT)
⇒ any logic formula can be represented by a network of
two levels of perceptrons (in disjunctive or conjunctive
normal form).

Problem
non-linearly separable sets of examples cannot be
separated
Representing complex logic formulas can require a number
of perceptrons exponential in the size of the input
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Perceptron

Augmented feature/weight vectors

f (x) = sign(ŵT x̂)

Where bias is incorporated in augmented vectors:

ŵ =

(
w0
w

)
x̂ =

(
1
x

)
Search for weight vector + bias is replaced by search for
augmented weight vector (we skip the “ˆ” in the following)
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Parameter learning

Error minimization
Need to find a function of the parameters to be optimized
(like in maximum likelihood for probability distributions)
Reasonable function is measure of error on training set D
(i.e. the loss `):

E(w ;D) =
∑

(x ,y)∈D

`(y , f (x))

Problem of overfitting training data (less severe for linear
classifier, we will discuss it)
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Parameter learning

Gradient descent
1 Initialize w (e.g. w = 0)
2 Iterate until gradient is approx. zero:

w = w − η∇E(w ;D)

Note
η is called learning rate and controls the amount of
movement at each gradient step
The algorithm is guaranteed to converge to a local
optimum of E(w ;D) (for small enough η)
Too low η implies slow convergence
Techniques exist to adaptively modify η
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Parameter learning

Problem
The misclassification loss is piecewise constant
Poor candidate for gradient descent

Perceptron training rule

E(w ;D) =
∑

(x ,y)∈DE

−yf (x)

DE is the set of current training errors for which:

yf (x) ≤ 0

The error is the sum of the functional margins of incorrectly
classified examples
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Parameter learning

Perceptron training rule
The error gradient is:

∇E(w ;D) = ∇
∑

(x ,y)∈DE

−yf (x)

= ∇
∑

(x ,y)∈DE

−y(wT x)

=
∑

(x ,y)∈DE

−yx

the amount of update is:

−η∇E(w ;D) = η
∑

(x ,y)∈DE

yx
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Perceptron learning

Stochastic perceptron training rule
1 Initialize weights randomly
2 Iterate until all examples correctly classified:

1 For each incorrectly classified training example (x , y)
update weight vector:

w ← w + ηyx

Note on stochastic
we make a gradient step for each training error (rather than
on the sum of them in batch learning)
Each gradient step is very fast
Stochasticity can sometimes help to avoid local minima,
being guided by various gradients for each training
example (which won’t have the same local minima in
general)
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron regression

Exact solution

Let X ∈ IRn × IRd be the input training matrix (i.e.
X = [x1 · · · xn]T for n = |D| and d = |x |)
Let y ∈ IRn be the output training matrix (i.e. yi is output for
example xi )
Regression learning could be stated as a set of linear
equations):

Xw = y

Giving as solution:

w = X−1y
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Perceptron regression

Problem
Matrix X is rectangular, usually more rows than columns
System of equations is overdetermined (more equations
than unknowns)
No exact solution typically exists
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Perceptron regression

Mean squared error (MSE)
Resort to loss minimization
Standard loss for regression is the mean squared error:

E(w ;D) =
∑

(x ,y)∈D

(y − f (x))2 = (y − Xw)T (y − Xw)

Closed form solution exists
Can always be solved by gradient descent (can be faster)
Can also be used as a classification loss
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Perceptron regression

Closed form solution

∇E(w ;D) = ∇(y − Xw)T (y − Xw)

= 2(y − Xw)T (−X ) = 0
= −2yT X + 2wT X T X = 0

wT X T X = yT X
X T Xw = X T y

w = (X T X )−1X T y
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Perceptron regression

w = (X T X )−1X T y

Note

(X T X )−1X T is called left-inverse
If X is square and nonsingular, inverse and left-inverse
coincide and the MSE solution corresponds to the exact
one
The left-inverse exists provided (X T X ) ∈ IRd×d is full rank
→ features are linearly independent (if not, just remove the
redundant ones!)
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Perceptron regression

Gradient descent

∂E
∂wi

=
∂

∂wi

1
2

∑
(x ,y)∈D

(y − f (x))2

=
1
2

∑
(x ,y)∈D

∂

∂wi
(y − f (x))2

=
1
2

∑
(x ,y)∈D

2(y − f (x))
∂

∂wi
(y −wT x)

=
∑

(x ,y)∈D

(y − f (x))(−xi)
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Multiclass classification

One-vs-all
Learn one binary classifier for each class:

positive examples are examples of the class
negative examples are examples of all other classes

Predict a new example in the class with maximum
functional margin
Decision boundaries for which fi(x) = fj(x) are pieces of
hyperplanes:

wT
i x = wT

j x

(w i −w j)
T x = 0
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Multiclass classification
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Multiclass classification

all-pairs
Learn one binary classifier for each pair of classes:

positive examples from one class
negative examples from the other

Predict a new example in the class winning the largest
number of pairwise classifications
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Generative linear classifiers

Gaussian distributions
linear decision boundaries are obtained when covariance
is shared among classes (Σi = Σ)

Naive Bayes classifier

fi(x) = P(x |yi)P(yi) =

|x |∏
j=1

K∏
k=1

θ
zk (x [j])
kyi

|Di |
|D|

=
K∏

k=1

θ
Nkx
kyi

|Di |
|D|

where Nkx is the number of times feature k (e.g. a word)
appears in x
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Generative linear classifiers

Naive Bayes classifier (cont)

log fi(x) =
K∑

k=1

Nkx log θkyi︸ ︷︷ ︸
w T x ′

+ log(
|Di |
|D|

)︸ ︷︷ ︸
w0

x ′ = [N1x · · ·NKx ]T

w = [log θ1yi · · · log θKyi ]
T

Naive Bayes is a log-linear model (as Gaussian
distributions with shared Σ)
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