Naive Bayes

Andrea Passerini passerini@disi.unitn.it

Machine Learning

Naive Bayes

Setting

- Each instance x is described by a conjunction of attribute values (a₁,..., a_m)
- $\bullet\,$ The target function can take any value from a finite set of ${\cal Y}$
- The task is predicting the MAP target value given the instance:

$$y^* = \operatorname{argmax}_{y_i \in \mathcal{Y}} P(y_i | x) = \operatorname{argmax}_{y_i \in \mathcal{Y}} \frac{P(a_1, \dots, a_m | y_i) P(y_i)}{P(a_1, \dots, a_m)}$$
$$= \operatorname{argmax}_{y_i \in \mathcal{Y}} P(a_1, \dots, a_m | y_i) P(y_i)$$

Learning problem

Class conditional probabilities $P(a_1, ..., a_m | y_i)$ are hard to learn, as the number of terms is equal to the number of possible instances times the number of target values

Simplifying assumption

 Attribute values are assumed independent of each other given the target value:

$$P(a_1,\ldots,a_m|y_i)=\prod_{j=1}^m P(a_j|y_i)$$

 Parameters to be learned reduce to the number of possible attribute values times the number of possible target values

Naive Bayes classifier

definition

$$y^* = \operatorname{argmax}_{y_i \in \mathcal{Y}} \prod_{j=1}^m P(a_j | y_i) P(y_i)$$

Single distribution case

- Assume all attribute values come from the same distribution.
- The probability of an attribute value given the class can be modeled as a multinomial distribution over the *K* possible values:

$$P(a_j|y_i) = \prod_{k=1}^{K} \theta_{ky_i}^{z_k(a_j)}$$

Parameters learning

- Target priors P(y_i) can be learned as the fraction of training set instances having each target value
- The maximum-likelihood estimate for the parameter θ_{kc} (probability of value v_k given class c) is the fraction of times the value was observed in training examples of class c:

$$heta_{kc} = rac{N_{kc}}{N_c}$$

- Assume a Dirichlet prior distribution (with parameters $\alpha_{1c}, \ldots, \alpha_{Kc}$) for attribute parameters.
- The posterior distribution for attribute parameters is again multinomial:

$$\theta_{kc} = \frac{N_{kc} + \alpha_{kc}}{N_c + \alpha_c}$$

Task

- Classify documents in one of C possible classes.
- Each document is represented as the *bag-of-words* it contains (i.e. no position information)
- Let V be the vocabulary of all possible words
- A dataset of labeled documents \mathcal{D} is avaiable

Naive Bayes learning

- Compute prior probabilities of classes as: P(y_i) = |D_i|/|D| where D_i is the subset of training examples with class y_i.
- Model attributes with a multinomial distribution with K = |V| possible states (words).
- Compute probability of word w_k given class c as the fraction of times the word appear in documents of class y_i, wrt to all words in documents of class c:

$$\theta_{kc} = \frac{\sum_{\boldsymbol{X} \in \mathcal{D}_c} \sum_{j=1}^{|\boldsymbol{X}|} z_k(\boldsymbol{x}[j])}{\sum_{\boldsymbol{X} \in \mathcal{D}_c} |\boldsymbol{X}|}$$

Naive Bayes classification

$$\boldsymbol{\gamma}^{*} = \operatorname{argmax}_{y_{i} \in \mathcal{Y}} \prod_{j=1}^{|\boldsymbol{X}|} \boldsymbol{P}(\boldsymbol{x}[j]|\boldsymbol{y}_{i}) \boldsymbol{P}(\boldsymbol{y}_{i})$$
$$= \operatorname{argmax}_{y_{i} \in \mathcal{Y}} \prod_{j=1}^{|\boldsymbol{X}|} \prod_{k=1}^{K} \theta_{ky_{i}}^{z_{k}(\boldsymbol{x}[j])} \frac{|\mathcal{D}_{i}|}{|\mathcal{D}|}$$

Naive Bayes classifier

Note

- We are making the simplifying assumption that all attribute values come from the same distribution
- Otherwise attributes from different distributions have to be considered separately for parameter estimation

Example

- Assume each instance x is represented as a vector of l attributes
- Assume the *jth* attribute (*j* ∈ [1, ℓ]) can take {*v_{j1}*,..., *v_{jKj}*} possible values.
- The parameter θ_{jkc} representing the probability of observing value v_{jk} for the jth attribute given class c is estimated as:

$$\theta_{jkc} = \frac{\sum \mathbf{x}_{\in \mathcal{D}_c} z_{jk}(\mathbf{x}[j])}{|\mathcal{D}_c|}$$

Naive Bayes