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Learning graphical models

Parameter estimation
We assume the structure of the model is given
We are given a dataset of examples D = {x(1), . . . ,x(N)}
Each example x(i) is a configuration for all (complete data)
or some (incomplete data) variables in the model
We need to estimate the parameters of the model
(conditional probability distributions) from the data
The simplest approach consists of learning the parameters
maximizing the likelihood of the data:

θmax = argmaxθp(D|θ) = argmaxθL(D,θ)
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Learning Bayesian Networks
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Maximum likelihood estimation, complete data

p(D|θ) =
N∏

i=1

p(x(i)|θ) examples independent given θ

=
N∏
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m∏
j=1

p(xj(i)|paj(i),θ) factorization for BN
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Learning Bayesian Networks
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Maximum likelihood estimation, complete data

p(D|θ) =
N∏

i=1

m∏
j=1

p(xj(i)|paj(i),θ) factorization for BN

=
N∏

i=1

m∏
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p(xj(i)|paj(i),θXj |paj
) disjoint CPD parameters
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Learning graphical models

Maximum likelihood estimation, complete data
The parameters of each CPD can be estimated
independently:

θmax
Xj |Paj

= argmaxθXj |Paj

N∏
i=1

p(xj(i)|paj(i),θXj |Paj
)︸ ︷︷ ︸

L(θXj |Paj
,D)

A discrete CPD P(X |U), can be represented as a table,
with:

a number of rows equal to the number Val(X ) of
configurations for X
a number of columns equal to the number Val(U) of
configurations for its parents U
each table entry θx|u indicating the probability of a specific
configuration of X = x and its parents U = u
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Learning graphical models

Maximum likelihood estimation, complete data

Replacing p(x(i)|pa(i)) with θx(i)|u(i), the local likelihood of
a single CPD becames:

L(θX |Pa,D) =
N∏

i=1

p(x(i)|pa(i),θX |Paj
)

=
N∏

i=1

θx(i)|u(i)

=
∏

u∈Val(U)

 ∏
x∈Val(X)

θ
Nu,x
x |u


where Nu,x is the number of times the specific
configuration X = x ,U = u was found in the data
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Learning graphical models

Maximum likelihood estimation, complete data
A column in the CPD table contains a multinomial
distribution over values of X for a certain configuration of
the parents U
Thus each column should sum to one:

∑
x θx |u = 1

Parameters of different columns can be estimated
independently
For each multinomial distribution, zeroing the gradient of
the maximum likelihood and considering the normalization
constraint, we obtain:

θmax
x |u =

Nu,x∑
x Nu,x

The maximum likelihood parameters are simply the fraction
of times in which the specific configuration was observed in
the data
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Learning graphical models

Adding priors
ML estimation tends to overfit the training set
Configuration not appearing in the training set will receive
zero probability
A common approach consists of combining ML with a prior
probability on the parameters, achieving a
maximum-a-posteriori estimate:

θmax = argmaxθp(D|θ)p(θ)
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Learning graphical models

Dirichlet priors
The conjugate (read natural) prior for a multinomial
distribution is a Dirichlet distribution with parameters αx |u
for each possible value of x
The resulting maximum-a-posteriori estimate is:

θmax
x |u =

Nu,x + αx |u∑
x
(
Nu,x + αx |u

)
The prior is like having observed αx |u imaginary samples
with configuration X = x ,U = u
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Learning graphical models

Incomplete data
With incomplete data, some of the examples miss
evidence on some of the variables
Counts of occurrences of different configurations cannot be
computed if not all data are observed
The full Bayesian approach of integrating over missing
variables is often intractable in practice
We need approximate methods to deal with the problem
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Learning with missing data: Expectation-Maximization

E-M for Bayesian nets in a nutshell
Sufficient statistics (counts) cannot be computed (missing
data)
Fill-in missing data inferring them using current parameters
(solve inference problem to get expected counts)
Compute parameters maximizing likelihood (or posterior)
of such expected counts
Iterate the procedure to improve quality of parameters
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Learning with missing data: Expectation-Maximization

Expectation-Maximization algorithm

e-step Compute the expected sufficient statistics for the
complete dataset, with expectation taken wrt the
joint distribution for X conditioned of the current
value of θ and the known data D:

Ep(x |D,θ)[Nijk ] =
n∑

l=1

p(Xi(l) = xk ,Pai(l) = paj |X l ,θ)

If Xi(l) and Pai(l) are observed for X l , it is
either zero or one
Otherwise, run Bayesian inference to
compute probabilities from observed variables
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Learning with missing data: Expectation-Maximization
Expectation-Maximization algorithm

m-step compute parameters maximizing likelihood of the
complete dataset Dc (using expected counts):

θ∗ = argmaxθp(Dc |θ)

which for each multinomial parameter evaluates to:

θ∗ijk =
Ep(x |D,θ)[Nijk ]∑ri

k=1 Ep(x |D,θ)[Nijk ]

Note
ML estimation can be replaced by maximum a-posteriori (MAP)
estimation giving:

θ∗ijk =
αijk + Ep(x |D,θ,S)[Nijk ]∑ri

k=1

(
αijk + Ep(x |D,θ,S)[Nijk ]

)
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Learning structure of graphical models

Approaches
constraint-based test conditional independencies on the data

and construct a model satisfying them
score-based assign a score to each possible structure, define

a search procedure looking for the structure
maximizing the score

model-averaging assign a prior probability to each structure,
and average prediction over all possible structures
weighted by their probabilities (full Bayesian,
intractable)
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Appendix: Learning the structure
Bayesian approach

Let S be the space of possible structures (DAGS) for the
domain X .
Let D be a dataset of observations
Predictions for a new instance are computed marginalizing
over both structures and parameters:

p(X N+1|D) =
∑
S∈S

∫
θ

P(X N+1,S,θ|D)dθ

=
∑
S∈S

∫
θ

P(X N+1|S,θ,D)P(S,θ|D)dθ

=
∑
S∈S

∫
θ

P(X N+1|S,θ)P(θ|S,D)P(S|D)dθ

=
∑
S∈S

P(S|D)

∫
θ

P(X N+1|S,θ)P(θ|S,D)dθ
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Learning the structure

Problem
Averaging over all possible structures is too expensive

Model selection
Choose a best structure S∗ and assume P(S∗|D) = 1
Approaches:

Score-based:
Assign a score to each structure
Choose S∗ to maximize the score

Constraint-based:
Test conditional independencies on data
Choose S∗ that satifies these independencies
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Score-based model selection

Structure scores
Maximum-likelihood score:

S∗ = argmaxS∈Sp(D|S)

Maximum-a-posteriori score:

S∗ = argmaxS∈Sp(D|S)p(S)
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Computing P(D|S)

Maximum likelihood approximation

The easiest solution is to approximate P(D|S) with the
maximum-likelihood score over the parameters:

P(D|S) ≈ maxθP(D|S, θ)

Unfortunately, this boils down to adding a connection
between two variables if their empirical mutual information
over the training set is non-zero (proof omitted)
Because of noise, empirical mutual information between
any two variables is almost never exactly zero⇒ fully
connected network
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Computing P(D|S) ≡ PS(D): Bayesian-Dirichlet
scoring

Simple case: setting
X is a single variable with r possible realizations (r -faced
die)
S is a single node
Probability distribution is a multinomial with Dirichlet priors
α1, . . . , αr .
D is a sequence of N realizations (die tosses)
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Computing PS(D): Bayesian-Dirichlet scoring

Simple case: approach
Sort D according to outcome:

D = {x1, x1, . . . , x1, x2, . . . , x2, . . . , x r , . . . , x r}

Its probability can be decomposed as:

PS(D) =
N∏

t=1

PS(X (t)|X (t − 1), . . . ,X (1)︸ ︷︷ ︸
D(t−1)

)

The prediction for a new event given the past is:

PS(X (t + 1) = xk |D(t)) = EpS(θ|D(t))[θk ] =
αk + Nk (t)
α + t

where Nk (t) is the number of times we have X = xk in the
first t examples in D
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Computing PS(D): Bayesian-Dirichlet scoring

Simple case: approach

PS(D) =
α1

α

α1 + 1
α + 1

· · · α1 + N1 − 1
α + N1 − 1

· α2

α + N1

α2 + 1
α + N1 + 1

· · · α2 + N2 − 1
α + N1 + N2 − 1

· · ·

· αr

α + N1 + · · ·+ Nr−1
· · · αr + Nr − 1

α + N − 1

=
Γ(α)

Γ(α + N)

r∏
k=1

Γ(αk + Nk )

αk

where we used the Gamma function (Γ(x + 1) = xΓ(x)):

α(1 + α) . . . (N − 1 + α) =
Γ(N + α)

Γ(α)
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Computing PS(D): Bayesian-Dirichlet scoring

General case

PS(D) =
∏

i

∏
j

Γ(αij)

Γ(αij + Nij)

r∏
k=1

Γ(αijk + Nijk )

αijk

where
i ∈ {1, . . . ,n} ranges over nodes in the network
j ∈ {1,qi} ranges over configurations of Xi ’s parents
k ∈ {1, ri} ranges over states of Xi

Note
The score is decomposable: it is the product of independent
scores associated with the distribution of each node in the net
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Search strategy

Approach
Discrete search problem: NP-hard for nets whose nodes
have at most k > 1 parents.
Heuristic search strategies employed:

Search space: set of DAGs
Operators: add, remove, reverse one arc
Initial structure: e.g. random, fully disconnected, ...
Strategies: hill climbing, best first, simulated annealing

Note
Decomposable scores allow to recompute local scores only for
a single move
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