
Learning graphical models

Parameter estimation

• We assume the structure of the model is given

• We are given a dataset of examples D = {x(1), . . . ,x(N)}

• Each example x(i) is a configuration for all (complete data) or some (incomplete data) variables in the model

• We need to estimate the parameters of the model (conditional probability distributions) from the data

• The simplest approach consists of learning the parameters maximizing the likelihood of the data:

θmax = argmaxθp(D|θ) = argmaxθL(D,θ)

Learning Bayesian Networks
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Maximum likelihood estimation, complete data

p(D|θ) =
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p(x(i)|θ) examples independent given θ

=
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p(xj(i)|paj(i),θ) factorization for BN

Learning Bayesian Networks
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p(xj(i)|paj(i),θXj |paj ) disjoint CPD parameters

Learning graphical models

Maximum likelihood estimation, complete data

• The parameters of each CPD can be estimated independently:

θmax
Xj |Paj = argmaxθXj |Paj

N∏
i=1

p(xj(i)|paj(i),θXj |Paj )︸ ︷︷ ︸
L(θXj |Paj ,D)

• A discrete CPD P (X|U), can be represented as a table, with:

– a number of rows equal to the number V al(X) of configurations for X

– a number of columns equal to the number V al(U) of configurations for its parents U

– each table entry θx|u indicating the probability of a specific configuration of X = x and its parentsU = u

Learning graphical models

Maximum likelihood estimation, complete data

• Replacing p(x(i)|pa(i)) with θx(i)|u(i), the local likelihood of a single CPD becames:
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L(θX|Pa,D) =

N∏
i=1

p(x(i)|pa(i),θX|Paj )

=

N∏
i=1

θx(i)|u(i)

=
∏

u∈V al(U )

 ∏
x∈V al(X)

θ
Nu,x

x|u


where Nu,x is the number of times the specific configuration X = x,U = u was found in the data

Learning graphical models

Maximum likelihood estimation, complete data

• A column in the CPD table contains a multinomial distribution over values of X for a certain configuration of
the parents U

• Thus each column should sum to one:
∑
x θx|u = 1

• Parameters of different columns can be estimated independently

• For each multinomial distribution, zeroing the gradient of the maximum likelihood and considering the normal-
ization constraint, we obtain:

θmaxx|u =
Nu,x∑
xNu,x

• The maximum likelihood parameters are simply the fraction of times in which the specific configuration was
observed in the data

Learning graphical models

Adding priors

• ML estimation tends to overfit the training set

• Configuration not appearing in the training set will receive zero probability

• A common approach consists of combining ML with a prior probability on the parameters, achieving a maximum-
a-posteriori estimate:

θmax = argmaxθp(D|θ)p(θ)
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Learning graphical models

Dirichlet priors

• The conjugate (read natural) prior for a multinomial distribution is a Dirichlet distribution with parameters αx|u
for each possible value of x

• The resulting maximum-a-posteriori estimate is:

θmaxx|u =
Nu,x + αx|u∑
x

(
Nu,x + αx|u

)
• The prior is like having observed αx|u imaginary samples with configuration X = x,U = u

Learning graphical models

Incomplete data

• With incomplete data, some of the examples miss evidence on some of the variables

• Counts of occurrences of different configurations cannot be computed if not all data are observed

• The full Bayesian approach of integrating over missing variables is often intractable in practice

• We need approximate methods to deal with the problem

Learning with missing data: Expectation-Maximization

E-M for Bayesian nets in a nutshell

• Sufficient statistics (counts) cannot be computed (missing data)

• Fill-in missing data inferring them using current parameters (solve inference problem to get expected counts)

• Compute parameters maximizing likelihood (or posterior) of such expected counts

• Iterate the procedure to improve quality of parameters

Learning with missing data: Expectation-Maximization

Expectation-Maximization algorithm

e-step Compute the expected sufficient statistics for the complete dataset, with expectation taken wrt the joint distri-
bution forX conditioned of the current value of θ and the known data D:

E
p(x|D,θ)[Nijk] =

n∑
l=1

p(Xi(l) = xk,Pai(l) = paj |X l,θ)

• If Xi(l) and Pai(l) are observed forX l, it is either zero or one

• Otherwise, run Bayesian inference to compute probabilities from observed variables
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Learning with missing data: Expectation-Maximization
Expectation-Maximization algorithm

m-step compute parameters maximizing likelihood of the complete dataset Dc (using expected counts):

θ∗ = argmaxθp(Dc|θ)

which for each multinomial parameter evaluates to:

θ∗ijk =
E
p(x|D,θ)[Nijk]∑ri

k=1 E
p(x|D,θ)[Nijk]

Note
ML estimation can be replaced by maximum a-posteriori (MAP) estimation giving:

θ∗ijk =
αijk + E

p(x|D,θ,S)[Nijk]∑ri
k=1

(
αijk + E

p(x|D,θ,S)[Nijk]
)

Learning structure of graphical models

Approaches

constraint-based test conditional independencies on the data and construct a model satisfying them

score-based assign a score to each possible structure, define a search procedure looking for the structure maximizing
the score

model-averaging assign a prior probability to each structure, and average prediction over all possible structures
weighted by their probabilities (full Bayesian, intractable)

Appendix: Learning the structure
Bayesian approach

• Let S be the space of possible structures (DAGS) for the domainX .

• Let D be a dataset of observations

• Predictions for a new instance are computed marginalizing over both structures and parameters:

p(XN+1|D) =
∑
S∈S

∫
θ
P (XN+1, S,θ|D)dθ

=
∑
S∈S

∫
θ
P (XN+1|S,θ,D)P (S,θ|D)dθ

=
∑
S∈S

∫
θ
P (XN+1|S,θ)P (θ|S,D)P (S|D)dθ

=
∑
S∈S

P (S|D)

∫
θ
P (XN+1|S,θ)P (θ|S,D)dθ
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Learning the structure

Problem
Averaging over all possible structures is too expensive

Model selection

• Choose a best structure S∗ and assume P (S∗|D) = 1

• Approaches:

– Score-based:

* Assign a score to each structure

* Choose S∗ to maximize the score

– Constraint-based:

* Test conditional independencies on data

* Choose S∗ that satifies these independencies

Score-based model selection

Structure scores

• Maximum-likelihood score:
S∗ = argmaxS∈Sp(D|S)

• Maximum-a-posteriori score:
S∗ = argmaxS∈Sp(D|S)p(S)

Computing P (D|S)

Maximum likelihood approximation

• The easiest solution is to approximate P (D|S) with the maximum-likelihood score over the parameters:

P (D|S) ≈ maxθP (D|S, θ)

• Unfortunately, this boils down to adding a connection between two variables if their empirical mutual informa-
tion over the training set is non-zero (proof omitted)

• Because of noise, empirical mutual information between any two variables is almost never exactly zero⇒ fully
connected network

Computing P (D|S) ≡ PS(D): Bayesian-Dirichlet scoring

Simple case: setting

• X is a single variable with r possible realizations (r-faced die)

• S is a single node

• Probability distribution is a multinomial with Dirichlet priors α1, . . . , αr.

• D is a sequence of N realizations (die tosses)
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Computing PS(D): Bayesian-Dirichlet scoring

Simple case: approach

• Sort D according to outcome:

D = {x1, x1, . . . , x1, x2, . . . , x2, . . . , xr, . . . , xr}

• Its probability can be decomposed as:

PS(D) =

N∏
t=1

PS(X(t)|X(t− 1), . . . , X(1)︸ ︷︷ ︸
D(t−1)

)

• The prediction for a new event given the past is:

PS(X(t+ 1) = xk|D(t)) = E
pS(θ|D(t))

[θk] =
αk +Nk(t)

α+ t

where Nk(t) is the number of times we have X = xk in the first t examples in D

Computing PS(D): Bayesian-Dirichlet scoring

Simple case: approach

PS(D) =
α1

α

α1 + 1

α+ 1
· · · α1 +N1 − 1

α+N1 − 1

· α2

α+N1

α2 + 1

α+N1 + 1
· · · α2 +N2 − 1

α+N1 +N2 − 1
· · ·

· αr
α+N1 + · · ·+Nr−1

· · · αr +Nr − 1

α+N − 1

=
Γ(α)

Γ(α+N)

r∏
k=1

Γ(αk +Nk)

αk

where we used the Gamma function (Γ(x+ 1) = xΓ(x)):

α(1 + α) . . . (N − 1 + α) =
Γ(N + α)

Γ(α)

Computing PS(D): Bayesian-Dirichlet scoring

General case

PS(D) =
∏
i

∏
j

Γ(αij)

Γ(αij +Nij)

r∏
k=1

Γ(αijk +Nijk)

αijk

where

• i ∈ {1, . . . , n} ranges over nodes in the network

• j ∈ {1, qi} ranges over configurations of Xi’s parents

• k ∈ {1, ri} ranges over states of Xi

Note
The score is decomposable: it is the product of independent scores associated with the distribution of each node

in the net
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Search strategy

Approach

• Discrete search problem: NP-hard for nets whose nodes have at most k > 1 parents.

• Heuristic search strategies employed:

– Search space: set of DAGs

– Operators: add, remove, reverse one arc

– Initial structure: e.g. random, fully disconnected, ...

– Strategies: hill climbing, best first, simulated annealing

Note
Decomposable scores allow to recompute local scores only for a single move

8


