Graphical models

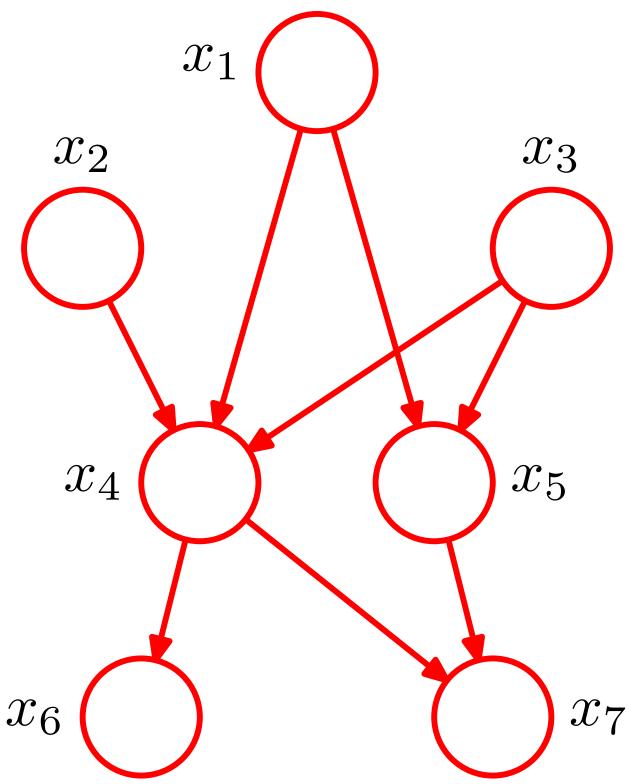
Why

- All probabilistic inference and learning amount at repeated applications of the sum and product rules
- *Probabilistic graphical models* are graphical representations of the *qualitative* aspects of probability distributions allowing to:
 - visualize the structure of a probabilistic model in a simple and intuitive way
 - discover properties of the model, such as conditional independencies, by inspecting the graph
 - express complex computations for inference and learning in terms of graphical manipulations
 - represent multiple probability distributions with the same graph, abstracting from their quantitative aspects (e.g. discrete vs continuous distributions)

Bayesian Networks (BN)

BN Semantics

- A BN structure (G) is a *directed graphical model*
- Each node represents a random variable x_i
- Each edge represents a direct dependency between two variables



The structure encodes these independence assumptions:

 $\mathcal{I}_{\ell}(\mathcal{G}) = \{ \forall i \; x_i \perp NonDescendants_{x_i} | Parents_{x_i} \}$

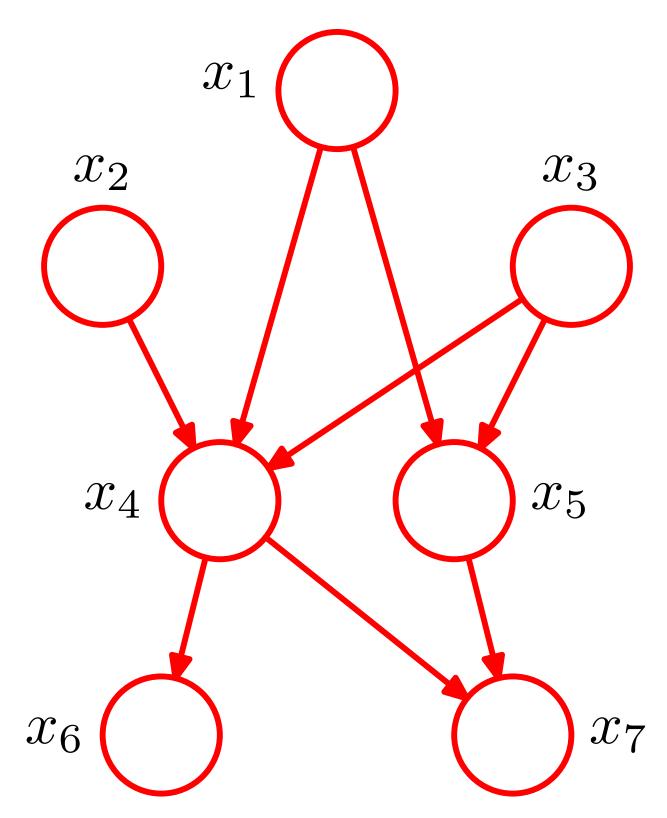
each variable is independent of its non-descendants given its parents

Bayesian Networks

Graphs and Distributions

- Let p be a joint distribution over variables ${\mathcal X}$
- Let $\mathcal{I}(p)$ be the set of independence assertions holding in p
- \mathcal{G} in as *independency map* (I-map) for p if p satisfies the local independences in \mathcal{G} :

 $\mathcal{I}_{\ell}(\mathcal{G}) \subseteq \mathcal{I}(p)$



Note

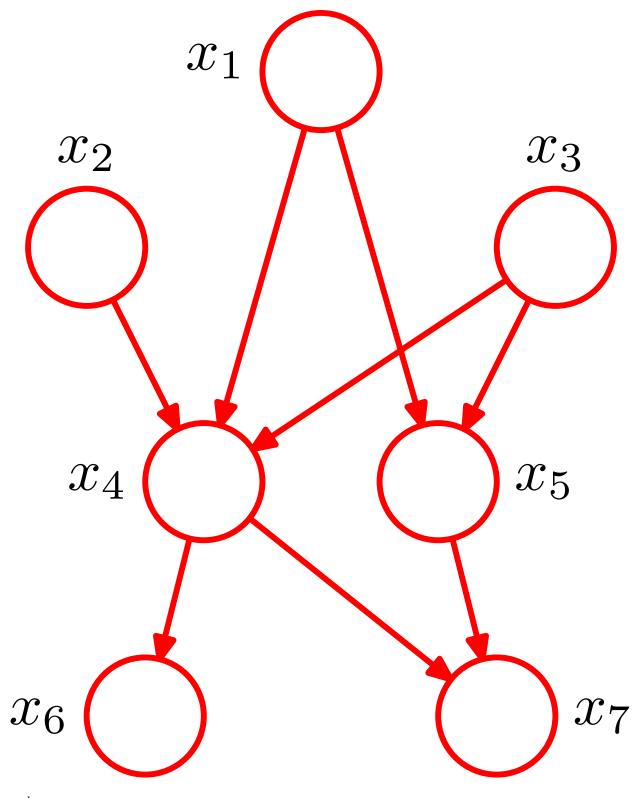
The reverse is not necessarily true: there can be independences in p that are not modelled by \mathcal{G} .

Bayesian Networks Factorization

• We say that p factorizes according to G if:

$$p(x_1,\ldots,x_m) = \prod_{i=1}^m p(x_i|Pa_{x_i})$$

- If ${\mathcal G}$ is an I-map for p, then p factorizes according to ${\mathcal G}$
- If p factorizes according to \mathcal{G} , then \mathcal{G} is an I-map for p



Example

$$p(x_1, \dots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$
$$p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)$$

Bayesian Networks Proof: I-map \Rightarrow factorization

1. If \mathcal{G} is an I-map for p, then p satisfies (at least) these (local) independences:

 $\{\forall i \ x_i \perp NonDescendants_{x_i} | Parents_{x_i}\}$

2. Let us order variables in a *topological order* relative to \mathcal{G} , i.e.:

$$x_i \to x_j \Rightarrow i < j$$

3. Let us decompose the joint probability using the chain rule as:

$$p(x_1, \dots, x_m) = \prod_{i=1}^m p(x_i | x_1, \dots, x_{i-1})$$

4. Local independences imply that for each x_i :

$$p(x_i|x_1,\ldots,x_{i-1}) = p(x_i|Pa_{x_i})$$

Bayesian Networks Proof: factorization \Rightarrow I-map

1. If p factorizes according to G, the joint probability can be written as:

$$p(x_1,\ldots,x_m) = \prod_{i=1}^m p(x_i|Pa_{x_i})$$

2. Let us consider the last variable x_m (repeat steps for the other variables). By the product and sum rules:

$$p(x_m|x_1,\ldots,x_{m-1}) = \frac{p(x_1,\ldots,x_m)}{p(x_1,\ldots,x_{m-1})} = \frac{p(x_1,\ldots,x_m)}{\sum_{x_m} p(x_1,\ldots,x_m)}$$

3. Applying factorization and isolating the only term containing x_m we get:

$$=\frac{\prod_{i=1}^{m} p(x_i|Pa_{x_i})}{\sum_{x_m} \prod_{i=1}^{m} p(x_i|Pa_{x_i})} = \frac{p(x_m|Pa_{x_m}) \prod_{i=1}^{m-1} p(x_i|Pa_{x_i})}{\prod_{i=1}^{m-1} p(x_i|Pa_{x_i}) \sum_{x_m} p(x_m|Pa_{x_m})} 1$$

Bayesian Networks

Definition

A Bayesian Network is a pair (\mathcal{G}, p) where p factorizes over \mathcal{G} and it is represented as a set of conditional probability distributions (cpd) associated with the nodes of \mathcal{G} .

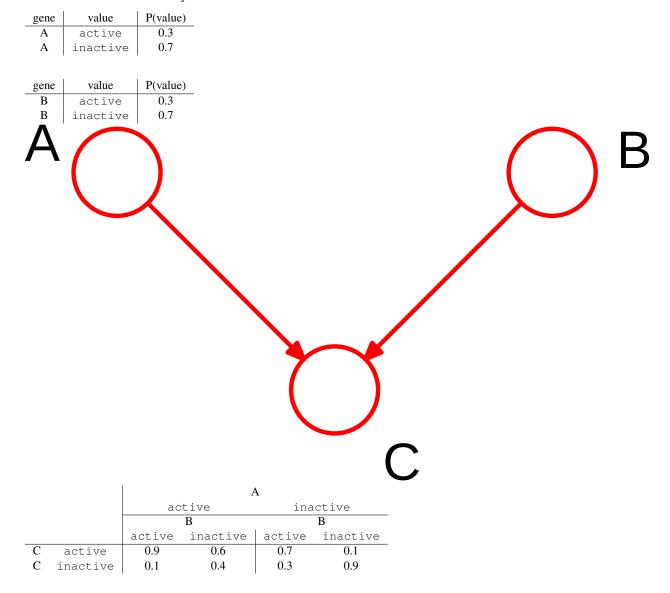
Factorized Probability

$$p(x_1,\ldots,x_m) = \prod_{i=1}^m p(x_i|Pa_{x_i})$$

Bayesian Networks

Example: toy regulatory network

- Genes A and B have independent prior probabilities
- Gene ${\cal C}$ can be enhanced by both ${\cal A}$ and ${\cal B}$



Conditional independence

Introduction

• Two variables a, b are independent (written $a \perp b \mid \emptyset$) if:

$$p(a,b) = p(a)p(b)$$

• Two variables a, b are conditionally independent given c (written $a \perp b \mid c$) if:

$$p(a,b|c) = p(a|c)p(b|c)$$

- Independence assumptions can be verified by repeated applications of sum and product rules
- Graphical models allow to directly verify them through the *d-separation* criterion

d-separation

Tail-to-tail

 \boldsymbol{a}

• Joint distribution:

$$p(a, b, c) = p(a|c)p(b|c)p(c)$$

• *a* and *b* are **not independent** (written $a \perp b | \emptyset$):

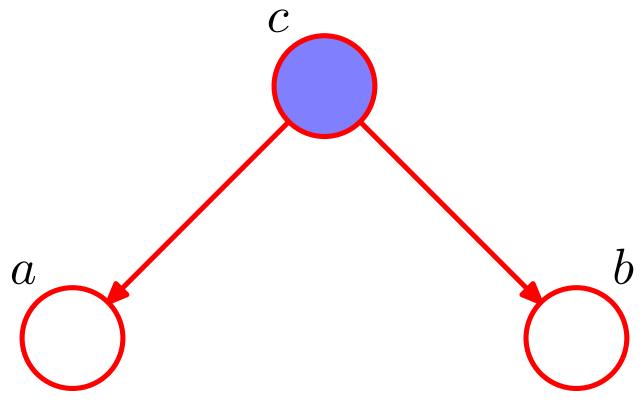
$$p(a,b) = \sum_{c} p(a|c)p(b|c)p(c) \neq p(a)p(b)$$

C

• *a* and *b* are **conditionally independent given** *c*:

$$p(a,b|c) = \frac{p(a,b,c)}{p(c)} = p(a|c)p(b|c)$$

b



• c is *tail-to-tail* wrt to the path $a \rightarrow b$ as it is connected to the tails of the two arrows

d-separation

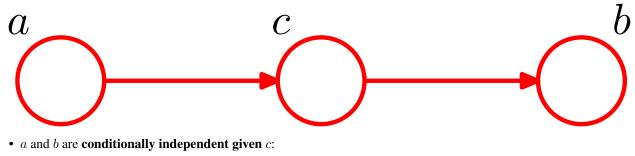
Head-to-tail

• Joint distribution:

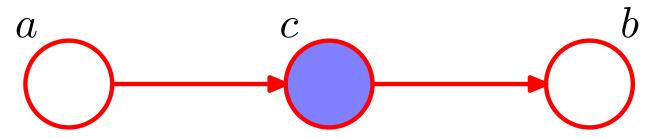
$$p(a, b, c) = p(b|c)p(c|a)p(a) = p(b|c)p(a|c)p(c)$$

• *a* and *b* are **not independent**:

$$p(a,b) = p(a) \sum_{c} p(b|c)p(c|a) \neq p(a)p(b)$$



$$p(a,b|c) = \frac{p(b|c)p(a|c)p(c)}{p(c)} = p(b|c)p(a|c)$$



• c is *head-to-tail* wrt to the path $a \rightarrow b$ as it is connected to the head of an arrow and to the tail of the other one

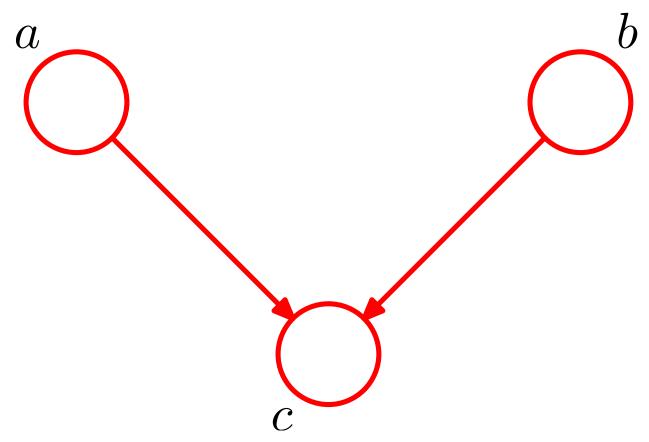
d-separation

Head-to-head

• Joint distribution:

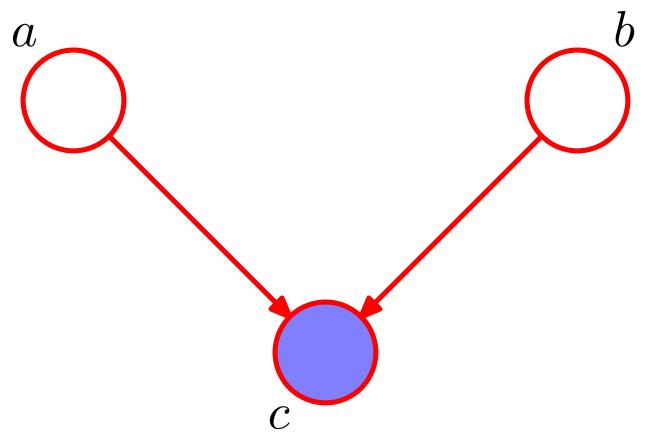
- p(a, b, c) = p(c|a, b)p(a)p(b)
- *a* and *b* are **independent**:

$$p(a,b) = \sum_{c} p(c|a,b)p(a)p(b) = p(a)p(b)$$



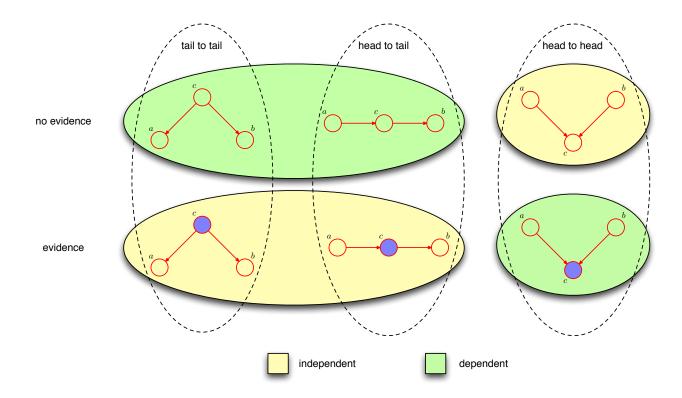
• a and b are not conditionally independent given c:

$$p(a,b|c) = \frac{p(c|a,b)p(a)p(b)}{p(c)} \neq p(a|c)p(b|c)$$



+ c is $\mathit{head-to-head}$ wrt to the path $a \to b$ as it is connected to the heads of the two arrows

d-separation: basic rules summary



Example of head-to-head connection Setting

• A fuel system in a car:

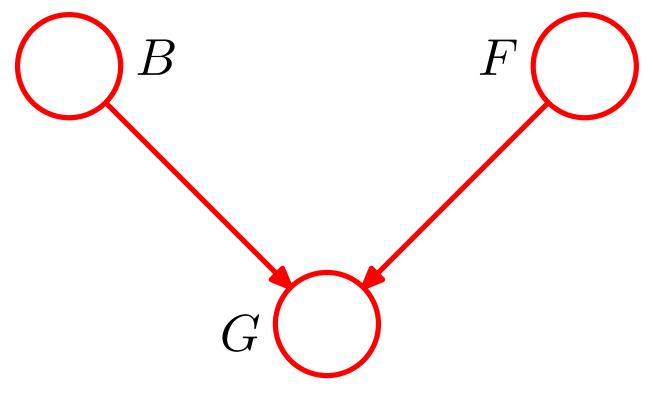
battery *B*, either charged (B = 1) or flat (B = 0)**fuel tank** *F*, either full (F = 1) or empty (F = 0)**electric fuel gauge** *G*, either full (G = 1) or empty (G = 0)

Conditional probability tables (CPT)

• Battery and tank have independent prior probabilities:

$$P(B=1) = 0.9$$
 $P(F=1) = 0.9$

• The fuel gauge is conditioned on both (unreliable!):



$$\begin{split} P(G=1|B=1,F=1) &= 0.8 \quad P(G=1|B=1,F=0) = 0.2 \\ P(G=1|B=0,F=1) &= 0.2 \quad P(G=1|B=0,F=0) = 0.1 \end{split}$$

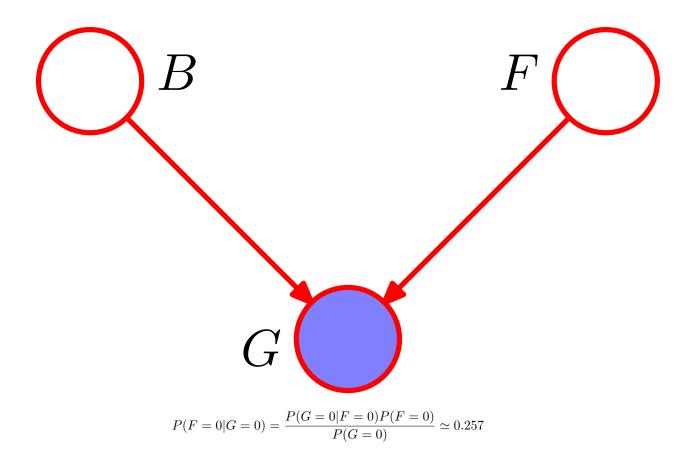
Example of head-to-head connection

Probability of empty tank

• Prior:

$$P(F = 0) = 1 - P(F = 1) = 0.1$$

• Posterior after observing empty fuel gauge:



Note

The probability that the tank is empty *increases* from observing that the fuel gauge reads empty (not as much as expected because of strong prior and unreliable gauge)

Example of head-to-head connection

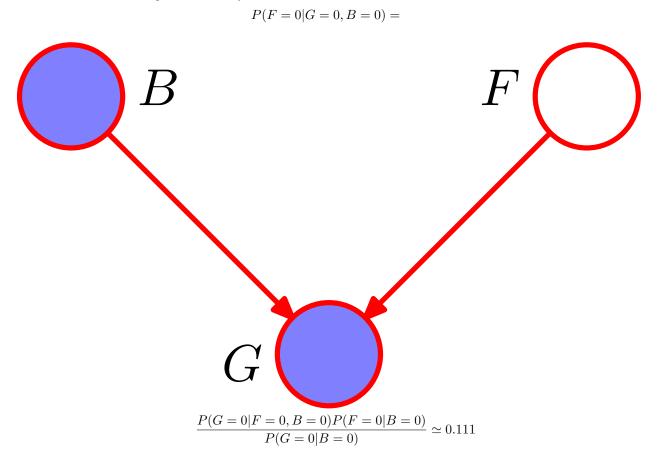
Derivation

$$\begin{split} P(G=0|F=0) &= \sum_{B \in \{0,1\}} P(G=0,B|F=0) \\ &= \sum_{B \in \{0,1\}} P(G=0|B,F=0) P(B|F=0) \\ &= \sum_{B \in \{0,1\}} P(G=0|B,F=0) P(B) = 0.81 \end{split}$$

$$\begin{split} P(G=0) &= \sum_{B \in \{0,1\}} \sum_{F \in \{0,1\}} P(G=0,B,F) \\ &= \sum_{B \in \{0,1\}} \sum_{F \in \{0,1\}} P(G=0|B,F) P(B) P(F) \end{split}$$

Example of head-to-head connection Probability of empty tank

• Posterior after observing that the battery is also flat:



Note

- The probability that the tank is empty *decreases* after observing that the battery is also flat
- The battery condition *explains away* the observation that the fuel gauge reads empty
- The probability is still greater than the prior one, because the fuel gauge observation still gives some evidence in favour of an empty tank

d-separation

General Head-to-head

- Let a *descendant* of a node x be any node which can be reached from x with a path following the direction of the arrows
- A head-to-head node c unblocks the dependency path between its parents if either itself or any of its descendants receives evidence

General *d-separation* criterion

d-separation definition

- Given a generic Bayesian network
- Given *A*, *B*, *C* arbitrary nonintersecting sets of nodes
- The sets A and B are *d*-separated by C(dsep(A; B|C)) if:
 - All paths from any node in A to any node in B are blocked
- A path is blocked if it includes at least one node s.t. either:
 - the arrows on the path meet tail-to-tail or head-to-tail at the node and it is in C, or
 - the arrows on the path meet head-to-head at the node and neither it nor any of its descendants is in C

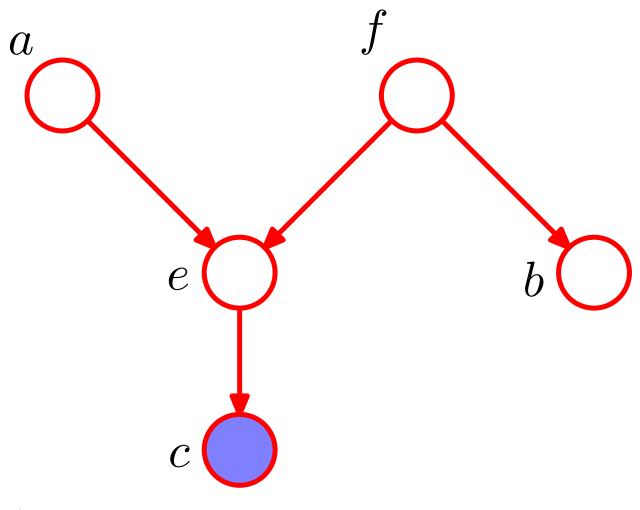
d-separation implies conditional independence

The sets A and B are independent given $C(A \perp B \mid C)$ if they are d-separated by C.

Example of general d-separation

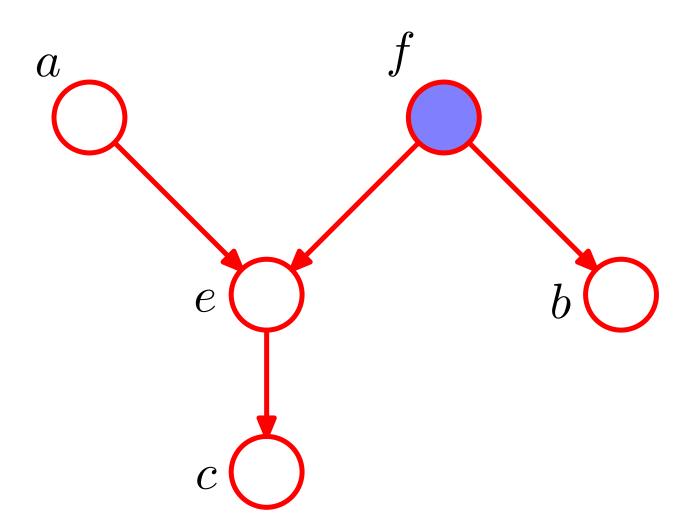
 $a \equiv b | c$

- Nodes a and b are **not d-separated** by c:
 - Node f is tail-to-tail and not observed
 - Node e is head-to-head and its child c is observed



$a\perp b|f$

- Nodes a and b are **d-separated** by f:
 - Node f is tail-to-tail and observed



BN independences revisited

Independence assumptions

• A BN structure \mathcal{G} encodes a set of *local* independence assumptions:

 $\mathcal{I}_{\ell}(\mathcal{G}) = \{ \forall i \; x_i \perp NonDescendants_{x_i} | Parents_{x_i} \}$

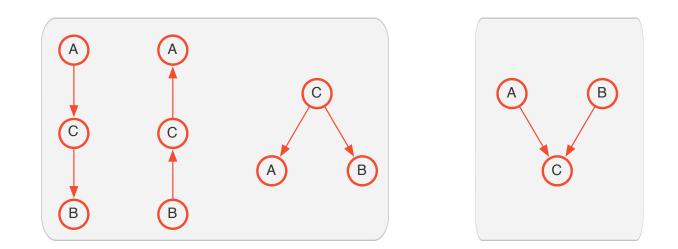
• A BN structure \mathcal{G} encodes a set of *global* (Markov) independence assumptions:

$$\mathcal{I}(\mathcal{G}) = \{(A \perp B | C) : dsep(A; B | C)\}$$

BN equivalence classes

I-equivalence

- Quite different BN structures can actually encode the exact same set of independence assumptions
- Two BN structures \mathcal{G} and \mathcal{G}' are *I*-equivalent if $\mathcal{I}(\mathcal{G}) = \mathcal{I}(\mathcal{G}')$
- The space of BN structures over X is partitioned into a set of mutually exclusive and exhaustive *I-equivalence* classes



I-maps vs Distributions

Minimal I-maps

- For a structure G to be an I-map for p, it does not need to encode all its independences (e.g. a fully connected graph is an I-map of any p defined over its variables)
- A minimal I-map for p is an I-map G which can't be "reduced" into a G' ⊂ G (by removing edges) that is also an I-map for p.

Problem

A minimal I-map for p does not necessarily capture all the independences in p.

I-maps vs Distributions

Perfect Maps (P-maps)

• A structure \mathcal{G} is a *perfect map* (P-map) for p if is captures all (and only) its independences:

$$\mathcal{I}(\mathcal{G}) = \mathcal{I}(p)$$

- There exists an algorithm for finding a P-map of a distribution which is exponential in the in-degree of the P-map.
- The algorithm returns an equivalence class rather than a single structure

Problem

Not all distributions have a P-map. Some cannot be modelled exactly by the BN formalism.

Building Bayesian Networks

Practical Suggestions

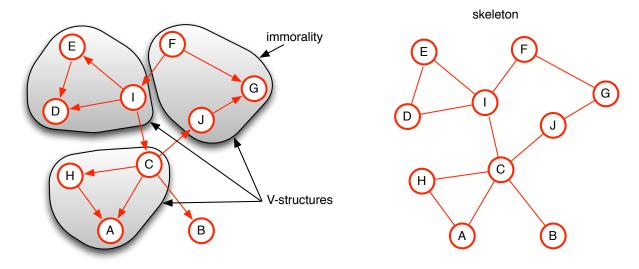
- Get together with a domain expert
- Define variables for entities that can be *observed* or that you can be interested in *predicting* (latent variables can also be sometimes useful)
- Try following *causality* considerations in adding edges (more interpretable and sparser networks)
- In defining probabilities for configurations (almost) never assign zero probabilities
- If data are available, use them to help in *learning* parameters and structure (we'll see how)

APPENDIX

Appendix

Additional reference material

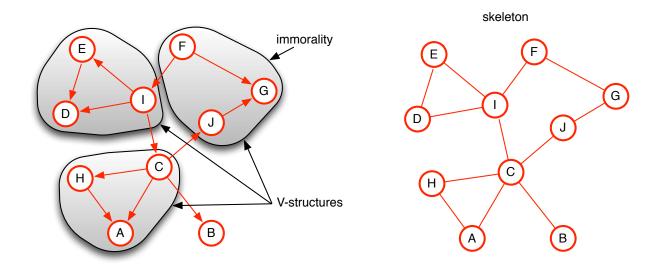
I-equivalence



Sufficient conditions

If two structures \mathcal{G} and \mathcal{G}' have the same skeleton and the same set of v-structures then they are I-equivalent

I-equivalence



Necessary and sufficient conditions

Two structures \mathcal{G} and \mathcal{G}' are I-equivalent if and only if they have the **same skeleton** and the **same set of immoralities**

Equivalence class

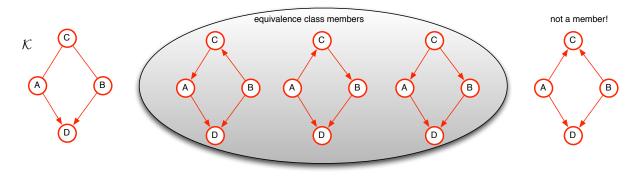
Partially directed acyclic graph (PDAG)

A PDAG is an acyclic graph with both directed and undirected edges

Representing an equivalence class

- An equivalence class for a structure \mathcal{G} can be represented by a PDAG \mathcal{K} such that:
 - If $x \to y \in \mathcal{K}$ then $x \to y$ should appear in all structures which are I-equivalent to \mathcal{G}
 - If $x y \in \mathcal{K}$ then we can find a structure \mathcal{G}' that is I-equivalent to \mathcal{G} such that $x \to y \in \mathcal{G}'$

Equivalence class members



Generating members

- Representatives from \mathcal{K} can be obtained by adding directions to undirected edges
- One needs to check that the resulting structure has the same set of immoralities as \mathcal{K} (otherwise it's not in the equivalence class)

Markov blanket (or boundary)

Definition

- Given a directed graph with m nodes
- The markov blanket of node x_i is the minimal set of nodes making it x_i independent on the rest of the graph:

$$p(x_i|x_{j\neq i}) = \frac{p(x_1, \dots, x_m)}{p(x_{j\neq i})} = \frac{p(x_1, \dots, x_m)}{\int p(x_1, \dots, x_m) dx_i}$$
$$= \frac{\prod_{k=1}^m p(x_k|\mathbf{pa}_k)}{\int \prod_{k=1}^m p(x_k|\mathbf{pa}_k) dx_i}$$

- All components which do not include x_i will cancel between numerator and denominator
- The only remaining components are:
 - $p(x_i|pa_i)$ the probability of x_i given its parents
 - $p(x_j | \mathbf{pa}_j)$ where \mathbf{pa}_j includes $x_i \Rightarrow$ the children of x_i with their *co-parents*

Markov blanket (or boundary)

d-separation

- Each parent x_j of x_i will be head-to-tail or tail-to-tail in the path btw x_i and any of x_j other neighbours \Rightarrow blocked
- Each child x_i of x_i will be head-to-tail in the path btw x_i and any of x_j children \Rightarrow blocked

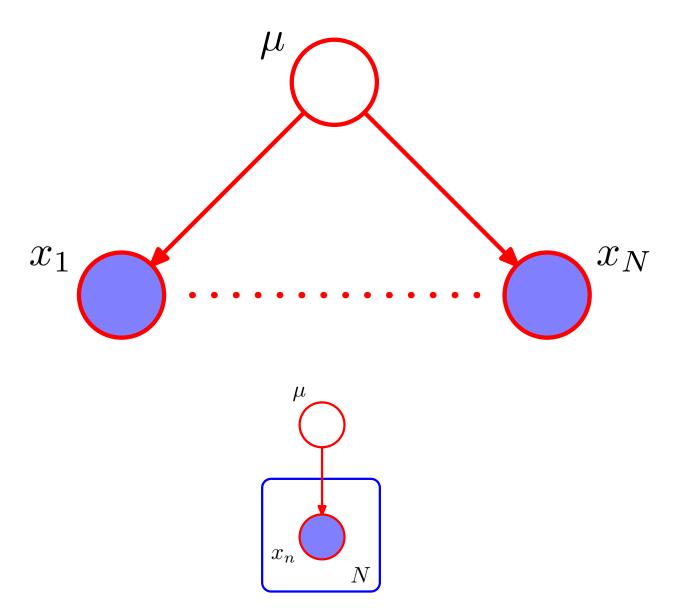


• Each co-parent x_k of a child x_j of x_i be head-to-tail or tail-to-tail in the path btw x_j and any of x_k other neighbours \Rightarrow blocked

Example of i.i.d. samples Maximum-likelihood

- We are given a set of instances $\mathcal{D} = \{x_1, \dots, x_N\}$ drawn from an univariate Gaussian with unknown mean μ
- All paths between x_i and x_j are blocked if we condition on μ
- The examples are independent of each other given μ :

$$p(\mathcal{D}|\mu) = \prod_{i=1}^{N} p(x_i|\mu)$$



• A set of nodes with the same variable type and connections can be compactly represented using the *plate* notation