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Introduction

Overview

@ Bayesian decision theory allows to take optimal decisions
in a fully probabilistic setting

@ It assumes all relevant probabilities are known

@ It allows to provide upper bounds on achievable errors and
evaluate classifiers accordingly

@ Bayesian reasoning can be generalized to cases when the
probabilistic structure is not entirely known
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Input-Output pair

Binary classification

@ Assume examples (x,y) € X x {—1,1} are drawn from a
known distribution p(x, y).

@ The task is predicting the class y of examples given the
input x.

@ Bayes rule allows us to write it in probabilistic terms as:

Plybo — POLPL)
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Output given input

Bayes rule

Bayes rule allows to compute the posterior probability given
likelihood, prior and evidence:

likelihood x prior

osterior = -
p evidence

posterior P(y|x) is the probability that class is y given that x
was observed
likelihood p(x|y) is the probability of observing x given that
its class is y
prior P(y) is the prior probability of the class, without
any evidence

evidence p(x) is the probability of the observation, and by
the law of total probability can be computed as:

2
p(x) =>_ p(xly)P(y)
=1



Expected error

Probability of error

@ Probability of error given x:

P(y2|x) if we decide y4

P(error|x) = { P(y1]x) if we decide y»

@ Average probability of error:

P(error) = / - P(error|x)p(x)dx
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Bayes decision rule

yg = argmaxyi€{71’1}P(y,-|X) = argmaxyie{q’1}p(x|y,~)P(y,~)

Multiclass case

YB = argmaxy,-e{1,...7c}P(YI’X) = argmax, . ceq c}p(x‘yi)P(yi)

Optimal rule

@ The probability of error given x is:

P(error|x) =1 — P(yg|x)

@ The Bayes decision rule minimizes the probability of error

v
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Representing classifiers

Discriminant functions

@ A classifier can be represented as a set of discriminant
functions gj(x),i € 1,..., ¢, giving:
Y = argmax;e4

c gi(x)

.....

@ A discriminant function is not unique = the most
convenient one for computational or explanatory reasons
can be used:

P(yX) = P(x‘g&’;(}’i)

9i(x)

9i(x) = p(x|y;)P(y;)
9i(x) = Inp(x|y;) + InP(y;)
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Representing classifiers

Decision regions
@ The feature space is divided into decision regions
R4, ..., Rc such that:
XeR; if gi(x) > gj(x) Vj#i
@ Decision regions are separated by decision boundaries,

regions in which ties occur among the largest discriminant
functions
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Normal density

Multivariate normal density

1 1 ty—1
WGXP—E(X—M) T (x—p)

@ The covariance matrix X is always symmetric and positive
semi-definite

@ The covariance matrix is strictly positive definite if the
dimension of the feature space is d (otherwise || = 0)

v
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Normal density

X

x

Hyperellipsoids

@ The loci of points of constant density are hyperellipsoids of
constant Mahalanobis distance from x to p.

@ The principal axes of such hyperellipsoids are the
eigenvectors of ¥, their lengths are given by the
corresponding eigenvalues
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Discriminant functions for normal density

Discriminant functions

9i(x) = Inp(x|y;) + In P(y;)

1 _ d 1
_ _E(x _ M.)’):I. T — p;) — §1n27r — Eln |Zi| + In P(y;)

Discarding terms which are independent of / we obtain:

1 _ 1
gi(x) = —E(X — ) (x - ) - >0 1% +1n P(y;)
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Discriminant functions for normal density

case X; = o2/
@ Features are statistically independent
@ All features have same variance o2

@ Covariance determinant |Z;| = 029 can be ignored being
independent of i

@ Covariance inverse is given by X' = (1/52)]
@ The discriminant functions become:

X — |2
gix) = — X LT o iy,
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Discriminant functions for normal density

case ¥, = o2/
@ Expansion of the quadratic form leads to:

]
gi(x) = _T‘Q[th — 2pix + pip] + In P(y;)

@ Discarding terms which are independent of / we obtain
linear discriminant functions:

1 1
9i(X) = —5 1 X — 55 pipi + In P(y;)
~—— ~=

wi Wio

i
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case ¥; = o2/

Separating hyperplane

@ Setting gi(x) = g;(x) we note that the decision boundaries
are pieces of hyperplanes:

o? In P(yi)
|lej — 112 P(y;)

Xo

(mj— Hj)t(X— %(Ni + ) — (i — 1) |)

Wf

@ The hyperplane is orthogonal to vector w = orthogonal to
the line linking the means
@ The hyperplane passes through Xxg:

o if the prior probabilities of classes are equal, X is halfway
between the means
e otherwise, Xq shifts away from the more likely mean
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APPENDIX

Appendix
Additional reference material
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case ¥; = o2/

Separating hyperplane: derivation (1)

gi(x) — gj(x) =

1 1 1
?N;X - @H;Ni +1nP(y;) — FN;X + @Nﬂij In P(y;) =
P(yi)

(ki — )% — 1/2(plp; — pipy) + 0% Py = °
/

t(x —Xo) =0
= (ki — 1)
(i — 1)) %0 = 1/2(plp; — plpsj) — 0%ln PEY/;
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P(yi)

(i — 1) %0 = 1/2(plp; — ppsy) — o°In )
(Kimi — mir) = (i — 1) (i + py)

PO (= ) (i — ) Py
P(yy) (i —mp)' (i — ) P(yy)

N (T ), nP(yi)

= = ) s B By

_ oy g2 i) | P(y)
Xo = 1/2(pi+ ) = o o R Bly)
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Discriminant functions for normal density

@ All classes have same covariance matrix
@ The discriminant functions become:

Gi(X) = — (X — )T (X — 1)+ In P(y)

@ Expanding the quadratic form and discarding terms
independent of / we again obtain linear discriminant
functions:

_ 1 _
9i(X) = = X =¥ pi+In P(y))
N——
w; Yig
@ The separating hyperplanes are not necessarily orthogonal
to the line linking the means:

iy ] In P(y;)/ P(¥;)
(s — )'E ™ g (g 1) = )T T oy i )

Wi —~
Xo
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Discriminant functions for normal density

case X ; = arbitrary

@ The discriminant functions are inherently quadratic:

1 _ 1 _ 1
gi(x) = X' (—5%; Ny x4l X =5 1% i — >0 [Zi| + In A(y;)

— —
W; Wf Wio

@ In two category case, decision surfaces are
hyperquadratics: hyperplanes, pairs of hyperplanes,
hyperspheres, hyperellipsoids, etc.
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Bayesian decision theory: arbitrary inputs and outputs

Setting

@ Examples are input-output pairs (x, y) € X x ) generated
with probability p(x, y).

@ The conditional risk of predicting y* given x is:
AW = [ € P dy
@ The overall risk of a decision rule f is given by
Al = [ AbpL)d = | /_y ((F(x), y)p(y, X)axdly

@ Bayes decision rule

yB = argminyey R(y|x)

V.
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Handling missing features

Marginalize over missing variables

@ Assume input x consists of an observed part x, and
missing part X.

@ Posterior probability of y; given the observation can be
obtained from probabilities over entire inputs by
marginalizing over the missing part:

P(yiIxXo) = p%(:;) _ [P x: :)m)dxm
_ fP(YI|Xo,Xm)p(xo,xm)dxm
; J P(Xo,Xm)dXm
_ | Pilx)p(x)dxm

J p(x)dxm
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Handling noisy features

Marginalize over true variables

@ Assume x consists of a clean part X and noisy part x,.

@ Assume we have a noise model for the probability of the
noisy feature given its true version p(Xn|X;).

@ Posterior probability of y; given the observation can be
obtained from probabilities over clean inputs by
marginalizing over true variables via the noise model:

P(Yis Xe;Xn) [ P(¥is Xc, Xn, Xt)dX;

p(Xc,Xn) J p(Xc, Xn, X¢)dX¢
_ J p(ilXc, Xn, Xt)P(Xc, Xn, Xt)AX¢
- I (X, Xn, Xt)dXt
[ p(yilXc, Xt)p(Xn|Xc, Xt)P(Xc, Xt ) AX¢
; J P(Xn|Xc, Xt)p(Xc, X¢)dX;
_ S plyilx)p(Xn|x:)p(X) dX;
~ [ p(Xax)p(X)dx;

P(yilXc,Xn) =




