Introduction

Overview

- Bayesian decision theory allows to take optimal decisions in a fully probabilistic setting
- It assumes all relevant probabilities are known
- It allows to provide upper bounds on achievable errors and evaluate classifiers accordingly
- · Bayesian reasoning can be generalized to cases when the probabilistic structure is not entirely known

Input-Output pair

Binary classification

- Assume examples $(x,y) \in \mathcal{X} \times \{-1,1\}$ are drawn from a *known* distribution p(x,y).
- The task is predicting the class y of examples given the input x.
- Bayes rule allows us to write it in probabilistic terms as:

$$P(y|x) = \frac{p(x|y)P(y)}{p(x)}$$

Output given input

Bayes rule

Bayes rule allows to compute the posterior probability given likelihood, prior and evidence:

$$posterior = \frac{likelihood \times prior}{evidence}$$

posterior P(y|x) is the probability that class is y given that x was observed

likelihood p(x|y) is the probability of observing x given that its class is y

prior P(y) is the prior probability of the class, without any evidence

evidence p(x) is the probability of the observation, and by the law of total probability can be computed as:

$$p(x) = \sum_{i=1}^{2} p(x|y)P(y)$$

Expected error

Probability of error

• Probability of error given x:

$$P(error|x) = \left\{ \begin{array}{ll} P(y_2|x) & \text{if we decide } y_1 \\ P(y_1|x) & \text{if we decide } y_2 \end{array} \right.$$

• Average probability of error:

$$P(error) = \int_{-\infty}^{\infty} P(error|x)p(x)dx$$

Bayes decision rule

Binary case

$$y_B = \operatorname{argmax}_{y_i \in \{-1,1\}} P(y_i|x) = \operatorname{argmax}_{y_i \in \{-1,1\}} p(x|y_i) P(y_i)$$

Multiclass case

$$y_B = \operatorname{argmax}_{y_i \in \{1, \dots, c\}} P(y_i | x) = \operatorname{argmax}_{y_i \in \{1, \dots, c\}} p(x | y_i) P(y_i)$$

Optimal rule

• The probability of error given x is:

$$P(error|x) = 1 - P(y_B|x)$$

• The Bayes decision rule minimizes the probability of error

Representing classifiers

Discriminant functions

• A classifier can be represented as a set of discriminant functions $g_i(\mathbf{x}), i \in 1, \dots, c$, giving:

$$y = \operatorname{argmax}_{i \in 1, \dots, c} g_i(\mathbf{x})$$

 A discriminant function is not unique ⇒ the most convenient one for computational or explanatory reasons can be used:

$$g_i(\mathbf{x}) = P(y_i|\mathbf{x}) = \frac{p(\mathbf{x}|y_i)P(y_i)}{p(\mathbf{x})}$$
$$g_i(\mathbf{x}) = p(\mathbf{x}|y_i)P(y_i)$$
$$g_i(\mathbf{x}) = \ln p(\mathbf{x}|y_i) + \ln P(y_i)$$

Representing classifiers

Decision regions

• The feature space is divided into decision regions $\mathcal{R}_1, \dots, \mathcal{R}_c$ such that:

$$\mathbf{x} \in \mathcal{R}_i$$
 if $g_i(\mathbf{x}) > g_j(\mathbf{x}) \ \forall j \neq i$

• Decision regions are separated by *decision boundaries*, regions in which ties occur among the largest discriminant functions

Normal density

Multivariate normal density

$$\frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}}\exp{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^t\Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

- The covariance matrix Σ is always symmetric and positive semi-definite
- The covariance matrix is strictly positive definite if the dimension of the feature space is d (otherwise $|\Sigma| = 0$)

Normal density

Hyperellipsoids

- The loci of points of constant density are hyperellipsoids of constant Mahalanobis distance from x to μ .
- The principal axes of such hyperellipsoids are the eigenvectors of Σ , their lengths are given by the corresponding eigenvalues

Discriminant functions for normal density

Discriminant functions

$$g_i(\mathbf{x}) = \ln p(\mathbf{x}|y_i) + \ln P(y_i)$$

$$= -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \Sigma_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\Sigma_i| + \ln P(y_i)$$

Discarding terms which are independent of i we obtain:

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(y_i)$$

Discriminant functions for normal density

case $\Sigma_i = \sigma^2 I$

- Features are statistically independent
- All features have same variance σ^2
- Covariance determinant $|\Sigma_i| = \sigma^{2d}$ can be ignored being independent of i
- Covariance inverse is given by $\Sigma_i^{-1} = (1/\sigma^2)I$
- The discriminant functions become:

$$g_i(\mathbf{x}) = -\frac{||\mathbf{x} - \boldsymbol{\mu}_i||^2}{2\sigma^2} + \ln P(y_i)$$

Discriminant functions for normal density

case $\Sigma_i = \sigma^2 I$

• Expansion of the quadratic form leads to:

$$g_i(\mathbf{x}) = -\frac{1}{2\sigma^2} [\mathbf{x}^t \mathbf{x} - 2\boldsymbol{\mu}_i^t \mathbf{x} + \boldsymbol{\mu}_i^t \boldsymbol{\mu}_i] + \ln P(y_i)$$

• Discarding terms which are independent of i we obtain linear discriminant functions:

$$g_i(\mathbf{x}) = \underbrace{\frac{1}{\sigma^2} \boldsymbol{\mu}_i^t}_{\boldsymbol{w}_i^t} \mathbf{x} \underbrace{-\frac{1}{2\sigma^2} \boldsymbol{\mu}_i^t \boldsymbol{\mu}_i + \ln P(y_i)}_{w_{i0}}$$

case $\Sigma_i = \sigma^2 I$

Separating hyperplane

• Setting $g_i(\mathbf{x}) = g_j(\mathbf{x})$ we note that the decision boundaries are pieces of hyperplanes:

$$\underbrace{(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^t}_{\boldsymbol{w}^t} (\mathbf{x} - \left(\underbrace{\frac{1}{2}(\boldsymbol{\mu}_i + \boldsymbol{\mu}_j) - \frac{\sigma^2}{||\boldsymbol{\mu}_i - \boldsymbol{\mu}_j||^2} \ln \frac{P(y_i)}{P(y_j)} (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)}_{\mathbf{x}_0}\right))$$

- ullet The hyperplane is orthogonal to vector $w \Rightarrow$ orthogonal to the line linking the means
- The hyperplane passes through x_0 :
 - if the prior probabilities of classes are equal, \mathbf{x}_0 is halfway between the means
 - otherwise, \mathbf{x}_0 shifts away from the more likely mean

case $\Sigma_i = \sigma^2 I$

case $\Sigma_i = \sigma^2 I$

case $\Sigma_i = arbitrary$

APPENDIX

Appendix Additional reference material

case $\Sigma_i = \sigma^2 I$

Separating hyperplane: derivation (1)

$$g_i(\mathbf{x}) - g_j(\mathbf{x}) = 0$$

$$\frac{1}{\sigma^2} \boldsymbol{\mu}_i^t \mathbf{x} - \frac{1}{2\sigma^2} \boldsymbol{\mu}_i^t \boldsymbol{\mu}_i + \ln P(y_i) - \frac{1}{\sigma^2} \boldsymbol{\mu}_j^t \mathbf{x} + \frac{1}{2\sigma^2} \boldsymbol{\mu}_j^t \boldsymbol{\mu}_j - \ln P(y_j) = 0$$

$$(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^t \mathbf{x} - 1/2(\boldsymbol{\mu}_i^t \boldsymbol{\mu}_i - \boldsymbol{\mu}_j^t \boldsymbol{\mu}_j) + \sigma^2 \ln \frac{P(y_i)}{P(y_j)} = 0$$

$$\boldsymbol{w}^t (\mathbf{x} - \mathbf{x}_0) = 0$$

$$\boldsymbol{w} = (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)$$

$$(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^t \mathbf{x}_0 = 1/2(\boldsymbol{\mu}_i^t \boldsymbol{\mu}_i - \boldsymbol{\mu}_j^t \boldsymbol{\mu}_j) - \sigma^2 \ln \frac{P(y_i)}{P(y_j)}$$

case $\Sigma_i = \sigma^2 I$

Separating hyperplane: derivation (2)

$$(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^t \mathbf{x}_0 = 1/2(\boldsymbol{\mu}_i^t \boldsymbol{\mu}_i - \boldsymbol{\mu}_j^t \boldsymbol{\mu}_j) - \sigma^2 \ln \frac{P(y_i)}{P(y_j)}$$

$$(\boldsymbol{\mu}_i^t \boldsymbol{\mu}_i - \boldsymbol{\mu}_j^t \boldsymbol{\mu}_j) = (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^t (\boldsymbol{\mu}_i + \boldsymbol{\mu}_j)$$

$$\ln \frac{P(y_i)}{P(y_j)} = \frac{(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^t (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)}{(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^t (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)} \ln \frac{P(y_i)}{P(y_j)} =$$

$$= (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^t \frac{(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)}{||\boldsymbol{\mu}_i - \boldsymbol{\mu}_j||^2} \ln \frac{P(y_i)}{P(y_j)}$$

$$\mathbf{x}_0 = 1/2(\boldsymbol{\mu}_i + \boldsymbol{\mu}_j) - \sigma^2 \frac{(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)}{||\boldsymbol{\mu}_i - \boldsymbol{\mu}_j||^2} \ln \frac{P(y_i)}{P(y_j)}$$

case $\Sigma_i = \sigma^2 I$

Discriminant functions for normal density case $\Sigma_i = \Sigma$

• All classes have same covariance matrix

• The discriminant functions become:

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) + \ln P(y_i)$$

ullet Expanding the quadratic form and discarding terms independent of i we again obtain linear discriminant functions: $g_i(\mathbf{x}) = \underbrace{\boldsymbol{\mu}_i^t \boldsymbol{\Sigma}^{-1}}_{\boldsymbol{w}_i^t} \mathbf{x} \underbrace{-\frac{1}{2} \boldsymbol{\mu}_i^t \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_i + \ln P(y_i)}_{w_{i0}}$ • The separating hyperplanes are not necessarily orthogonal to the line linking the means:

$$\underbrace{\boldsymbol{\mu}_{i}^{t} \boldsymbol{\Sigma}^{-1} \mathbf{x}}_{\boldsymbol{w}_{i}^{t}} \mathbf{x} \underbrace{-\frac{1}{2} \boldsymbol{\mu}_{i}^{t} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{i} + \ln P(y_{i})}_{\text{constant}}$$

$$\underbrace{(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^t \Sigma^{-1}}_{\boldsymbol{w}^t} (\mathbf{x} - \underbrace{\frac{1}{2} (\boldsymbol{\mu}_i + \boldsymbol{\mu}_j) - \frac{\ln P(y_i) / P(y_j)}{(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^t \Sigma^{-1} (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)} (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)}_{\mathbf{x}_0})$$

case $\Sigma_i = \Sigma$

Discriminant functions for normal density

case $\Sigma_i = arbitrary$

• The discriminant functions are inherently quadratic:

$$g_i(\mathbf{x}) = \mathbf{x}^t \underbrace{(-\frac{1}{2}\Sigma_i^{-1})}_{W_i} \mathbf{x} + \underbrace{\boldsymbol{\mu}_i^t \Sigma_i^{-1}}_{\boldsymbol{w}_i^t} \mathbf{x} \underbrace{-\frac{1}{2}\boldsymbol{\mu}_i^t \Sigma_i^{-1} \boldsymbol{\mu}_i - \frac{1}{2} \ln |\Sigma_i| + \ln P(y_i)}_{w_{io}}$$

• In two category case, decision surfaces are *hyperquadratics*: hyperplanes, pairs of hyperplanes, hyperspheres, hyperellipsoids, etc.

case $\Sigma_i = arbitrary$

Bayesian decision theory: arbitrary inputs and outputs Setting

• Examples are input-output pairs $(x,y) \in \mathcal{X} \times \mathcal{Y}$ generated with probability p(x,y).

• The *conditional risk* of predicting y^* given x is:

$$R(y^*|\mathbf{x}) = \int_{\mathcal{Y}} \ell(y^*, y) P(y|x) dy$$

• The overall risk of a decision rule f is given by

$$R[f] = \int R(f(x)|x)p(x)dx = \int_{\mathcal{X}} \int_{\mathcal{Y}} \ell(f(x), y)p(y, x)dxdy$$

· Bayes decision rule

$$y^B = \operatorname{argmin}_{y \in \mathcal{V}} R(y|x)$$

Handling missing features

Marginalize over missing variables

- Assume input x consists of an observed part x_o and missing part x_m .
- Posterior probability of y_i given the observation can be obtained from probabilities over entire inputs by marginalizing over the missing part:

$$P(y_i|\mathbf{x}_o) = \frac{p(y_i, \mathbf{x}_o)}{p(\mathbf{x}_o)} = \frac{\int p(y_i, \mathbf{x}_o, \mathbf{x}_m) d\mathbf{x}_m}{p(\mathbf{x}_o)}$$
$$= \frac{\int P(y_i|\mathbf{x}_o, \mathbf{x}_m) p(\mathbf{x}_o, \mathbf{x}_m) d\mathbf{x}_m}{\int p(\mathbf{x}_o, \mathbf{x}_m) d\mathbf{x}_m}$$
$$= \frac{\int P(y_i|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}_m}{\int p(\mathbf{x}) d\mathbf{x}_m}$$

Handling noisy features

Marginalize over true variables

- Assume x consists of a clean part x_c and noisy part x_n .
- Assume we have a *noise model* for the probability of the noisy feature given its true version $p(\mathbf{x}_n|\mathbf{x}_t)$.
- Posterior probability of y_i given the observation can be obtained from probabilities over clean inputs by marginalizing over true variables via the noise model:

$$\begin{split} P(y_i|\mathbf{x}_c,\mathbf{x}_n) &= \frac{p(y_i,\mathbf{x}_c,\mathbf{x}_n)}{p(\mathbf{x}_c,\mathbf{x}_n)} = \frac{\int p(y_i,\mathbf{x}_c,\mathbf{x}_n,\mathbf{x}_t)d\mathbf{x}_t}{\int p(\mathbf{x}_c,\mathbf{x}_n,\mathbf{x}_t)d\mathbf{x}_t} \\ &= \frac{\int p(y_i|\mathbf{x}_c,\mathbf{x}_n,\mathbf{x}_t)p(\mathbf{x}_c,\mathbf{x}_n,\mathbf{x}_t)d\mathbf{x}_t}{\int p(\mathbf{x}_c,\mathbf{x}_n,\mathbf{x}_t)d\mathbf{x}_t} \\ &= \frac{\int p(y_i|\mathbf{x}_c,\mathbf{x}_t)p(\mathbf{x}_n|\mathbf{x}_c,\mathbf{x}_t)p(\mathbf{x}_c,\mathbf{x}_t)d\mathbf{x}_t}{\int p(\mathbf{x}_n|\mathbf{x}_c,\mathbf{x}_t)p(\mathbf{x}_c,\mathbf{x}_t)d\mathbf{x}_t} \\ &= \frac{\int p(y_i|\mathbf{x})p(\mathbf{x}_n|\mathbf{x}_t)p(\mathbf{x}_d)d\mathbf{x}_t}{\int p(\mathbf{x}_n|\mathbf{x}_t)p(\mathbf{x})d\mathbf{x}_t} \end{split}$$