Profile Hidden Markov Models

Andrea Passerini passerini@disi.unitn.it

Artificial Intelligence for Bioinformatics

Profile HMM (Haussler et al., 1993)

Motivation

- Biological sequences are typically grouped into families with a certain functionality
- A relevant task is that of detecting whether a target sequence belongs to a certain family
- This could be done aligning the sequence to each of the sequences from the family
- However, pairwise alignments alone can miss cases of distantly related sequences
- A better way to detect such relationship would be:
 - building a model of the family
 - testing whether the target sequence is compatible with the model

Multiple alignments

- A multiple alignment consists of the simultaneous alignment of a set of sequences
- All sequences from a certain family could be aligned to form a multiple alignment representing the family
- The family model should be a compact probabilistic representation of such multiple alignment

Multiple alignment: example for the globin family

I KS I KS I KS I KS I KS I KS I KS I KS	Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the second state Image: Solution of the	DVFDLPDNHP GGESSNSVCD PTGRLKYDPR - SPMONAA GGDEWKESKE GADDVCKSKR TADDTAKSDR	MACHGNIYET RKHGVIVER RKHGVIVER RKHGVIVER RKHCANYET RKHCANYE RKALAN	A GALKS - A GALKS - A GALKQ - A GALKQ - A GALKQ - A GALKA - L DOVYEN - A AAAASAN - A AAAASAN - A AAAASAN - A AAAASAN - A AAAASAN - A AAAASAN - A CAN - A AAAASAN - A CAN - A AAAASAN - A CAN - CAN - A CAN - A CAN - A CAN - A CAN - CAN - A CAN - CAN - C CAN - C CAN - CAN - C CAN - CAN -	KGNHSQ RGDHAA HLDNYTG PALLP NDPALLP NDPALLP NDPALLP NDPALLP NDPALVKK GELEAQVAP HOPAKIVKA OYPGKLEY NDQYRE HMERTESFLY NDQYFG	L K PL ATTHA L MRIGRUHA AVKKIACKHC AVKKIACKHT KI SGLMATHK KI SGLATHK I AQYGKHT KCQDYGAHY YFENLGKHY KCQDYGAHY YFENLGKHYKEA FYRDTIDRHY	
RK RK RK KK	YEKGA - ETE YEKGA - EKY YEKGA - EKY YEKHR - EY YEKHR - ENY	TADDIAKSDR TADDVCKSDR TADDVCKSER TADDVKKSER TADVCKDPE TPADVCKDPE	FKKLGNQLLL FEKLGSGLLL FDKQGQRILL FAKQGQKILL FIKQGQNILL RAAFGQALHW	SUHLAADTY- SUHLANTE- Achleanwy- Achuecaty- Achuecaty- Vygelvaq-R	- DNEMIFRA - DNEDVFRA - TNEEVFKG - DDRETFNA - DDRETFDA - DRETFDA	EVROTIORHY	

Dealing with ungapped regions

- Large portions of multiple alignments for a protein family consist of ungapped sequences of residues
- Each position in such regions has a certain amino-acid *profile*, representing the frequencies with which each amino-acid occurs in the column of the alignment
- By normalizing such profiles, it is possible to derive a probability of observing a certain residue in that position.

Probabilistic model for ungapped regions

- Each position in the region can be modelled with a match state with position specific emission probabilities
- The whole region can be modelled as a sequence of match states, with transitions only between successive states
- Beginning and end of the region can be modelled with special non-emitting begin and end states

Dealing with gaps

- Gaps in the alignment tend to occur at certain positions (i.e. gaps align columnwise)
- Gaps can be dealt with by modelling the two type of corresponding modifications:
 - insertions of a sequence of residues
 - deletions of a sequence of residues

Probabilistic model with insertions

- An insertion should be modelled with a specific insertion state *I* (represented as a diamond)
- As insertions in different positions have different probabilities, transition probabilities should be position specific
- An insertion state should also have a self transition to account for insertions of sequences of residues
- Emission probabilities could instead be set for all insertion states equal to the background probability q_a of observing a certain amino-acid *a* in an arbitrary sequence.

Probabilistic model with deletions

- Deletions should be modelled as special *silent* states D which do not emit symbols (represented as a square)
- Allowing self transitions as in insertions would complicate inference algorithms
- Sequences of deletions are instead modelled as sequences of deletion states
- This also allows to specify different transition probabilities between deletion states

Profile HMM: full model

Note

- We allow direct transitions between insertion and deletion states
- These situations are quite rare, but leaving such transitions out would give zero probability to these cases

Parameter estimation

- We assume a multiple alignment profile for the family of interest is available (created with multiple alignment algorithms, possibly relying on 3D information)
- We need to estimate transition probabilities between states, and emission probabilities for match states (those for insertion states are set to background probabilities for arbitrary sequences)
- We first decide which positions in the alignment correspond to match states, and which to insertions or deletions:
 - A reasonable approach is that if half of the column elements in a position are gaps, the position is **not** a match state
- This allows to turn our alignment in a fully observed set of training examples: probabilities can be estimated from counts

Parameter estimation: examples

• Non-zero emission probabilities for match state M_3 : $e_{M_3}(V) = 5/7$ $e_{M_3}(F) = 1/7$ $e_{M_3}(I) = 1/7$

• Non-zero transition probabilities from match state M_3 : $a_{M_3M_4} = 6/7$ $a_{M_3D_4} = 1/7$

• Non-zero transition probabilities from match state M_5 : $a_{M_5M_6} = 5/7$ $a_{M_5l_5} = 1/7$ $a_{M_5D_6} = 1/7$

Parameter estimation: adding pseudocounts

- All transitions and emissions never observed in the multiple alignment will be set to zero using only counts.
- This can be a problem if an unsufficient number of examples is available (i.e. always)
- A simple solution consists of adding a non-zero prior probability for any transition or emission, to be combined to the counts observed on data
- Such prior probability can be thought of coming from pseudocounts of hypothetical observations of emissions/transitions
- The simplest pseudocount (Laplace smoother) consists of adding a single hypothetical observation of any possible emission/transition