Profile Hidden Markov Models

Andrea Passerini passerini@disi.unitn.it

Artificial Intelligence for Bioinformatics

Profile HMM (Haussler et al., 1993)

Motivation

- Biological sequences are typically grouped into families with a certain functionality
- A relevant task is that of detecting whether a target sequence belongs to a certain family
- This could be done aligning the sequence to each of the sequences from the family
- However, pairwise alignments alone can miss cases of distantly related sequences
- A better way to detect such relationship would be:
(1) building a model of the family
(2) testing whether the target sequence is compatible with the model

Profile HMM

Multiple alignments

- A multiple alignment consists of the simultaneous alignment of a set of sequences
- All sequences from a certain family could be aligned to form a multiple alignment representing the family
- The family model should be a compact probabilistic representation of such multiple alignment

Multiple alignment: example for the globin family

ELTHGGKIFG MKOHGNTMET ERKHGDTVLE IKAQADTVLE VKABGATVLE IKABCEAVAE PEALAMTVEA NGDOREALEN MEKQANLEGI MERQALDEGA IKHPARTLTE VRRHARLETS ENSHTKLLCE ERQHALVYTK ELGLSSTIQA ERSQALKEVG FEKGGTALLE EKKLGNQLL EKKLGSGLIt FDKGGRILL EAKQGQKitL EIKGGQNILL BAABGQALHW

ALGNILKQ KGNHAE
ALGNILKQEGGHST
ALGNIVEKEGGNHSA
ELGELLKA.BgDHAA
EIDQVVENE. .-DHLDNVTG
AAQNIENL.P.AIEP
AIAA YASNI. .-ENLPALLP
MMTQEIDNE. . DDTTALNY
ILQEEVANL. .-NDPTALTL
AIVHMLREI. . -SNDAEDEK
ILhisveñ. DELEAQVap
ELDSEMTDE. .HQPAKIVEA
TLDEVIBNL. - DYPGKEEV
EFGKLIITYE E.-NDDQVRE TLAQVVENIY HMERTESELY
AVHVLANET. .-DNQAVEHG
SVHIAADTY. .-DNEMIERA
SVHILANTE. .-DNEDVERA
ACHLLANVY. . -TNEEVFEGG
ACHDLCATY. .- DDRETENA
ACHOLCATI. - DDEETEDA
MYGELDAQ-B ...AEEP有A

NLQSMapLhy
VLKPLAKSHA NVKELADTHI PQKALAATHI IEKPLATTHA ELMRIGRDHA AVKKIADKHC ADEKIAQKHT KISGLMATHE KIRGLCATHE IAAQ GKDHT TVEKYGERH KCODVGAAHE MEENLGERHE ACEQLGARHD MVGQKHVKEA FVRELMNBHE EVRDTIDRA CRETIDRHV vgRETINRHB ptrelldrha PGGEMARHE ELAQLGRDHB
\square
\square
or
$\frac{1}{8}$
8
T
$\stackrel{T}{T}$
I
S!
B.
N
A
B
\square
D K
\square
\qquad
G
\square

Profile HMM

Dealing with ungapped regions

- Large portions of multiple alignments for a protein family consist of ungapped sequences of residues
- Each position in such regions has a certain amino-acid profile, representing the frequencies with which each amino-acid occurs in the column of the alignment
- By normalizing such profiles, it is possible to derive a probability of observing a certain residue in that position.

Profile HMM

Probabilistic model for ungapped regions

- Each position in the region can be modelled with a match state with position specific emission probabilities
- The whole region can be modelled as a sequence of match states, with transitions only between successive states
- Beginning and end of the region can be modelled with special non-emitting begin and end states

Profile HMM

Dealing with gaps

- Gaps in the alignment tend to occur at certain positions (i.e. gaps align columnwise)
- Gaps can be dealt with by modelling the two type of corresponding modifications:
- insertions of a sequence of residues
- deletions of a sequence of residues

Profile HMM

Probabilistic model with insertions

- An insertion should be modelled with a specific insertion state I (represented as a diamond)
- As insertions in different positions have different probabilities, transition probabilities should be position specific
- An insertion state should also have a self transition to account for insertions of sequences of residues
- Emission probabilities could instead be set for all insertion states equal to the background probability q_{a} of observing a certain amino-acid a in an arbitrary sequence.

Profile HMM

Probabilistic model with deletions

- Deletions should be modelled as special silent states D which do not emit symbols (represented as a square)
- Allowing self transitions as in insertions would complicate inference algorithms
- Sequences of deletions are instead modelled as sequences of deletion states
- This also allows to specify different transition probabilities between deletion states

Note

- We allow direct transitions between insertion and deletion states
- These situations are quite rare, but leaving such transitions out would give zero probability to these cases

Profile HMM

Parameter estimation

- We assume a multiple alignment profile for the family of interest is available (created with multiple alignment algorithms, possibly relying on 3D information)
- We need to estimate transition probabilities between states, and emission probabilities for match states (those for insertion states are set to background probabilities for arbitrary sequences)
- We first decide which positions in the alignment correspond to match states, and which to insertions or deletions:
- A reasonable approach is that if half of the column elements in a position are gaps, the position is not a match state
- This allows to turn our alignment in a fully observed set of training examples: probabilities can be estimated from counts

Profile HMM

$$
\begin{aligned}
& \text { HBA_HUMAN ...VGA--HAGEY... } \\
& \text { HBB_HUMAN ...V----NVDEV... } \\
& \text { MYG_PHYCA ...VEA--DVAGH... } \\
& \text { GLB3_CHITP ...VK G------D. . . } \\
& \text { GLB5_PETMA ...VYS--TYETS... } \\
& \text { LGB2_LUPLUFNA--NIPKH... } \\
& \text { GLB1_GLYDI . . . IA GADNGAGV . . . }
\end{aligned}
$$

match
insertion
deletion

Parameter estimation: examples

- Non-zero emission probabilities for match state M_{3} :

$$
e_{M_{3}}(V)=5 / 7 \quad e_{M_{3}}(F)=1 / 7 \quad e_{M_{3}}(I)=1 / 7
$$

- Non-zero transition probabilities from match state M_{3} :

$$
a_{M_{3} M_{4}}=6 / 7 \quad a_{M_{3} D_{4}}=1 / 7
$$

- Non-zero transition probabilities from match state M_{5} :

$$
a_{M_{5} M_{6}}=5 / 7 \quad a_{M_{5} / 5}=1 / 7 \quad a_{M_{5} D_{6}}=1 / 7
$$

Profile HMM

Parameter estimation: adding pseudocounts

- All transitions and emissions never observed in the multiple alignment will be set to zero using only counts.
- This can be a problem if an unsufficient number of examples is available (i.e. always)
- A simple solution consists of adding a non-zero prior probability for any transition or emission, to be combined to the counts observed on data
- Such prior probability can be thought of coming from pseudocounts of hypothetical observations of emissions/transitions
- The simplest pseudocount (Laplace smoother) consists of adding a single hypothetical observation of any possible emission/transition

