Probabilistic Graphical Models

Andrea Passerini passerini@disi.unitn.it

Artificial Intelligence for Bioinformatics

Probability mass function

Given a discrete random variable X taking values in $\mathcal{X} = \{v_1, \ldots, v_m\}$, its probability mass function $P : \mathcal{X} \to [0, 1]$ is defined as:

 $P(v_i) = \Pr[X = v_i]$

and satisfies the following conditions:

•
$$P(x) \geq 0$$

•
$$\sum_{x\in\mathcal{X}} P(x) = 1$$

Bernoulli distribution

- Two possible values (outcomes): 1 (success), 0 (failure).
- Parameters: *p* probability of success.
- Probability mass function:

$$P(x;p) = \begin{cases} p & \text{if } x = 1\\ 1-p & \text{if } x = 0 \end{cases}$$

Example: tossing a coin

- Head (success) and tail (failure) possible outcomes
- p is probability of head

Probability distributions

Multinomial distribution (one sample)

- Models the probability of a certain outcome for an event with *m* possible outcomes {*v*₁,..., *v_m*}
- Parameters: p₁,..., p_m probability of each outcome

Probability mass function:

$$P(v_i; p_1, \ldots, p_m) = p_i$$

Tossing a dice

- *m* is the number of faces
- *p_i* is probability of obtaining face *i*

Probability density function

Instead of the probability of a specific value of X, we model the probability that x falls in an interval (a, b):

$$\Pr[x \in (a,b)] = \int_a^b p(x) dx$$

Properties:

•
$$p(x) \ge 0$$

• $\int_{-\infty}^{\infty} p(x) dx = 1$

Note

The probability of a specific value x_0 is given by:

$$p(x_0) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \Pr[x \in [x_0, x_0 + \epsilon)]$$

Gaussian (or normal) distribution

- Bell-shaped curve.
- Parameters: μ mean, σ^2 variance.
- Probability density function:

$$p(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Standard normal distribution: N(0, 1)
- Standardization of a normal distribution $N(\mu, \sigma^2)$

$$z = \frac{x - \mu}{\sigma}$$

conditional probability probability of x once y is observed

$$P(x|y) = rac{P(x,y)}{P(y)}$$

statistical independence variables X and Y are statistical independent iff

$$P(x,y)=P(x)P(y)$$

implying:

$$P(x|y) = P(x)$$
 $P(y|x) = P(y)$

law of total probability The *marginal distribution* of a variable is obtained from a joint distribution summing over all possible values of the other variable (*sum rule*)

$$P(x) = \sum_{y \in \mathcal{Y}} P(x, y)$$
 $P(y) = \sum_{x \in \mathcal{X}} P(x, y)$

product rule conditional probability definition implies that

$$P(x, y) = P(x|y)P(y) = P(y|x)P(x)$$

Bayes' rule

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

Playing with probabilities

Use rules!

- Basic rules allow to model a certain probability given knowledge of some related ones
- All our manipulations will be applications of the three basic rules
- Basic rules apply to any number of varables:

$$P(y) = \sum_{x} \sum_{z} P(x, y, z) \text{ (sum rule)}$$

$$= \sum_{x} \sum_{z} P(y|x, z)P(x, z) \text{ (product rule)}$$

$$= \sum_{x} \sum_{z} \frac{P(x|y, z)P(y|z)P(x, z)}{P(x|z)} \text{ (Bayes rule)}$$

Playing with probabilities

Example

$$P(y|x,z) = \frac{P(x,z|y)P(y)}{P(x,z)} \text{ (Bayes rule)}$$

$$= \frac{P(x,z|y)P(y)}{P(x|z)P(z)} \text{ (product rule)}$$

$$= \frac{P(x|z,y)P(z|y)P(y)}{P(x|z)P(z)} \text{ (product rule)}$$

$$= \frac{P(x|z,y)P(z,y)}{P(x|z)P(z)} \text{ (product rule)}$$

$$= \frac{P(x|z,y)P(y|z)P(z)}{P(x|z)P(z)} \text{ (product rule)}$$

$$= \frac{P(x|z,y)P(y|z)P(z)}{P(x|z)P(z)}$$

Graphical models

Why

- All probabilistic inference and learning amount at repeated applications of the sum and product rules
- *Probabilistic graphical models* are graphical representations of the *qualitative* aspects of probability distributions allowing to:
 - visualize the structure of a probabilistic model in a simple and intuitive way
 - discover properties of the model, such as conditional independencies, by inspecting the graph
 - express complex computations for inference and learning in terms of graphical manipulations
 - represent multiple probability distributions with the same graph, abstracting from their quantitative aspects (e.g. discrete vs continuous distributions)

Bayesian Networks (BN)

BN Semantics

- A BN structure (*G*) is a *directed graphical model*
- Each node represents a random variable *x_i*
- Each edge represents a direct dependency between two variables

The structure encodes these independence assumptions:

 $\mathcal{I}_{\ell}(\mathcal{G}) = \{ \forall i \; x_i \perp NonDescendants_{x_i} | Parents_{x_i} \}$

each variable is independent of its non-descendants given its parents

Bayesian Networks

Graphs and Distributions

- Let *p* be a joint distribution over variables *X*
- Let *I*(*p*) be the set of independence assertions holding in *p*
- G in as independency map (I-map) for p if p satisfies the local independences in G:

$$x_1$$
 x_3 x_3 x_4 x_5 x_6 x_7

$$\mathcal{I}_{\ell}(\mathcal{G}) \subseteq \mathcal{I}(p)$$

Note

The reverse is not necessarily true: there can be independences in p that are not modelled by G.

Bayesian Networks

Factorization

• We say that *p* factorizes according to *G* if:

$$p(x_1,\ldots,x_m)=\prod_{i=1}^m p(x_i|Pa_{x_i})$$

- If G is an I-map for p, then p factorizes according to G
- If p factorizes according to G, then G is an I-map for p

Example

$$p(x_1,...,x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1,x_2,x_3)$$

$$p(x_5|x_1,x_3)p(x_6|x_4)p(x_7|x_4,x_5)$$

Definition

A Bayesian Network is a pair (\mathcal{G}, p) where p factorizes over \mathcal{G} and it is represented as a set of conditional probability distributions (cpd) associated with the nodes of \mathcal{G} .

Factorized Probability

$$p(x_1,\ldots,x_m) = \prod_{i=1}^m p(x_i|Pa_{x_i})$$

Bayesian Networks

Example: toy regulatory network

- Genes A and B have independent prior probabilities
- Gene C can be enhanced by both A and B

gene	value		P(valu	e) /	A	ОВ
A	activ	e	0.3		\triangleleft	
А	inacti	ve	0.7			
	1 1					
gene	value		P(valu	e)		\bigcirc
В	activ	е	0.3			C
В	inacti	ve	0.7			
				I	4	
			act	tive	ina	ctive
				В		В
		ac	tive	inactive	active	inactive
С	active		0.9	0.6	0.7	0.1
C i	nactive		0.1	0.4	0.3	0.9

Conditional independence

Introduction

Two variables a, b are conditionally independent (written a ⊥⊥ b | Ø) if:

$$p(a,b) = p(a)p(b)$$

Two variables *a*, *b* are conditionally independent given *c* (written *a* ⊥⊥ *b* | *c*) if:

$$p(a,b|c) = p(a|c)p(b|c)$$

- Independency assumptions can be verified by repeated applications of sum and product rules
- Graphical models allow to directly verify them through the *d-separation* criterion

Tail-to-tail

Joint distribution:

p(a, b, c) = p(a|c)p(b|c)p(c)

 a and b are not conditionally independent (written a TT b | Ø):

$$p(a,b) = \sum_{c} p(a|c)p(b|c)p(c) \neq p(a)p(b)$$

 a and b are conditionally independent given c:

$$p(a,b|c)=rac{p(a,b,c)}{p(c)}=p(a|c)p(b|c)$$

 c is tail-to-tail wrt to the path a → b as it is connected to the tails of the two arrows

Head-to-tail

Joint distribution:

p(a,b,c) = p(b|c)p(c|a)p(a) = p(b|c)p(a|c)p(c)

a and b are not conditionally independent:

$$p(a,b) = p(a) \sum_{c} p(b|c)p(c|a) \neq p(a)p(b)$$

• *a* and *b* are conditionally independent given *c*:

$$p(a,b|c)=rac{p(b|c)p(a|c)p(c)}{p(c)}=p(b|c)p(a|c)$$

 c is head-to-tail wrt to the path a → b as it is connected to the head of an arrow and to the tail of the other one

Head-to-head

Joint distribution:

$$p(a,b,c) = p(c|a,b)p(a)p(b)$$

• *a* and *b* are conditionally independent:

$$p(a,b) = \sum_{c} p(c|a,b)p(a)p(b) = p(a)p(b)$$

• *a* and *b* are **not conditionally independent given** *c*:

$$p(a,b|c) = rac{p(c|a,b)p(a)p(b)}{p(c)}
eq p(a|c)p(b|c)$$

 c is head-to-head wrt to the path a → b as it is connected to the heads of the two arrows

General Head-to-head

- Let a *descendant* of a node x be any node which can be reached from x with a path following the direction of the arrows
- A head-to-head node c unblocks the dependency path between its parents if either itself or any of its descendants receives evidence

d-separation definition

- Given a generic Bayesian network
- Given A, B, C arbitrary nonintersecting sets of nodes
- The sets A and B are *d*-separated by C if:
 - All paths from any node in A to any node in B are blocked
- A path is blocked if it includes at least one node s.t. either:
 - the arrows on the path meet tail-to-tail or head-to-tail at the node and it is in C, or
 - the arrows on the path meet head-to-head at the node and neither it nor any of its descendants is in *C*

d-separation implies conditional independency

The sets A and B are independent given C ($A \perp B \mid C$) if they are d-separated by C.

Example of general d-separation

- Nodes a and b are not d-separated by c:
 - Node f is tail-to-tail and not observed
 - Node *e* is head-to-head and its child *c* is observed

$a \perp b | f$

- Nodes a and b are d-separated by f:
 - Node f is tail-to-tail and observed

Inference in graphical models

Description

- Assume we have evidence e on the state of a subset of variables in the model E
- Inference amounts at computing the posterior probability of a subset X of the non-observed variables given the observations:

$$p(\pmb{X}|\pmb{E}=\pmb{e})$$

Note

• When we need to distinguish between variables and their values, we will indicate random variables with uppercase letters, and their values with lowercase ones.

Inference in graphical models

Efficiency

• We can always compute the posterior probability as the ratio of two joint probabilities:

$$p(\boldsymbol{X}|\boldsymbol{E}=\mathbf{e})=rac{p(\boldsymbol{X},\boldsymbol{E}=\mathbf{e})}{p(\boldsymbol{E}=\mathbf{e})}$$

- The problem consists of estimating such joint probabilities when dealing with a large number of variables
- Directly working on the full joint probabilities requires time exponential in the number of variables
- For instance, if all N variables are discrete and take one of K possible values, a joint probability table has K^N entries
- We would like to exploit the structure in graphical models to do inference more efficiently.

A toy regulatory network

• Genes A and B have independent prior probabilities:

gene	value	P(value)
А	active	0.3
А	inactive	0.7

gene	value	P(value)
В	active	0.3
В	inactive	0.7

• Gene C can be enhanced by both A and B:

			А			
		ac	tive	inactive		
			В	В		
		active	inactive	active	inactive	
С	active	0.9	0.6	0.7	0.1	
С	inactive	0.1	0.4	0.3	0.9	

В

Note

The probability that A is active *increases* from observing that its regulated gene C is active

Derivation

$$P(C = 1|A = 1) = \sum_{B \in \{0,1\}} P(C = 1, B|A = 1)$$
$$= \sum_{B \in \{0,1\}} P(C = 1|B, A = 1)P(B|A = 1)$$
$$= \sum_{B \in \{0,1\}} P(C = 1|B, A = 1)P(B)$$

$$P(C = 1) = \sum_{B \in \{0,1\}} \sum_{A \in \{0,1\}} P(C = 1, B, A)$$
$$= \sum_{B \in \{0,1\}} \sum_{A \in \{0,1\}} P(C = 1|B, A) P(B) P(A)$$

Probability of A active

 Posterior after observing that B is also active:

P(C

$$P(A = 1 | C = 1, B = 1) =$$

$$C = 1, B = 1) = \bigcirc_{C}$$

= $1|A = 1, B = 1)P(A = 1|B = 1)$
 $P(C = 1|B = 1) \simeq 0.355$

Α

B

Note

- The probability that A is active decreases after observing that B is also active
- The *B* condition *explains away* the observation that *C* is active
- The probability is still greater than the prior one (0.3), because the *C* active observation still gives some evidence in favour of an active A

Inference

Finding the most probable configuration

- Given a joint probability distribution $p(\mathbf{x})$
- We wish to find the configuration for variables **x** having the highest probability:

$$\mathbf{x}^{\max} = \operatorname{argmax}_{\mathbf{x}} \mathbf{p}(\mathbf{x})$$

for which the probability is:

$$p(\mathbf{x}^{\max}) = \max_{\mathbf{x}} p(\mathbf{x})$$

Note

- We want the configuration which is *jointly* maximal for all variables
- We cannot simply compute $p(x_i)$ for each *i* and maximize it

Parameter estimation

- We assume the structure of the model is given
- We are given a dataset of examples $\mathcal{D} = {\mathbf{x}(1), \dots, \mathbf{x}(N)}$
- Each example **x**(*i*) is a configuration for *all* (complete data) or *some* (incomplete data) variables in the model
- We need to estimate the parameters of the model (conditional probability distributions) from the data

Simple case: complete data

- When training data are complete, we can estimate parameters simply by frequencies:
 - Consider each conditional probability table (CPT) separately
 - For each configuration of the variables, insert the number of times it occurred in the data
 - Normalize each column to sum to one

Example

• Training examples as (*A*, *B*, *C*) tuples:

(act,act,act),(act,inact,act), (act,inact,act),(act,inact,inact), (inact,act,act),(inact,act,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact).

Fill CPTs with counts

Example

• Training examples as (*A*, *B*, *C*) tuples:

(act,act,act),(act,inact,act), (act,inact,act),(act,inact,inact), (inact,act,act),(inact,act,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact).

Fill CPTs with counts

gene	value	counts	gene	value	counts	
Α	active	4	В	active	3	
А	inactive	8	В	inactive	9	

Example

• Training examples as (*A*, *B*, *C*) tuples:

(act,act,act),(act,inact,act), (act,inact,act),(act,inact,inact), (inact,act,act),(inact,act,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact).

Normalize counts columnwise

	gene	value	counts	gene	value	counts
-	Α	active	4/12	В	active	3/12
	Α	inactive	8/12	В	inactive	9/12

Example

• Training examples as (*A*, *B*, *C*) tuples:

(act,act,act),(act,inact,act), (act,inact,act),(act,inact,inact), (inact,act,act),(inact,act,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact).

Normalize counts columnwise

gene	value	counts	gene	value	counts
Α	active	0.33	В	active	0.25
Α	inactive	0.67	В	inactive	0.75

Example

• Training examples as (A, B, C) tuples:

(act,act,act),(act,inact,act), (act,inact,act),(act,inact,inact), (inact,act,act),(inact,act,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact).

• Fill CPTs with counts

Example

• Training examples as (A, B, C) tuples:

(act,act,act),(act,inact,act), (act,inact,act),(act,inact,inact), (inact,act,act),(inact,act,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact).

Fill CPTs with counts

		А				
		ac	tive	inactive		
			В		В	
		active	inactive	active	inactive	
С	active	1	2	1	0	
С	inactive	0	1	1	6	

B

Example

• Training examples as (A, B, C) tuples:

(act,act,act),(act,inact,act), (act,inact,act),(act,inact,inact), (inact,act,act),(inact,act,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact).

Normalize counts columnwise

		А				
		ac	tive	inactive		
			В	В		
		active	inactive	active	inactive	
С	active	1/1	2/3	1/2	0/6	
С	inactive	0/1	1/3	1/2	6/6	

В

Example

• Training examples as (A, B, C) tuples:

(act,act,act),(act,inact,act), (act,inact,act),(act,inact,inact), (inact,act,act),(inact,act,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact).

Normalize counts columnwise

		А				
		ac	tive	inactive		
			В	В		
		active	inactive	active	inactive	
С	active	1	0.67	0.5	0	
С	inactive	0	0.33	0.5	1	

В

Adding priors

- The probability of configurations not occurring in training data is zero
- When few data available (always), this can be a too drastic choice
- Insert prior counts as imaginary configurations assumed to have been observed a-priori.
- E.g. one a-priori observation for each possible configuration

Example

• Training examples as (A, B, C) tuples:

(act,act,act),(act,inact,act), (act,inact,act),(act,inact,inact), (inact,act,act),(inact,act,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact).

Fill CPTs with priors as imaginary counts

Example

• Training examples as (A, B, C) tuples:

```
(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).
```


Fill CPTs with priors as imaginary counts

		A				
		ac	tive	inactive		
			В		В	
		active	inactive	active	inactive	
С	active	1	1	1	1	
С	inactive	1	1	1	1	

Example

• Training examples as (A, B, C) tuples:

(act,act,act),(act,inact,act), (act,inact,act),(act,inact,inact), (inact,act,act),(inact,act,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact).

Add observed counts

Example

• Training examples as (A, B, C) tuples:

(act,act,act),(act,inact,act), (act,inact,act),(act,inact,inact), (inact,act,act),(inact,act,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact).

Add observed counts

		A				
		ac	tive	inactive		
			В	В		
		active	inactive	active	inactive	
С	active	1+1	1+2	1+1	1+0	
С	inactive	1+0	1+1	1+1	1+6	

B

Example

• Training examples as (A, B, C) tuples:

(act,act,act),(act,inact,act), (act,inact,act),(act,inact,inact), (inact,act,act),(inact,act,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact).

Normalize counts columnwise

		A					
		active		inactive			
		В		В			
		active	inactive	active	inactive		
С	active	2/3	3/5	2/4	1/8		
С	inactive	1/3	2/5	2/4	7/8		

В

Example

• Training examples as (A, B, C) tuples:

(act,act,act),(act,inact,act), (act,inact,act),(act,inact,inact), (inact,act,act),(inact,act,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact), (inact,inact,inact),(inact,inact,inact).

Normalize counts columnwise

		A					
		ac	tive	inactive			
		В		В			
		active	inactive	active	inactive		
С	active	0.67	0.6	0.5	0.125		
С	inactive	0.33	0.4	0.5	0.875		

В

Incomplete data

- With incomplete data, some of the examples miss evidence on some of the variables
- Counts of occurrences of different configurations cannot be computed if not all data are observed
- We need approximate methods to deal with the problem

Learning with missing data: Expectation-Maximization

E-M for Bayesian nets in a nutshell

- Sufficient statistics (counts) cannot be computed (missing data)
- Fill-in missing data inferring them using current parameters (solve inference problem to get *expected* counts)
- Update parameters according to these expected counts
- Iterate until convergence to improve quality of parameters

Approaches

 constraint-based test conditional independencies on the data and construct a model satisfying them
 score-based assign a score to each possible structure, define a search procedure looking for the structure maximizing the score
 model-averaging assign a prior probability to each structure, and average prediction over all possible structures weighted by their probabilities (full Bayesian,

intractable)