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Discrete random variables

Probability mass function
Given a discrete random variable X taking values in
X = {v1, . . . , vm}, its probability mass function P : X → [0,1] is
defined as:

P(vi) = Pr[X = vi ]

and satisfies the following conditions:

P(x) ≥ 0∑
x∈X P(x) = 1
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Probability distributions

Bernoulli distribution
Two possible values (outcomes): 1 (success), 0 (failure).
Parameters: p probability of success.
Probability mass function:

P(x ;p) =
{

p if x = 1
1− p if x = 0

Example: tossing a coin
Head (success) and tail (failure) possible outcomes
p is probability of head
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Probability distributions

Multinomial distribution (one sample)
Models the probability of a certain outcome for an event
with m possible outcomes {v1, . . . , vm}
Parameters: p1, . . . ,pm probability of each outcome
Probability mass function:

P(vi ;p1, . . . ,pm) = pi

Tossing a dice
m is the number of faces
pi is probability of obtaining face i
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Continuouos random variables

Probability density function
Instead of the probability of a specific value of X , we model the
probability that x falls in an interval (a,b):

Pr[x ∈ (a,b)] =
∫ b

a
p(x)dx

Properties:
p(x) ≥ 0∫∞
−∞ p(x)dx = 1

Note
The probability of a specific value x0 is given by:

p(x0) = lim
ε→0

1
ε

Pr[x ∈ [x0, x0 + ε)]
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Probability distributions

Gaussian (or normal) distribution

Bell-shaped curve.
Parameters: µ mean, σ2

variance.
Probability density
function:

p(x ;µ, σ) =
1√
2πσ

exp−(x − µ)2

2σ2

Standard normal distribution: N(0,1)
Standardization of a normal distribution N(µ, σ2)

z =
x − µ
σ
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Conditional probabilities

conditional probability probability of x once y is observed

P(x |y) = P(x , y)
P(y)

statistical independence variables X and Y are statistical
independent iff

P(x , y) = P(x)P(y)

implying:

P(x |y) = P(x) P(y |x) = P(y)

Probabilistic Graphical Models



Basic rules

law of total probability The marginal distribution of a variable is
obtained from a joint distribution summing over all
possible values of the other variable (sum rule)

P(x) =
∑
y∈Y

P(x , y) P(y) =
∑
x∈X

P(x , y)

product rule conditional probability definition implies that

P(x , y) = P(x |y)P(y) = P(y |x)P(x)

Bayes’ rule

P(y |x) = P(x |y)P(y)
P(x)
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Playing with probabilities

Use rules!
Basic rules allow to model a certain probability given
knowledge of some related ones
All our manipulations will be applications of the three basic
rules
Basic rules apply to any number of varables:

P(y) =
∑

x

∑
z

P(x , y , z) (sum rule)

=
∑

x

∑
z

P(y |x , z)P(x , z) (product rule)

=
∑

x

∑
z

P(x |y , z)P(y |z)P(x , z)
P(x |z)

(Bayes rule)
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Playing with probabilities

Example

P(y |x , z) =
P(x , z|y)P(y)

P(x , z)
(Bayes rule)

=
P(x , z|y)P(y)
P(x |z)P(z)

(product rule)

=
P(x |z, y)P(z|y)P(y)

P(x |z)P(z)
(product rule)

=
P(x |z, y)P(z, y)

P(x |z)P(z)
(product rule)

=
P(x |z, y)P(y |z)P(z)

P(x |z)P(z)
(product rule)

=
P(x |z, y)P(y |z)

P(x |z)
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Graphical models

Why
All probabilistic inference and learning amount at repeated
applications of the sum and product rules
Probabilistic graphical models are graphical
representations of the qualitative aspects of probability
distributions allowing to:

visualize the structure of a probabilistic model in a simple
and intuitive way
discover properties of the model, such as conditional
independencies, by inspecting the graph
express complex computations for inference and learning in
terms of graphical manipulations
represent multiple probability distributions with the same
graph, abstracting from their quantitative aspects (e.g.
discrete vs continuous distributions)
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Bayesian Networks (BN)

BN Semantics

A BN structure (G) is a directed
graphical model
Each node represents a random
variable xi

Each edge represents a direct
dependency between two
variables

x1

x2 x3

x4 x5

x6 x7

The structure encodes these independence assumptions:

I`(G) = {∀i xi ⊥ NonDescendantsxi |Parentsxi}

each variable is independent of its
non-descendants given its parents
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Bayesian Networks

Graphs and Distributions

Let p be a joint distribution over
variables X
Let I(p) be the set of
independence assertions holding
in p
G in as independency map
(I-map) for p if p satisfies the
local independences in G:

I`(G) ⊆ I(p)

x1

x2 x3

x4 x5

x6 x7

Note
The reverse is not necessarily true: there can be
independences in p that are not modelled by G.
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Bayesian Networks
Factorization

We say that p factorizes
according to G if:

p(x1, . . . , xm) =
m∏

i=1

p(xi |Paxi )

If G is an I-map for p, then p
factorizes according to G
If p factorizes according to G,
then G is an I-map for p

x1

x2 x3

x4 x5

x6 x7

Example

p(x1, . . . , x7) =p(x1)p(x2)p(x3)p(x4|x1, x2, x3)

p(x5|x1, x3)p(x6|x4)p(x7|x4, x5)
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Bayesian Networks

Definition
A Bayesian Network is a pair (G,p) where p factorizes
over G and it is represented as a set of conditional
probability distributions (cpd) associated with the
nodes of G.

Factorized Probability

p(x1, . . . , xm) =
m∏

i=1

p(xi |Paxi )
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Bayesian Networks
Example: toy regulatory network

Genes A and B have independent prior probabilities
Gene C can be enhanced by both A and B

gene value P(value)
A active 0.3
A inactive 0.7

gene value P(value)
B active 0.3
B inactive 0.7

A
active inactive

B B
active inactive active inactive

C active 0.9 0.6 0.7 0.1
C inactive 0.1 0.4 0.3 0.9
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Conditional independence

Introduction
Two variables a,b are conditionally independent (written
a ⊥⊥ b | ∅ ) if:

p(a,b) = p(a)p(b)

Two variables a,b are conditionally independent given c
(written a ⊥⊥ b | c ) if:

p(a,b|c) = p(a|c)p(b|c)

Independency assumptions can be verified by repeated
applications of sum and product rules
Graphical models allow to directly verify them through the
d-separation criterion
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d-separation

Tail-to-tail

Joint distribution:

p(a,b, c) = p(a|c)p(b|c)p(c)

a and b are not conditionally
independent (written a>>b | ∅ ):

p(a,b) =
∑

c

p(a|c)p(b|c)p(c) 6= p(a)p(b)

c

a b

a and b are conditionally
independent given c:

p(a,b|c) = p(a,b, c)
p(c)

= p(a|c)p(b|c)

c

a b

c is tail-to-tail wrt to the path a→ b as it is
connected to the tails of the two arrows
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d-separation

Head-to-tail

Joint distribution:

p(a,b, c) = p(b|c)p(c|a)p(a) = p(b|c)p(a|c)p(c)

a and b are not conditionally
independent:

p(a,b) = p(a)
∑

c

p(b|c)p(c|a) 6= p(a)p(b)

a c b

a and b are conditionally
independent given c:

p(a,b|c) = p(b|c)p(a|c)p(c)
p(c)

= p(b|c)p(a|c)

a c b

c is head-to-tail wrt to the path a→ b as it is
connected to the head of an arrow and to the tail
of the other one
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d-separation

Head-to-head

Joint distribution:

p(a,b, c) = p(c|a,b)p(a)p(b)

a and b are conditionally
independent:

p(a,b) =
∑

c

p(c|a,b)p(a)p(b) = p(a)p(b)

c

a b

a and b are not conditionally
independent given c:

p(a,b|c) = p(c|a,b)p(a)p(b)
p(c)

6= p(a|c)p(b|c)
c

a b

c is head-to-head wrt to the path a→ b as it is
connected to the heads of the two arrows
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d-separation

General Head-to-head
Let a descendant of a node x be any node which can be
reached from x with a path following the direction of the
arrows
A head-to-head node c unblocks the dependency path
between its parents if either itself or any of its descendants
receives evidence
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General d-separation criterion

d-separation definition
Given a generic Bayesian network
Given A,B,C arbitrary nonintersecting sets of nodes
The sets A and B are d-separated by C if:

All paths from any node in A to any node in B are blocked

A path is blocked if it includes at least one node s.t. either:
the arrows on the path meet tail-to-tail or head-to-tail at the
node and it is in C, or
the arrows on the path meet head-to-head at the node and
neither it nor any of its descendants is in C

d-separation implies conditional independency

The sets A and B are independent given C ( A ⊥⊥ B |C ) if they
are d-separated by C.
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Example of general d-separation

a>>b|c

Nodes a and b are not d-separated
by c:

Node f is tail-to-tail and not observed
Node e is head-to-head and its child
c is observed

f

e b

a

c

a ⊥⊥ b|f

Nodes a and b are d-separated by f :

Node f is tail-to-tail and observed

f

e b

a

c
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Inference in graphical models

Description
Assume we have evidence e on the state of a subset of
variables in the model E
Inference amounts at computing the posterior probability of
a subset X of the non-observed variables given the
observations:

p(X |E = e)

Note
When we need to distinguish between variables and their
values, we will indicate random variables with uppercase
letters, and their values with lowercase ones.
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Inference in graphical models

Efficiency
We can always compute the posterior probability as the
ratio of two joint probabilities:

p(X |E = e) =
p(X ,E = e)

p(E = e)

The problem consists of estimating such joint probabilities
when dealing with a large number of variables
Directly working on the full joint probabilities requires time
exponential in the number of variables
For instance, if all N variables are discrete and take one of
K possible values, a joint probability table has K N entries
We would like to exploit the structure in graphical models
to do inference more efficiently.
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Example with head-to-head connection
A toy regulatory network

Genes A and B have independent prior probabilities:

gene value P(value)
A active 0.3
A inactive 0.7

gene value P(value)
B active 0.3
B inactive 0.7

Gene C can be enhanced by both A and B:

A
active inactive

B B
active inactive active inactive

C active 0.9 0.6 0.7 0.1
C inactive 0.1 0.4 0.3 0.9
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Example with head-to-head connection

Probability of A active (1)

Prior:

P(A = 1) = 1− P(A = 0) = 0.3

Posterior after observing active
C:

P(A = 1|C = 1) =
P(C = 1|A = 1)P(A = 1)

P(C = 1)
' 0.514

Note
The probability that A is active increases from observing that its
regulated gene C is active
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Example with head-to-head connection

Derivation

P(C = 1|A = 1) =
∑

B∈{0,1}

P(C = 1,B|A = 1)

=
∑

B∈{0,1}

P(C = 1|B,A = 1)P(B|A = 1)

=
∑

B∈{0,1}

P(C = 1|B,A = 1)P(B)

P(C = 1) =
∑

B∈{0,1}

∑
A∈{0,1}

P(C = 1,B,A)

=
∑

B∈{0,1}

∑
A∈{0,1}

P(C = 1|B,A)P(B)P(A)
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Example with head-to-head connection
Probability of A active

Posterior after observing that B is
also active:

P(A = 1|C = 1,B = 1) =

P(C = 1|A = 1,B = 1)P(A = 1|B = 1)
P(C = 1|B = 1)

' 0.355

Note
The probability that A is active decreases after observing
that B is also active
The B condition explains away the observation that C is
active
The probability is still greater than the prior one (0.3),
because the C active observation still gives some evidence
in favour of an active A

Probabilistic Graphical Models



Inference

Finding the most probable configuration

Given a joint probability distribution p(x)
We wish to find the configuration for variables x having the
highest probability:

xmax = argmaxxp(x)

for which the probability is:

p(xmax) = max
x

p(x)

Note
We want the configuration which is jointly maximal for all
variables
We cannot simply compute p(xi) for each i and maximize it
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Learning Bayesian Networks

Parameter estimation
We assume the structure of the model is given
We are given a dataset of examples D = {x(1), . . . ,x(N)}
Each example x(i) is a configuration for all (complete data)
or some (incomplete data) variables in the model
We need to estimate the parameters of the model
(conditional probability distributions) from the data
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Learning Bayesian Networks

Simple case: complete data
When training data are complete, we can estimate
parameters simply by frequencies:

1 Consider each conditional probability table (CPT)
separately

2 For each configuration of the variables, insert the number of
times it occurred in the data

3 Normalize each column to sum to one
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Learning Bayesian Networks

Example

Training examples as (A,B,C) tuples:

(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).

Fill CPTs with counts
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Learning Bayesian Networks

Example

Training examples as (A,B,C) tuples:

(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).

Fill CPTs with counts

gene value counts
A active 4
A inactive 8

gene value counts
B active 3
B inactive 9
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Learning Bayesian Networks

Example

Training examples as (A,B,C) tuples:

(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).

Normalize counts columnwise

gene value counts
A active 4/12
A inactive 8/12

gene value counts
B active 3/12
B inactive 9/12
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Learning Bayesian Networks

Example

Training examples as (A,B,C) tuples:

(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).

Normalize counts columnwise

gene value counts
A active 0.33
A inactive 0.67

gene value counts
B active 0.25
B inactive 0.75
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Learning Bayesian Networks

Example

Training examples as (A,B,C) tuples:

(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).

Fill CPTs with counts

A
active inactive

B B
active inactive active inactive

C active 1 2 1 0
C inactive 0 1 1 6
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Learning Bayesian Networks

Example

Training examples as (A,B,C) tuples:

(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).

Fill CPTs with counts

A
active inactive

B B
active inactive active inactive

C active 1 2 1 0
C inactive 0 1 1 6
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Learning Bayesian Networks

Example

Training examples as (A,B,C) tuples:

(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).

Normalize counts columnwise

A
active inactive

B B
active inactive active inactive

C active 1/1 2/3 1/2 0/6
C inactive 0/1 1/3 1/2 6/6
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Learning Bayesian Networks

Example

Training examples as (A,B,C) tuples:

(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).

Normalize counts columnwise

A
active inactive

B B
active inactive active inactive

C active 1 0.67 0.5 0
C inactive 0 0.33 0.5 1
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Learning Bayesian Networks

Adding priors
The probability of configurations not occurring in training
data is zero
When few data available (always), this can be a too drastic
choice
Insert prior counts as imaginary configurations assumed to
have been observed a-priori.
E.g. one a-priori observation for each possible
configuration
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Learning Bayesian Networks

Example

Training examples as (A,B,C) tuples:

(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).

Fill CPTs with priors as imaginary counts

A
active inactive

B B
active inactive active inactive

C active 1 1 1 1
C inactive 1 1 1 1
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Learning Bayesian Networks

Example

Training examples as (A,B,C) tuples:

(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).

Fill CPTs with priors as imaginary counts

A
active inactive

B B
active inactive active inactive

C active 1 1 1 1
C inactive 1 1 1 1
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Learning Bayesian Networks

Example

Training examples as (A,B,C) tuples:

(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).

Add observed counts

A
active inactive

B B
active inactive active inactive

C active 1+1 1+2 1+1 1+0
C inactive 1+0 1+1 1+1 1+6
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Learning Bayesian Networks

Example

Training examples as (A,B,C) tuples:

(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).

Add observed counts

A
active inactive

B B
active inactive active inactive

C active 1+1 1+2 1+1 1+0
C inactive 1+0 1+1 1+1 1+6

Probabilistic Graphical Models



Learning Bayesian Networks

Example

Training examples as (A,B,C) tuples:

(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).

Normalize counts columnwise

A
active inactive

B B
active inactive active inactive

C active 2/3 3/5 2/4 1/8
C inactive 1/3 2/5 2/4 7/8
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Learning Bayesian Networks

Example

Training examples as (A,B,C) tuples:

(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).

Normalize counts columnwise

A
active inactive

B B
active inactive active inactive

C active 0.67 0.6 0.5 0.125
C inactive 0.33 0.4 0.5 0.875
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Learning graphical models

Incomplete data
With incomplete data, some of the examples miss
evidence on some of the variables
Counts of occurrences of different configurations cannot be
computed if not all data are observed
We need approximate methods to deal with the problem
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Learning with missing data: Expectation-Maximization

E-M for Bayesian nets in a nutshell
Sufficient statistics (counts) cannot be computed (missing
data)
Fill-in missing data inferring them using current parameters
(solve inference problem to get expected counts)
Update parameters according to these expected counts
Iterate until convergence to improve quality of parameters
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Learning structure of graphical models

Approaches
constraint-based test conditional independencies on the data

and construct a model satisfying them
score-based assign a score to each possible structure, define

a search procedure looking for the structure
maximizing the score

model-averaging assign a prior probability to each structure,
and average prediction over all possible structures
weighted by their probabilities (full Bayesian,
intractable)
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