Discrete random variables

Probability mass function

Given a discrete random variable X taking values in $\mathcal{X} = \{v_1, \dots, v_m\}$, its probability mass function $P : \mathcal{X} \to [0, 1]$ is defined as:

$$P(v_i) = \Pr[X = v_i]$$

and satisfies the following conditions:

- $P(x) \ge 0$
- $\sum_{x \in \mathcal{X}} P(x) = 1$

Probability distributions

Bernoulli distribution

- Two possible values (outcomes): 1 (success), 0 (failure).
- Parameters: p probability of success.
- Probability mass function:

$$P(x;p) = \begin{cases} p & if \ x = 1\\ 1 - p & if \ x = 0 \end{cases}$$

Example: tossing a coin

- Head (success) and tail (failure) possible outcomes
- p is probability of head

Probability distributions

Multinomial distribution (one sample)

- Models the probability of a certain outcome for an event with m possible outcomes $\{v_1,\ldots,v_m\}$
- Parameters: p_1, \ldots, p_m probability of each outcome
- Probability mass function:

$$P(v_i; p_1, \ldots, p_m) = p_i$$

Tossing a dice

- m is the number of faces
- p_i is probability of obtaining face i

Continuouos random variables

Probability density function

Instead of the probability of a specific value of X, we model the probability that x falls in an interval (a,b):

$$\Pr[x \in (a,b)] = \int_a^b p(x) dx$$

Properties:

- $p(x) \geq 0$
- $\int_{-\infty}^{\infty} p(x) dx = 1$

Note

The probability of a specific value x_0 is given by:

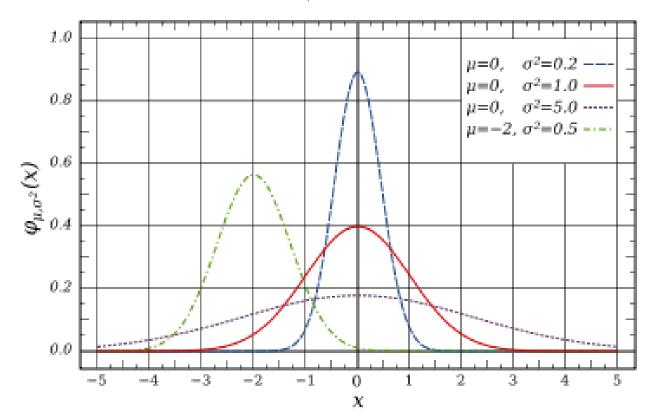
$$p(x_0) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \Pr[x \in [x_0, x_0 + \epsilon)]$$

Probability distributions

Gaussian (or normal) distribution

- Bell-shaped curve.
- Parameters: μ mean, σ^2 variance.
- Probability density function:

$$p(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$$



- Standard normal distribution: N(0,1)
- Standardization of a normal distribution $N(\mu,\sigma^2)$

$$z = \frac{x - \mu}{\sigma}$$

Conditional probabilities

conditional probability probability of x once y is observed

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

statistical independence variables X and Y are statistical independent iff

$$P(x,y) = P(x)P(y)$$

implying:

$$P(x|y) = P(x) P(y|x) = P(y)$$

Basic rules

law of total probability The *marginal distribution* of a variable is obtained from a joint distribution summing over all possible values of the other variable (*sum rule*)

$$P(x) = \sum_{y \in \mathcal{Y}} P(x, y) \qquad \qquad P(y) = \sum_{x \in \mathcal{X}} P(x, y)$$

product rule conditional probability definition implies that

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Bayes' rule

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

Playing with probabilities

Use rules!

- · Basic rules allow to model a certain probability given knowledge of some related ones
- All our manipulations will be applications of the three basic rules
- Basic rules apply to any number of variables:

$$P(y) = \sum_{x} \sum_{z} P(x, y, z) \quad \text{(sum rule)}$$

$$= \sum_{x} \sum_{z} P(y|x, z) P(x, z) \quad \text{(product rule)}$$

$$= \sum_{x} \sum_{z} \frac{P(x|y, z) P(y|z) P(x, z)}{P(x|z)} \quad \text{(Bayes rule)}$$

Playing with probabilities

Example

$$P(y|x,z) = \frac{P(x,z|y)P(y)}{P(x,z)} \quad \text{(Bayes rule)}$$

$$= \frac{P(x,z|y)P(y)}{P(x|z)P(z)} \quad \text{(product rule)}$$

$$= \frac{P(x|z,y)P(z|y)P(y)}{P(x|z)P(z)} \quad \text{(product rule)}$$

$$= \frac{P(x|z,y)P(z,y)}{P(x|z)P(z)} \quad \text{(product rule)}$$

$$= \frac{P(x|z,y)P(y|z)P(z)}{P(x|z)P(z)} \quad \text{(product rule)}$$

$$= \frac{P(x|z,y)P(y|z)}{P(x|z)}$$

$$= \frac{P(x|z,y)P(y|z)}{P(x|z)}$$

Graphical models

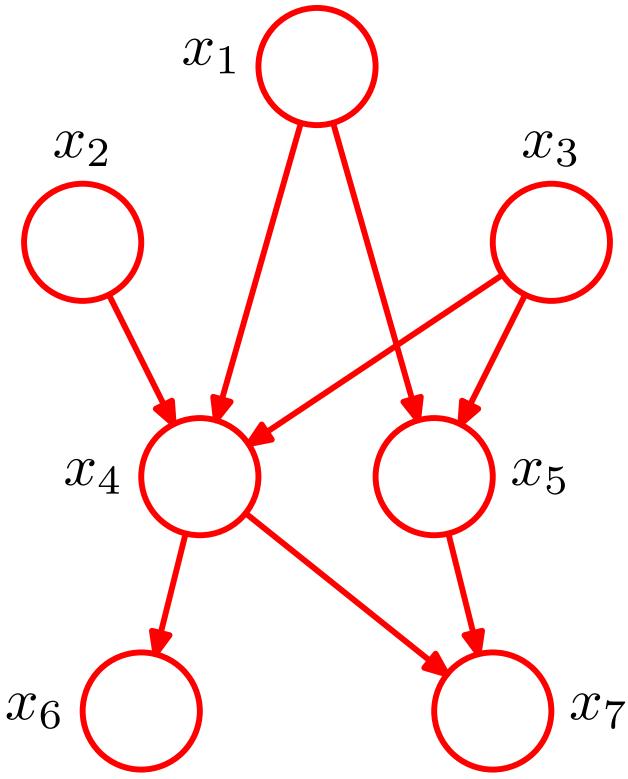
Why

- All probabilistic inference and learning amount at repeated applications of the sum and product rules
- *Probabilistic graphical models* are graphical representations of the *qualitative* aspects of probability distributions allowing to:
 - visualize the structure of a probabilistic model in a simple and intuitive way
 - discover properties of the model, such as conditional independencies, by inspecting the graph
 - express complex computations for inference and learning in terms of graphical manipulations
 - represent multiple probability distributions with the same graph, abstracting from their quantitative aspects (e.g. discrete vs continuous distributions)

Bayesian Networks (BN)

BN Semantics

- A BN structure (G) is a directed graphical model
- Each node represents a random variable x_i
- Each edge represents a direct dependency between two variables



The structure encodes these independence assumptions:

 $\mathcal{I}_{\ell}(\mathcal{G}) = \{ \forall i \ x_i \perp NonDescendants_{x_i} | Parents_{x_i} \}$

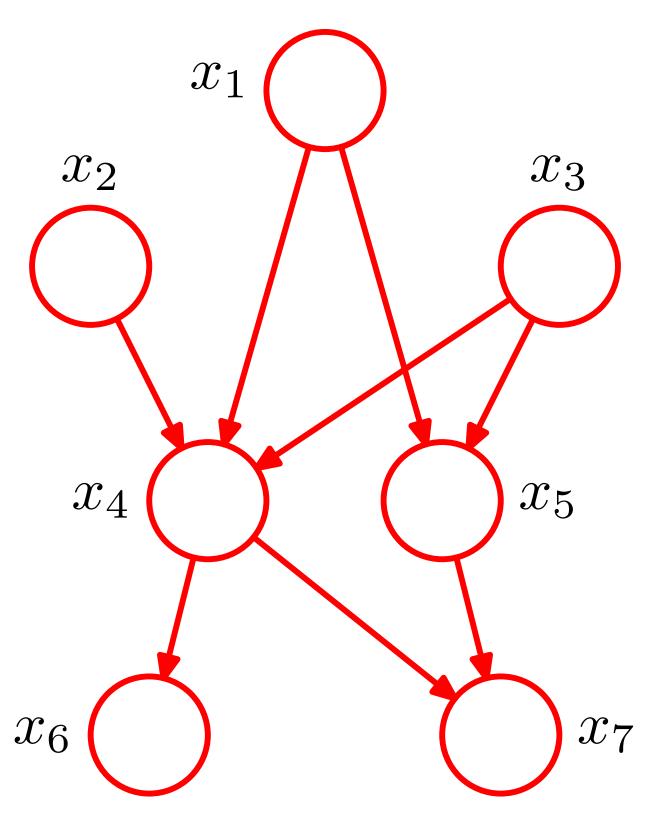
each variable is independent of its non-descendants given its parents

Bayesian Networks

Graphs and Distributions

- Let p be a joint distribution over variables ${\mathcal X}$
- Let $\mathcal{I}(p)$ be the set of independence assertions holding in p
- \mathcal{G} in as independency map (I-map) for p if p satisfies the local independences in \mathcal{G} :

$$\mathcal{I}_{\ell}(\mathcal{G}) \subseteq \mathcal{I}(p)$$



Note

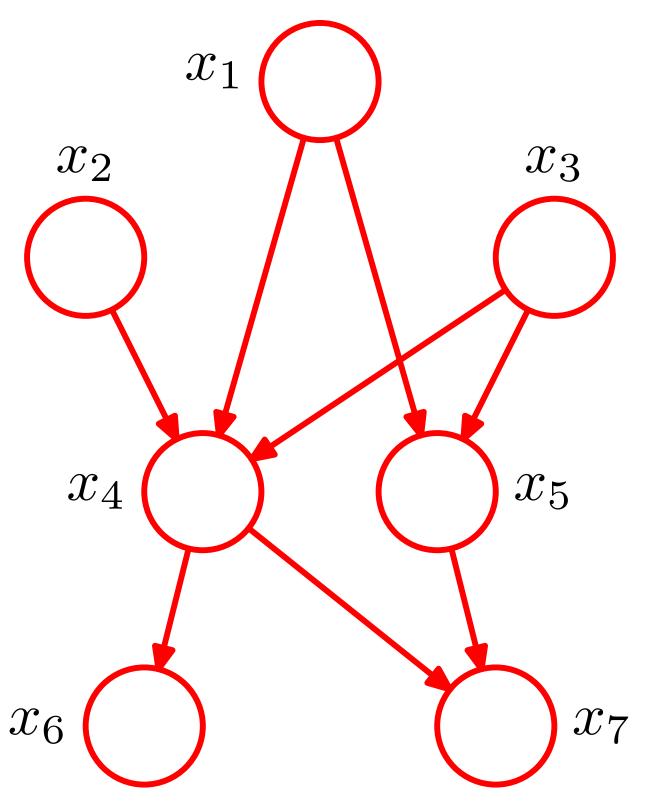
The reverse is not necessarily true: there can be independences in p that are not modelled by \mathcal{G} .

Bayesian Networks Factorization

• We say that p factorizes according to \mathcal{G} if:

$$p(x_1,\ldots,x_m) = \prod_{i=1}^m p(x_i|Pa_{x_i})$$

- If ${\mathcal G}$ is an I-map for p, then p factorizes according to ${\mathcal G}$
- If p factorizes according to \mathcal{G} , then \mathcal{G} is an I-map for p



Example

$$p(x_1, \dots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$
$$p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)$$

Bayesian Networks

Definition

A Bayesian Network is a pair (\mathcal{G}, p) where p factorizes over \mathcal{G} and it is represented as a set of conditional probability distributions (cpd) associated with the nodes of \mathcal{G} .

Factorized Probability

$$p(x_1,\ldots,x_m) = \prod_{i=1}^m p(x_i|Pa_{x_i})$$

Bayesian Networks

Example: toy regulatory network

- ullet Genes A and B have independent prior probabilities
- $\bullet\,$ Gene C can be enhanced by both A and B

gene	value	P(value)
A	active	0.3
A	inactive	0.7

gene B B	value active inactive	0.3 0.7			_
A					B
				C	

		A			
		ac	tive	ina	ctive
		В		В	
		active	inactive	active	inactive
С	active	0.9	0.6	0.7	0.1
C	inactive	0.1	0.4	0.3	0.9

Conditional independence

Introduction

- Two variables a,b are conditionally independent (written $a \perp\!\!\!\perp b \,|\, \emptyset$) if:

$$p(a,b) = p(a)p(b)$$

• Two variables a, b are conditionally independent given c (written $a \perp\!\!\!\perp b \mid c$) if:

$$p(a, b|c) = p(a|c)p(b|c)$$

- Independency assumptions can be verified by repeated applications of sum and product rules
- Graphical models allow to directly verify them through the *d-separation* criterion

d-separation

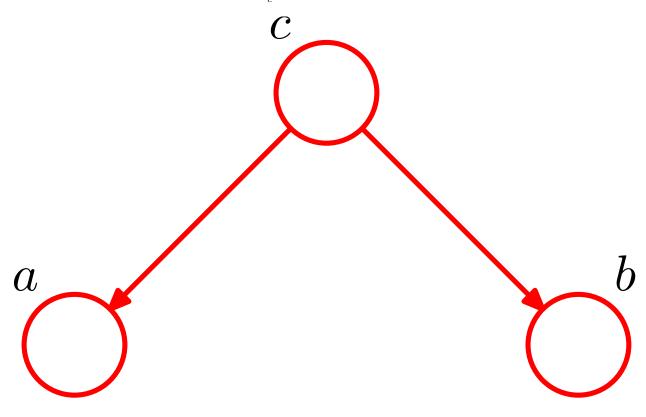
Tail-to-tail

• Joint distribution:

$$p(a, b, c) = p(a|c)p(b|c)p(c)$$

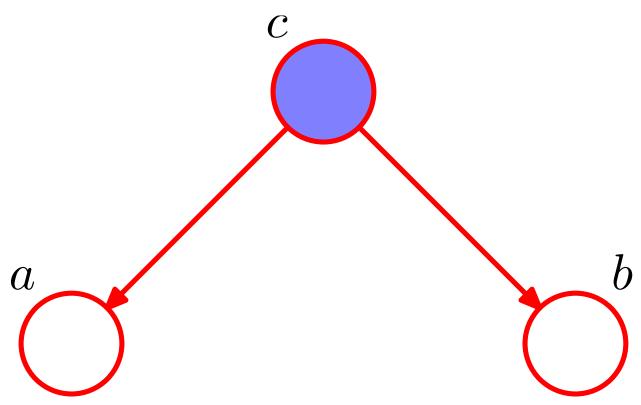
- a and b are not conditionally independent (written $a \sqcap b \mid \emptyset$):

$$p(a,b) = \sum_{c} p(a|c)p(b|c)p(c) \neq p(a)p(b)$$



• a and b are conditionally independent given c:

$$p(a,b|c) = \frac{p(a,b,c)}{p(c)} = p(a|c)p(b|c)$$



• c is tail-to-tail wrt to the path $a \rightarrow b$ as it is connected to the tails of the two arrows

d-separation

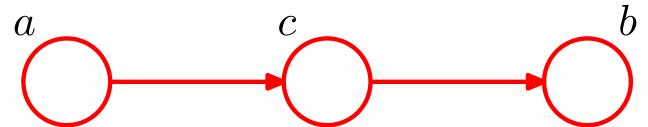
Head-to-tail

• Joint distribution:

$$p(a,b,c) = p(b|c)p(c|a)p(a) = p(b|c)p(a|c)p(c)$$

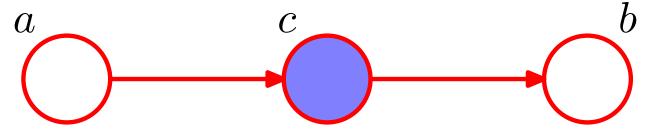
• a and b are **not conditionally independent**:

$$p(a,b) = p(a) \sum_{c} p(b|c) p(c|a) \neq p(a) p(b)$$



• a and b are conditionally independent given c:

$$p(a,b|c) = \frac{p(b|c)p(a|c)p(c)}{p(c)} = p(b|c)p(a|c)$$



• c is head-to-tail wrt to the path $a \to b$ as it is connected to the head of an arrow and to the tail of the other one

d-separation

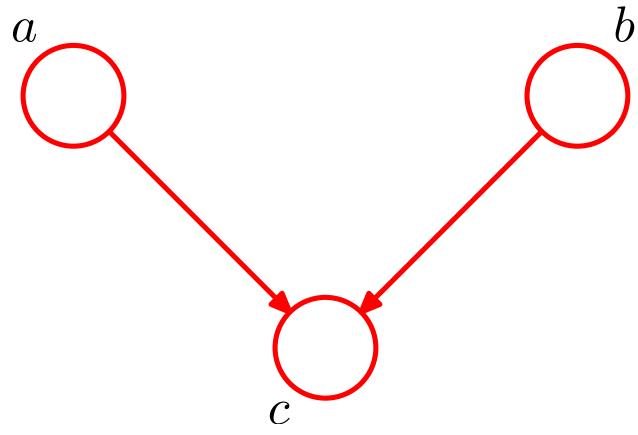
Head-to-head

• Joint distribution:

$$p(a, b, c) = p(c|a, b)p(a)p(b)$$

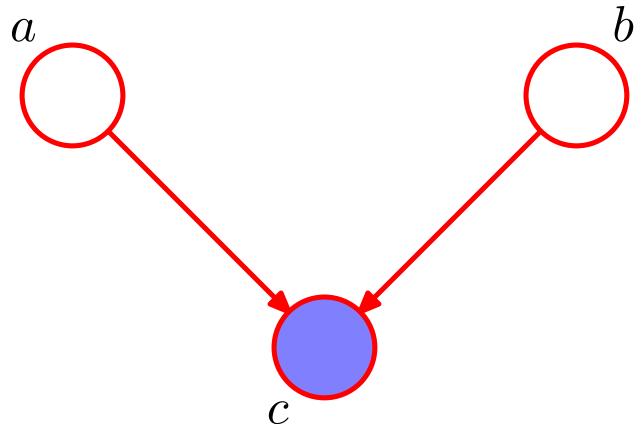
• a and b are conditionally independent:

$$p(a,b) = \sum_{c} p(c|a,b)p(a)p(b) = p(a)p(b)$$



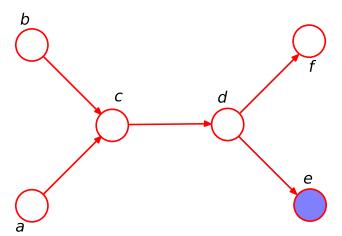
• a and b are not conditionally independent given c:

$$p(a,b|c) = \frac{p(c|a,b)p(a)p(b)}{p(c)} \neq p(a|c)p(b|c)$$



• c is head-to-head wrt to the path $a \to b$ as it is connected to the heads of the two arrows

d-separation



General Head-to-head

- Let a *descendant* of a node x be any node which can be reached from x with a path following the direction of the arrows
- A head-to-head node c unblocks the dependency path between its parents if either itself or *any of its descendants* receives evidence

General d-separation criterion

d-separation definition

- Given a generic Bayesian network
- Given A, B, C arbitrary nonintersecting sets of nodes
- The sets A and B are d-separated by C if:
 - All paths from any node in A to any node in B are blocked
- A path is blocked if it includes at least one node s.t. either:
 - the arrows on the path meet tail-to-tail or head-to-tail at the node and it is in C, or
 - the arrows on the path meet head-to-head at the node and neither it nor any of its descendants is in C

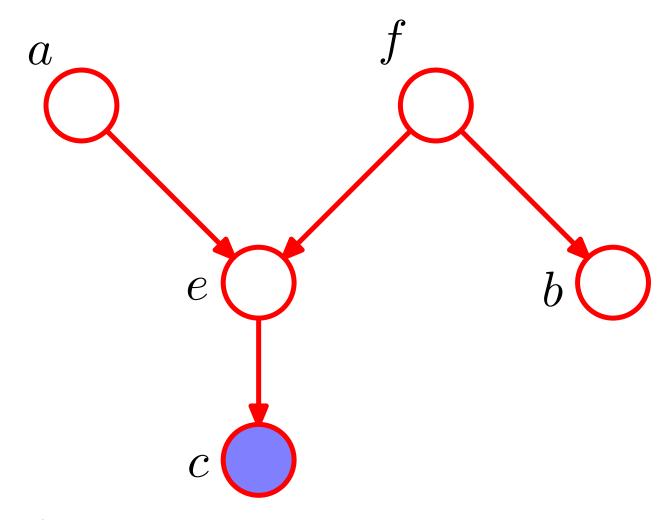
d-separation implies conditional independency

The sets A and B are independent given C ($A \perp \!\!\! \perp B \mid C$) if they are d-separated by C.

Example of general d-separation

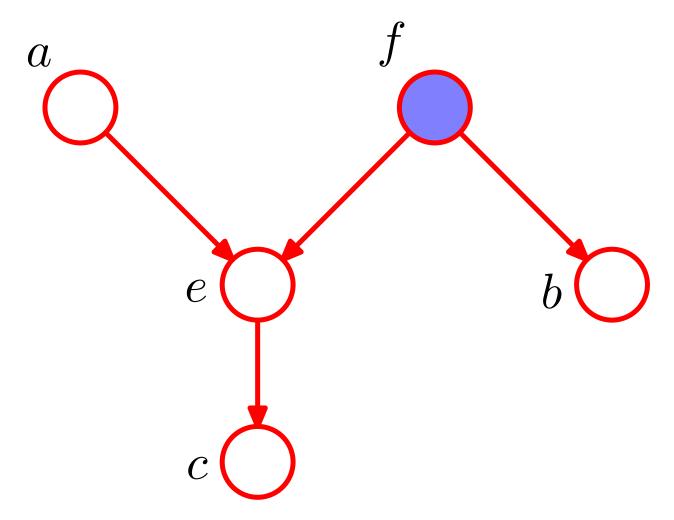
 $a \perp \!\!\! \perp b | c$

- Nodes a and b are **not d-separated** by c:
 - Node f is tail-to-tail and not observed
 - Node e is head-to-head and its child c is observed



 $a \perp\!\!\!\perp b|f$

- Nodes a and b are **d-separated** by f:
 - ${\sf -}$ Node f is tail-to-tail and observed



Inference in graphical models

Description

- Assume we have evidence e on the state of a subset of variables in the model ${\it E}$
- ullet Inference amounts at computing the posterior probability of a subset X of the non-observed variables given the observations:

$$p(\boldsymbol{X}|\boldsymbol{E} = \mathbf{e})$$

Note

• When we need to distinguish between variables and their values, we will indicate random variables with uppercase letters, and their values with lowercase ones.

Inference in graphical models

Efficiency

• We can always compute the posterior probability as the ratio of two joint probabilities:

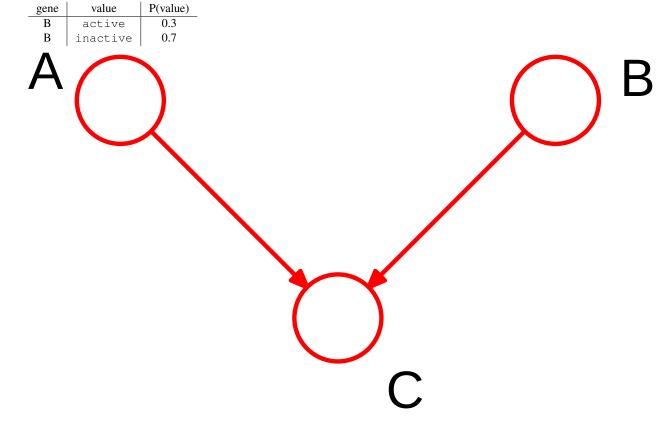
$$p(\boldsymbol{X}|\boldsymbol{E} = \mathbf{e}) = \frac{p(\boldsymbol{X}, \boldsymbol{E} = \mathbf{e})}{p(\boldsymbol{E} = \mathbf{e})}$$

- The problem consists of estimating such joint probabilities when dealing with a large number of variables
- · Directly working on the full joint probabilities requires time exponential in the number of variables
- ullet For instance, if all N variables are discrete and take one of K possible values, a joint probability table has K^N entries
- We would like to exploit the structure in graphical models to do inference more efficiently.

Example with head-to-head connection A toy regulatory network

• Genes A and B have independent prior probabilities:

gene	value	P(value)
A	active	0.3
A	inactive	0.7



• Gene C can be enhanced by both A and B:

		A			
		ac	tive	ina	ctive
		В		В	
		active	inactive	active	inactive
С	active	0.9	0.6	0.7	0.1
C	inactive	0.1	0.4	0.3	0.9

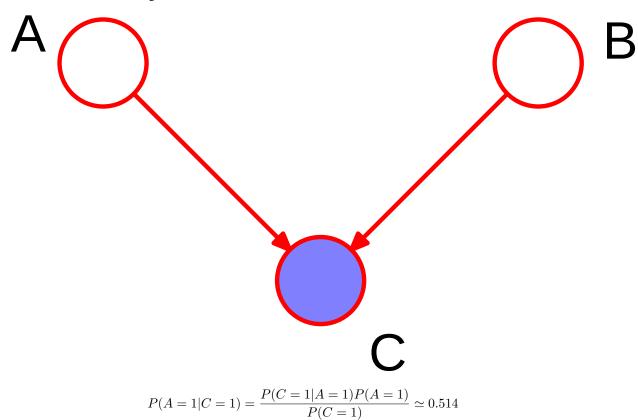
Example with head-to-head connection

Probability of A active (1)

• Prior:

$$P(A = 1) = 1 - P(A = 0) = 0.3$$

• Posterior after observing active C:



Note

The probability that A is active *increases* from observing that its regulated gene C is active

Example with head-to-head connection

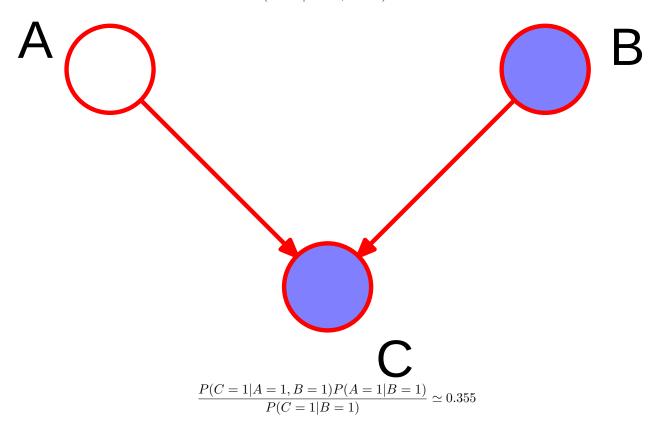
Derivation

$$\begin{split} P(C=1|A=1) &= \sum_{B \in \{0,1\}} P(C=1,B|A=1) \\ &= \sum_{B \in \{0,1\}} P(C=1|B,A=1)P(B|A=1) \\ &= \sum_{B \in \{0,1\}} P(C=1|B,A=1)P(B) \\ \\ P(C=1) &= \sum_{B \in \{0,1\}} \sum_{A \in \{0,1\}} P(C=1,B,A) \\ &= \sum_{B \in \{0,1\}} \sum_{A \in \{0,1\}} P(C=1|B,A)P(B)P(A) \end{split}$$

Example with head-to-head connection Probability of A active

• Posterior after observing that B is also active:

$$P(A = 1|C = 1, B = 1) =$$



Note

• The probability that A is active decreases after observing that B is also active

- The B condition explains away the observation that C is active
- The probability is still greater than the prior one (0.3), because the C active observation still gives some evidence in favour of an active A

Inference

Finding the most probable configuration

- Given a joint probability distribution $p(\mathbf{x})$
- We wish to find the configuration for variables x having the highest probability:

$$\mathbf{x}^{\max} = \operatorname{argmax}_{\mathbf{x}} p(\mathbf{x})$$

for which the probability is:

$$p(\mathbf{x}^{\max}) = \max_{\mathbf{x}} p(\mathbf{x})$$

Note

- We want the configuration which is *jointly* maximal for all variables
- We cannot simply compute $p(x_i)$ for each i and maximize it

Learning Bayesian Networks

Parameter estimation

- We assume the structure of the model is given
- We are given a dataset of examples $\mathcal{D} = \{\mathbf{x}(1), \dots, \mathbf{x}(N)\}$
- Each example $\mathbf{x}(i)$ is a configuration for *all* (complete data) or *some* (incomplete data) variables in the model
- We need to estimate the parameters of the model (conditional probability distributions) from the data

Learning Bayesian Networks

Simple case: complete data

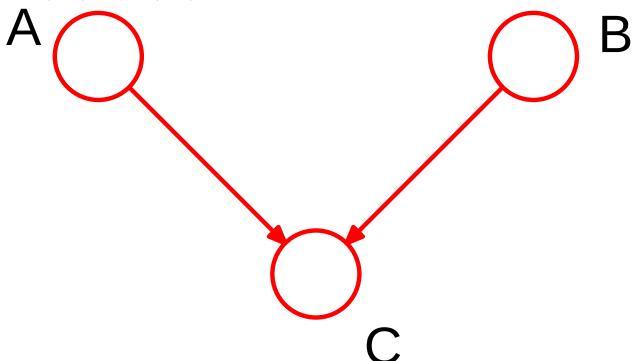
- When training data are complete, we can estimate parameters simply by frequencies:
 - 1. Consider each conditional probability table (CPT) separately
 - 2. For each configuration of the variables, insert the number of times it occurred in the data
 - 3. Normalize each column to sum to one

Learning Bayesian Networks

Example

• Training examples as (A, B, C) tuples:

```
(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).
```



- Fill CPTs with counts
- Normalize counts columnwise

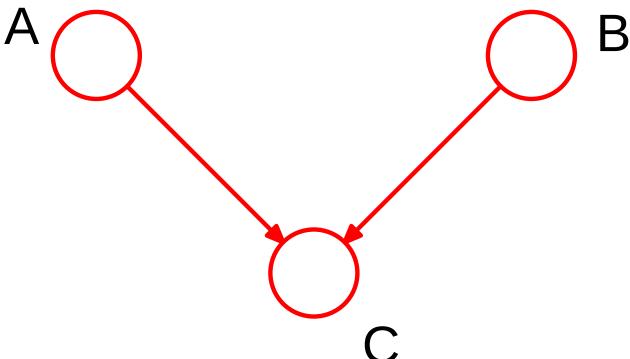
gene	value	counts
A	active	4
A	inactive	8
gene	value	counts
В	active	3
В	inactive	9
gene	value	counts
A	active	4/12
A	inactive	8/12
gene	value	counts
В	active	3/12
В	inactive	9/12
gene	value	counts
A	active	0.33
A	inactive	0.67
gene	value	counts
В	active	0.25
В	inactive	0.75
	•	

Learning Bayesian Networks

Example

• Training examples as (A, B, C) tuples:

```
(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).
```



• Fill CPTs with counts

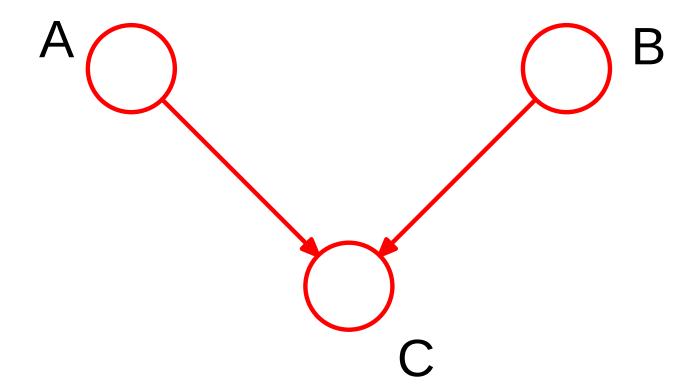
		A			
		ac	tive	ina	ctive
		В		В	
		active	inactive	active	inactive
С	active	1	2	1	0
C	inactive	0	1	1	6

Learning Bayesian Networks

Example

• Training examples as (A, B, C) tuples:

```
(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).
```



• Normalize counts columnwise

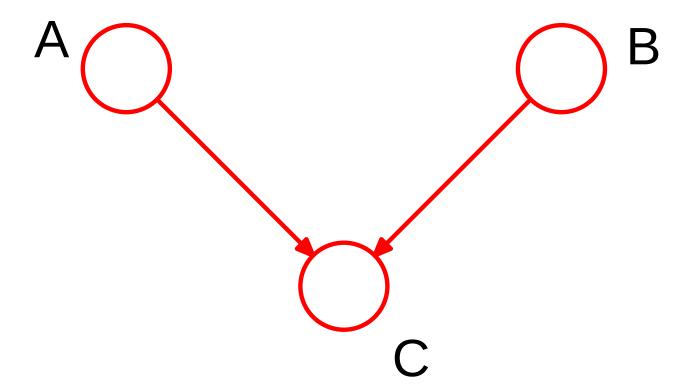
		A			
		ac	tive	ina	ctive
		В		В	
		active	inactive	active	inactive
C	active	1/1	2/3	1/2	0/6
C	inactive	0/1	1/3	1/2	6/6

Learning Bayesian Networks

Example

• Training examples as (A,B,C) tuples:

```
(act, act, act), (act, inact, act),
(act, inact, act), (act, inact, inact),
(inact, act, act), (inact, act, inact),
(inact, inact, inact), (inact, inact, inact),
(inact, inact, inact), (inact, inact, inact),
(inact, inact, inact), (inact, inact, inact).
```



• Normalize counts columnwise

		A				
		ac	tive	ina	ctive	
		В		В		
		active	inactive	active	inactive	
C	active	1	0.67	0.5	0	
C	inactive	0	0.33	0.5	1	

Learning Bayesian Networks

Adding priors

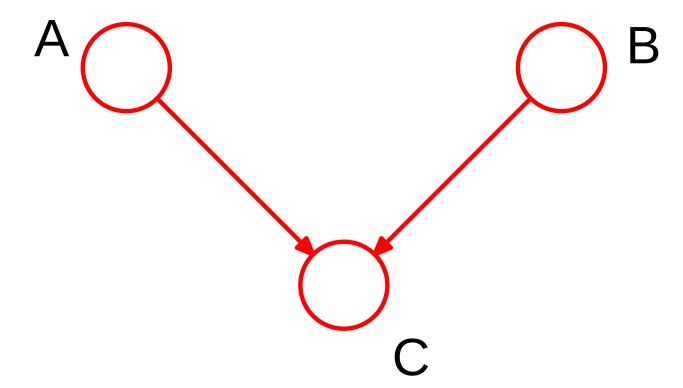
- The probability of configurations not occurring in training data is zero
- When few data available (always), this can be a too drastic choice
- Insert *prior* counts as imaginary configurations assumed to have been observed a-priori.
- E.g. one a-priori observation for each possible configuration

Learning Bayesian Networks

Example

• Training examples as (A, B, C) tuples:

```
(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
```



• Fill CPTs with priors as imaginary counts

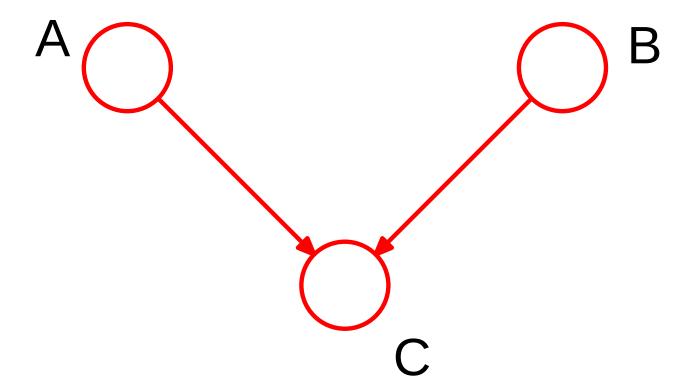
		A				
		ac	tive	ina	ctive	
		В		В		
		active	inactive	active	inactive	
C	active	1	1	1	1	
C	inactive	1	1	1	1	

Learning Bayesian Networks

Example

• Training examples as (A, B, C) tuples:

```
(act,act,act),(act,inact,act),
(act,inact,act),(act,inact,inact),
(inact,act,act),(inact,act,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact),
(inact,inact,inact),(inact,inact,inact).
```



• Add observed counts

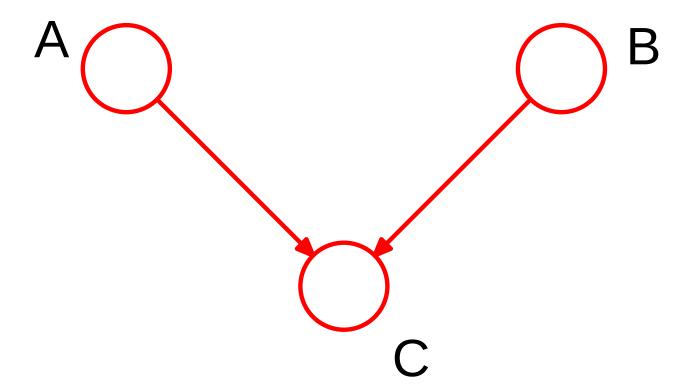
		A			
		ac	tive	ina	ctive
		В		В	
		active	inactive	active	inactive
C	active	1+1	1+2	1+1	1+0
C	inactive	1+0	1+1	1+1	1+6

Learning Bayesian Networks

Example

• Training examples as (A,B,C) tuples:

```
(act, act, act), (act, inact, act),
(act, inact, act), (act, inact, inact),
(inact, act, act), (inact, act, inact),
(inact, inact, inact), (inact, inact, inact),
(inact, inact, inact), (inact, inact, inact),
(inact, inact, inact), (inact, inact, inact).
```



• Normalize counts columnwise

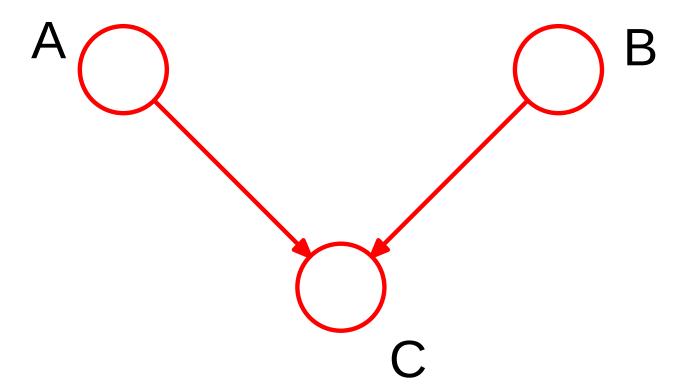
		A			
		ac	tive	ina	ctive
		В		В	
		active	inactive	active	inactive
C	active	2/3	3/5	2/4	1/8
C	inactive	1/3	2/5	2/4	7/8

Learning Bayesian Networks

Example

• Training examples as (A,B,C) tuples:

```
(act, act, act), (act, inact, act),
(act, inact, act), (act, inact, inact),
(inact, act, act), (inact, act, inact),
(inact, inact, inact), (inact, inact, inact),
(inact, inact, inact), (inact, inact, inact),
(inact, inact, inact), (inact, inact, inact).
```



• Normalize counts columnwise

		A			
		active		inactive	
		В		В	
		active	inactive	active	inactive
С	active	0.67	0.6	0.5	0.125
C	inactive	0.33	0.4	0.5	0.875

Learning graphical models

Incomplete data

- With incomplete data, some of the examples miss evidence on some of the variables
- Counts of occurrences of different configurations cannot be computed if not all data are observed
- We need approximate methods to deal with the problem

Learning with missing data: Expectation-Maximization

E-M for Bayesian nets in a nutshell

- Sufficient statistics (counts) cannot be computed (missing data)
- Fill-in missing data inferring them using current parameters (solve inference problem to get *expected* counts)
- Update parameters according to these expected counts
- Iterate until convergence to improve quality of parameters

Learning structure of graphical models

Approaches

constraint-based test conditional independencies on the data and construct a model satisfying them

score-based assign a score to each possible structure, define a search procedure looking for the structure maximizing the score

model-averaging assign a prior probability to each structure, and average prediction over all possible structures weighted by their probabilities (full Bayesian, intractable)