Scikit Learn: Machine Learning in Python

Gianluca Corrado

gianluca.corrado@unitn.it

Machine Learning
Scikit Learn is based on Python, especially on NumPy, SciPy, and matplotlib which are packages for scientific computing in Python.

Basics on Python and on scientific computing

http://scipy-lectures.github.io/
Downloading and Installing

Requires:

- Python (≥ 2.6 or ≥ 3.3)
- NumPy (≥ 1.6.1)
- SciPy (≥ 0.9)

Documentation and Reference

Documentation

Reference Manual with class descriptions
Outline

Today we are going to learn how to:

- Load and generate datasets
- Split a dataset for cross-validation
- Use some learning algorithms
 - Naive Bayes
 - SVM
 - Random forest
- Evaluate the performance of the algorithms
 - Accuracy
 - F1-score
 - AUC ROC
Datasets

- The `sklearn.datasets` module includes utilities to load datasets
- Load and fetch popular reference datasets (e.g. Iris)

```python
# load a default dataset
from sklearn import datasets
iris = datasets.load_iris()
```


- Artificial data generators (e.g. binary classification)

```python
# define dataset
from sklearn import datasets
dataset = datasets.make_classification(n_samples=1000, n_features=10,
                                     n_informative=2, n_redundant=2,
                                     n_repeated=0, n_classes=2)
```


Now inspect the data structures

```python
print iris
```
Cross-validation

k-fold cross-validation

- Split the dataset D in k equal sized disjoint subsets D_i
- For $i \in [1, k]$
 - train the predictor on $T_i = D \setminus D_i$
 - compute the score of the predictor on the test set D_i
- Return the average score across the folds
Cross-validation

- The `sklearn.cross_validation` module includes utilities for cross-validation and performance evaluation
- e.g. k-fold cross validation

```python
# k-fold cross validation
from sklearn import cross_validation
n = len(iris.data)
kf = cross_validation.KFold(n, n_folds=5, shuffle=True, random_state=None)
for train_index, test_index in kf:
    X_train, X_test = iris.data[train_index], iris.data[test_index]
    y_train, y_test = iris.target[train_index], iris.target[test_index]
```


Now inspect the data structures

```python
print X_train
print y_train
print X_test
print y_test
```
Naive Bayes

Hint
- Attribute values are assumed independent of each other

\[
P(a_1, \ldots, a_m | y_i) = \prod_{j=1}^{m} P(a_j | y_i)
\]

- Definition

\[
y^* = \arg\max_{y_i} \prod_{j=1}^{m} P(a_j | y_i) P(y_i)
\]
Naive Bayes

- The `sklearn.naive_bayes` module implements naive Bayes algorithms
- e.g. Gaussian naive Bayes

```python
# naive Bayes
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
```


Now inspect the data structures

```python
print pred
print y_test
```
Hint

A hyperplane is defined by the equation $w \cdot x + b = 0$. If w is the normal vector to the hyperplane, then the distance from the origin to the plane is $\|w\|$. The points that are closest to the hyperplane are the support vectors. The margin is the distance between the hyperplane and the closest data points, which is $\frac{2}{\|w\|}$. The goal of SVM is to maximize this margin.
Hint

- The sklearn.svm module includes Support Vector Machine algorithms
- e.g. Support-C Vector Classification

```python
# SVM
from sklearn.svm import SVC
clf = SVC(C=1e-01, kernel='rbf', class_weight='auto', random_state=None)
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
```


Now inspect the data structures

```python
print pred
print y_test
```
Random Forest

Hint

\mathcal{X}

y
Random Forest

- The sklearn.ensemble module includes ensemble-based methods for classification and regression
- e.g. Random Forest Classifier

```python
# random forest
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators = 5, criterion='gini', random_state=None)
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
```


Now inspect the data structures

```python
print pred
print y_test
```
Recap

\[
\text{Acc} = \frac{TP + TN}{TP + TN + FP + FN}
\]

\[
\text{Pre} = \frac{TP}{TP + FP}
\]

\[
\text{Rec} = \frac{TP}{TP + FN}
\]

\[
F1 = \frac{2(\text{Pre} \times \text{Rec})}{\text{Pre} + \text{Rec}}
\]

AUC ROC
Performance evaluation

- The `sklearn.metrics` module includes score functions, performance metrics and pairwise metrics and distance computations.
- e.g. accuracy, F1-score, AUC ROC

```python
# metrics
from sklearn import metrics
accuracy = metrics.accuracy_score(y_test, pred)
print(accuracy)
f1 = metrics.f1_score(y_test, pred)
print(f1)
auc = metrics.roc_auc_score(y_test, pred)
print(auc)
```

Choosing parameters

- Some algorithms have parameters

- e.g. parameter C for SVM, number of trees for Random Forest

- Performance can significantly vary according to the chosen parameters

- It is important to choose wisely

- train, VALIDATION, test
Choosing parameters e.g. SVM

```python
# SVM with rbf kernel
# 10-fold cross validation
kf = cross_validation.KFold(n, n_folds=10, shuffle=True, random_state=1234)
accuracy = []
f1 = []
auc_roc = []
for train_index, test_index in kf:
    X_train, X_test = dataset[0][train_index], dataset[0][test_index]
    y_train, y_test = dataset[1][train_index], dataset[1][test_index]
    nn = len(X_train)
    bestC = None
    Cvalues = [1e-2, 1e-1, 1e0, 1e1, 1e2]
    innerscore = []
    for C in Cvalues:
        # inner 5-fold cross validation on the original training set for parameter selection (C)
        ikf = cross_validation.KFold(nn, n_folds=5, shuffle=True, random_state=5678)
        innerf1 = []
        for t_index, v_index in ikf:
            X_t, X_v = X_train[t_index], X_train[v_index]
            y_t, y_v = y_train[t_index], y_train[v_index]
            ipred = rbf_svm(X_t, y_t, X_v, C)
            # save the F1-score of the inner cross validation
            innerf1.append(metrics.f1_score(y_v, ipred))
            # compute the average
            innerscore.append(sum(innerf1)/len(innerf1))
        # pick the C that gives best F1-score
        # Note: the test set is never involved in the decision of the parameter
        bestC = Cvalues[np.argmax(innerscore)]
        # predict the labels for the test set using the best C parameter
        pred = rbf_svm(X_train, y_train, X_test, bestC)
        accuracy.append(metrics.accuracy_score(y_test, pred))
        f1.append(metrics.f1_score(y_test, pred))
        auc_roc.append(metrics.roc_auc_score(y_test, pred))
```

where

```python
# SVM with RBF kernel
def rbf_svm(X_train, y_train, X_test, C):
    clf = SVC(C=C, kernel='rbf', class_weight='auto')
    clf.fit(X_train, y_train)
    return clf.predict(X_test)
```
Summary

sklearn allows to:

- load and generate datasets
- split them to perform cross-validation
- easily apply learning algorithms
- evaluate the performance of such algorithms
Assignment

The second ML assignment is to compare the performance of three different classification algorithms, namely Naive Bayes, SVM, and Random Forest.
For this assignment you need to generate a random binary classification problem, and train (using 10-fold cross validation) the three different algorithms. For some algorithms inner cross validation (5-fold) for choosing the parameters is needed. Then, show the classification performance (per-fold and averaged) in the report, briefly discussing the results.

Note

The report has to contain also a short description of the methodology used to obtain the results.
Assignment

Steps

1. Create a classification dataset (n_samples ≥ 1000, n_features ≥ 10)
2. Split the dataset using 10-fold cross validation
3. Train the algorithms
 - GaussianNB
 - SVC (possible C values [1e-02, 1e-01, 1e00, 1e01, 1e02], and RBF kernel)
 - RandomForestClassifier (possible n_estimators values [10, 100, 1000], and Gini purity)
4. Evaluate the cross-validated performance
 - accuracy
 - F1-score
 - AUC ROC
5. Write a short report summarizing the methodology and the results
Assignment

- After completing the assignment submit it via email
- Send an email to gianluca.corrado@unitn.it (cc: passerini@disi.unitn.it)
- Subject: sklearnSubmit
- Attachment: id_name_surname.zip containing:
 - the Python code
 - the report (PDF format)

NOTE

- No group work
- This assignment is mandatory in order to enroll to the oral exam