Discrete random variables

Probability mass function
Given a discrete random variable \(X\) taking values in \(\mathcal{X} = \{v_1, \ldots, v_m\}\), its probability mass function \(P : \mathcal{X} \rightarrow [0, 1]\) is defined as:

\[P(v_i) = \Pr[X = v_i] \]

and satisfies the following conditions:

• \(P(x) \geq 0\)
• \(\sum_{x \in \mathcal{X}} P(x) = 1\)

Discrete random variables
Expected value
• The expected value, mean or average of a random variable \(x\) is:

\[E[x] = \mu = \sum_{x \in \mathcal{X}} xP(x) = \sum_{i=1}^{m} v_i P(v_i) \]

• The expectation operator is linear:

\[E[\lambda x + \lambda'y] = \lambda E[x] + \lambda'E[y] \]

Variance
• The variance of a random variable is the moment of inertia of its probability mass function:

\[\text{Var}[x] = \sigma^2 = E[(x - \mu)^2] = \sum_{x \in \mathcal{X}} (x - \mu)^2 P(x) \]

• The standard deviation \(\sigma\) indicates the typical amount of deviation from the mean one should expect for a randomly drawn value for \(x\).

Properties of mean and variance
second moment

\[E[x^2] = \sum_{x \in \mathcal{X}} x^2 P(x) \]

variance in terms of expectation

\[\text{Var}[x] = E[x^2] - E[x]^2 \]

variance and scalar multiplication

\[\text{Var}[\lambda x] = \lambda^2 \text{Var}[x] \]

variance of uncorrelated variables

\[\text{Var}[x + y] = \text{Var}[x] + \text{Var}[y] \]
Probability distributions

Bernoulli distribution

- Two possible values (outcomes): 1 (success), 0 (failure).
- Parameters: p probability of success.
- Probability mass function:
 \[P(x; p) = \begin{cases}
 p & \text{if } x = 1 \\
 1 - p & \text{if } x = 0
 \end{cases} \]
- $E[x] = p$
- $\text{Var}[x] = p(1 - p)$

Example: tossing a coin

- Head (success) and tail (failure) possible outcomes
- p is probability of head

Bernoulli distribution

Proof of mean

\[
E[x] = \sum_{x \in \mathcal{X}} x P(x) \\
= \sum_{x \in \{0, 1\}} x P(x) \\
= 0 \cdot (1 - p) + 1 \cdot p = p
\]

Bernoulli distribution

Proof of variance

\[
\text{Var}[x] = \sum_{x \in \mathcal{X}} (x - \mu)^2 P(x) \\
= \sum_{x \in \{0, 1\}} (x - p)^2 P(x) \\
= (0 - p)^2 \cdot (1 - p) + (1 - p)^2 \cdot p \\
= p^2 \cdot (1 - p) + (1 - p) \cdot (1 - p) \cdot p \\
= (1 - p) \cdot (p^2 + p - p^2) \\
= (1 - p) \cdot p
\]
Probability distributions

Binomial distribution

- Probability of a certain number of successes in \(n \) independent Bernoulli trials
- Parameters: \(p \) probability of success, \(n \) number of trials.
- Probability mass function:
 \[
P(x; p, n) = \binom{n}{x} p^x (1-p)^{n-x}
\]
 - \(E[x] = np \)
 - \(\text{Var}[x] = np(1-p) \)

Example: tossing a coin

- \(n \) number of coin tosses
- Probability of obtaining \(x \) heads

Pairs of discrete random variables

Probability mass function

Given a pair of discrete random variables \(X \) and \(Y \) taking values \(\mathcal{X} = \{v_1, \ldots, v_m\} \) \(\mathcal{Y} = \{w_1, \ldots, w_n\} \), the joint probability mass function is defined as:

\[
P(v_i, w_j) = \Pr[X = v_i, Y = w_j]
\]

with properties:

- \(P(x, y) \geq 0 \)
- \(\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(x, y) = 1 \)

Properties

- Expected value
 \[
 \mu_x = \mathbb{E}[x] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} x P(x, y)
 \]
 \[
 \mu_y = \mathbb{E}[y] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} y P(x, y)
 \]

- Variance
 \[
 \sigma^2_x = \text{Var}[(x - \mu_x)^2] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} (x - \mu_x)^2 P(x, y)
 \]
 \[
 \sigma^2_y = \text{Var}[(y - \mu_y)^2] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} (y - \mu_y)^2 P(x, y)
 \]

- Covariance
 \[
 \sigma_{xy} = \mathbb{E}[(x - \mu_x)(y - \mu_y)] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} (x - \mu_x)(y - \mu_y) P(x, y)
 \]

- Correlation coefficient
 \[
 \rho = \frac{\sigma_{xy}}{\sigma_x \sigma_y}
 \]
Probability distributions

Multinomial distribution (one sample)

- Models the probability of a certain outcome for an event with \(m \) possible outcomes.
- Parameters: \(p_1, \ldots, p_m \) probability of each outcome
- Probability mass function:
 \[
 P(x_1, \ldots, x_m; p_1, \ldots, p_m) = \prod_{i=1}^{m} p_i^{x_i}
 \]
 where \(x_1, \ldots, x_m \) is a vector with \(x_i = 1 \) for outcome \(i \) and \(x_j = 0 \) for all \(j \neq i \).
- \(E[x_i] = p_i \)
- \(\text{Var}[x_i] = p_i(1 - p_i) \)
- \(\text{Cov}[x_i, x_j] = -p_i p_j \)

Probability distributions

Multinomial distribution: example

- Tossing a dice with six faces:
 - \(m \) is the number of faces
 - \(p_i \) is probability of obtaining face \(i \)

Probability distributions

Multinomial distribution (general case)

- Given \(n \) samples of an event with \(m \) possible outcomes, models the probability of a certain distribution of outcomes.
- Parameters: \(p_1, \ldots, p_m \) probability of each outcome, \(n \) number of samples.
- Probability mass function (assumes \(\sum_{i=1}^{m} x_i = n \)):
 \[
 P(x_1, \ldots, x_m; p_1, \ldots, p_m, n) = \frac{n!}{\prod_{i=1}^{m} x_i!} \prod_{i=1}^{m} p_i^{x_i}
 \]
 - \(E[x_i] = n p_i \)
 - \(\text{Var}[x_i] = n p_i(1 - p_i) \)
 - \(\text{Cov}[x_i, x_j] = -n p_i p_j \)
Probability distributions

Multinomial distribution: example

- Tossing a dice
 - \(n \) number of times a dice is tossed
 - \(x_i \) number of times face \(i \) is obtained
 - \(p_i \) probability of obtaining face \(i \)

Conditional probabilities

conditional probability probability of \(x \) once \(y \) is observed

\[
P(x|y) = \frac{P(x,y)}{P(y)}
\]

statistical independence variables \(X \) and \(Y \) are statistical independent iff

\[
P(x,y) = P(x)P(y)
\]

implying:

\[
P(x|y) = P(x) \quad P(y|x) = P(y)
\]

Basic rules

law of total probability The marginal distribution of a variable is obtained from a joint distribution summing over all possible values of the other variable (sum rule)

\[
P(x) = \sum_{y \in Y} P(x,y) \quad P(y) = \sum_{x \in X} P(x,y)
\]

product rule conditional probability definition implies that

\[
P(x,y) = P(x|y)P(y) = P(y|x)P(x)
\]

Bayes’ rule

\[
P(y|x) = \frac{P(x|y)P(y)}{P(x)}
\]

Bayes’ rule

Significance

\[
P(y|x) = \frac{P(x|y)P(y)}{P(x)}
\]

- allows to “invert” statistical connections between effect (\(x \)) and cause (\(y \)):

\[
posterior = \frac{likelihood \times prior}{evidence}
\]

- evidence can be obtained using the sum rule from likelihood and prior:

\[
P(x) = \sum_y P(x,y) = \sum_y P(x|y)P(y)
\]
Playing with probabilities

Use rules!

• Basic rules allow to model a certain probability (e.g. cause given effect) given knowledge of some related ones (e.g. likelihood, prior)

• All our manipulations will be applications of the three basic rules

• Basic rules apply to any number of variables:

\[
P(y) = \sum_x \sum_z P(x, y, z) \quad \text{(sum rule)}
\]

\[
P(y|x, z) P(x, z)
\]

\[
P(y|x, z) P(x|z) P(z)
\]

\[
P(y|x, z) P(y|z) P(x|z) P(z)
\]

Playing with probabilities

Example

\[
P(y|x, z) = \frac{P(x, z|y) P(y)}{P(x, z)} \quad \text{(Bayes rule)}
\]

\[
= \frac{P(x, z|y) P(y)}{P(x|z) P(z)} \quad \text{(product rule)}
\]

\[
= \frac{P(x|z, y) P(z|y) P(y)}{P(x|z) P(z)} \quad \text{(product rule)}
\]

\[
= \frac{P(x|z, y) P(y|z) P(z)}{P(x|z) P(z)} \quad \text{(product rule)}
\]

\[
= \frac{P(x|z, y) P(y|z)}{P(x|z)}
\]

Continuous random variables

Probability density function

Instead of the probability of a specific value of \(X\), we model the probability that \(x\) falls in an interval \((a, b)\):

\[
\Pr[x \in (a, b)] = \int_a^b p(x)dx
\]

Properties:

• \(p(x) \geq 0\)

• \(\int_{-\infty}^{\infty} p(x)dx = 1\)

Note

The probability of a specific value \(x_0\) is given by:

\[
p(x_0) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \Pr[x \in [x_0, x_0 + \epsilon]]
\]
Properties

expected value

$$E[x] = \mu = \int_{-\infty}^{\infty} xp(x)\,dx$$

variance

$$\text{Var}[x] = \sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 p(x)\,dx$$

Note
Definitions and formulas for discrete random variables carry over to continuous random variables with sums replaced by integrals

Probability distributions

Gaussian (or normal) distribution

- Bell-shaped curve.
- Parameters: μ mean, σ^2 variance.
- Probability density function:
 $$p(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)$$

- $E[x] = \mu$
- $\text{Var}[x] = \sigma^2$
• Standard normal distribution: \(N(0, 1) \)

• Standardization of a normal distribution \(N(\mu, \sigma^2) \)

\[
z = \frac{x - \mu}{\sigma}
\]

Probability distributions

Beta distribution

- Defined in the interval \([0, 1]\)
- Parameters: \(\alpha, \beta \)
- Probability density function:

\[
p(x; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}
\]

- \(\text{E}[x] = \frac{\alpha}{\alpha + \beta} \)
- \(\Gamma(x + 1) = x\Gamma(x), \Gamma(1) = 1 \)
- \(\text{Var}[x] = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} \)

Note

It models the posterior distribution of parameter \(p \) of a binomial distribution after observing \(\alpha - 1 \) independent events with probability \(p \) and \(\beta - 1 \) with probability \(1 - p \).
Probability distributions

Multivariate normal distribution
• normal distribution for \(d\)-dimensional vectorial data.
 • Parameters: \(\mu\) mean vector, \(\Sigma\) covariance matrix.
 • Probability density function:
 \[
p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu)\right)
 \]
 • \(E[x] = \mu\)
 • \(\text{Var}[x] = \Sigma\)

• squared Mahalanobis distance from \(x\) to \(\mu\) is standard measure of distance to mean:
 \[
r^2 = (x - \mu)^T \Sigma^{-1} (x - \mu)
 \]

Probability distributions

Dirichlet distribution
• Defined: \(x \in [0, 1]^m, \sum_{i=1}^m x_i = 1\)
 • Parameters: \(\alpha = \alpha_1, \ldots, \alpha_m\)
 • Probability density function:
 \[
p(x_1, \ldots, x_m; \alpha) = \frac{\Gamma(\alpha_0)}{\prod_{i=1}^m \Gamma(\alpha_i)} \prod_{i=1}^m x_i^{\alpha_i - 1}
 \]
• \(E[x_i] = \frac{\alpha_i}{\alpha_0} \) where \(\alpha_0 = \sum_{j=1}^{m} \alpha_j \)

• \(\text{Var}[x_i] = \frac{\alpha_i(\alpha_0 - \alpha_i)}{\alpha_0(\alpha_0+1)} \)

\[\text{Cov}[x_i, x_j] = \frac{-\alpha_i \alpha_j}{\alpha_0(\alpha_0+1)} \]

Note

It models the posterior distribution of parameters \(p \) of a multinomial distribution after observing \(\alpha_i - 1 \) times each mutually exclusive event

Probability laws

Expectation of an average

Consider a sample of \(X_1, \ldots, X_n \) i.i.d instances drawn from a distribution with mean \(\mu \) and variance \(\sigma^2 \).

• Consider the random variable \(\bar{X}_n \) measuring the sample average:

\[\bar{X}_n = \frac{X_1 + \cdots + X_n}{n} \]
• Its expectation is computed as \((E[a(X + Y)] = a(E[X] + E[Y])): \)
\[
E[\bar{X}_n] = \frac{1}{n} (E[X_1] + \cdots + E[X_n]) = \mu
\]
• i.e. the expectation of an average is the true mean of the distribution

Probability laws

Variance of an average

• Consider the random variable \(\bar{X}_n \) measuring the sample average:
\[
\bar{X}_n = \frac{X_1 + \cdots + X_n}{n}
\]
• Its variance is computed as \((\text{Var}[a(X + Y)] = a^2(\text{Var}[X] + \text{Var}[Y])\) for \(X \) and \(Y \) independent):
\[
\text{Var}[\bar{X}_n] = \frac{1}{n^2} (\text{Var}[X_1] + \cdots + \text{Var}[X_n]) = \frac{\sigma^2}{n}
\]
• i.e. the variance of the average decreases with the number of observations (the more examples you see, the more likely you are to estimate the correct average)

Probability laws

Chebyshev’s inequality

Consider a random variable \(X \) with mean \(\mu \) and variance \(\sigma^2 \).
• Chebyshev’s inequality states that for all \(a > 0 \):
\[
\Pr[|X - \mu| \geq a] \leq \frac{\sigma^2}{a^2}
\]
• Replacing \(a = k\sigma \) for \(k > 0 \) we obtain:
\[
\Pr[|X - \mu| \geq k\sigma] \leq \frac{1}{k^2}
\]

Note

Chebyshev’s inequality shows that most of the probability mass of a random variable stays within few standard deviations from its mean

Probability laws

The law of large numbers

Consider a sample of \(X_1, \ldots, X_n \) i.i.d instances drawn from a distribution with mean \(\mu \) and variance \(\sigma^2 \).
• For any \(\epsilon > 0 \), its sample average \(\bar{X}_n \) obeys:
\[
\lim_{n \to \infty} \Pr[|\bar{X}_n - \mu| > \epsilon] = 0
\]
• It can be shown using Chebyshev’s inequality and the facts that \(E[\bar{X}_n] = \mu, \text{Var}[\bar{X}_n] = \sigma^2/n \):
\[
\Pr[|\bar{X}_n - E[\bar{X}_n]| \geq \epsilon] \leq \frac{\sigma^2}{n\epsilon^2}
\]

Interpretation

• The accuracy of an empirical statistic increases with the number of samples
Probability laws

Central Limit theorem

Consider a sample of X_1, \ldots, X_n i.i.d instances drawn from a distribution with mean μ and variance σ^2.

1. Regardless of the distribution of X_i, for $n \to \infty$, the distribution of the sample average \bar{X}_n approaches a Normal distribution
2. Its mean approaches μ and its variance approaches σ^2 / n
3. Thus the normalized sample average:
 \[z = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \]
 approaches a standard Normal distribution $N(0, 1)$.

Central Limit theorem

Interpretation

- The sum of a sufficiently large sample of i.i.d. random measurements is approximately normally distributed
- We don’t need to know the form of their distribution (it can be arbitrary)
- Justifies the importance of Normal distribution in real world applications

Information theory

Entropy

- Consider a discrete set of symbols $V = \{v_1, \ldots, v_n\}$ with mutually exclusive probabilities $P(v_i)$.
- We aim a designing a binary code for each symbol, minimizing the average length of messages
- Shannon and Weaver (1949) proved that the optimal code assigns to each symbol v_i a number of bits equal to
 \[-\log P(v_i) \]
- The entropy of the set of symbols is the expected length of a message encoding a symbol assuming such optimal coding:
 \[H[V] = \mathbb{E}[-\log P(v)] = -\sum_{i=1}^{n} P(v_i) \log P(v_i) \]

Information theory

Cross entropy

- Consider two distributions P and Q over variable X
- The cross entropy between P and Q measures the expected number of bits needed to code a symbol sampled from P using Q instead
 \[H(P; Q) = \mathbb{E}_P[-\log Q(v)] = -\sum_{i=1}^{n} P(v_i) \log Q(v_i) \]
Information theory

Relative entropy

• Consider two distributions P and Q over variable X

• The relative entropy or Kullback-Leibler (KL) divergence measures the expected length difference when coding instances sampled from P using Q instead:

$$D_{KL}(p||q) = H(P; Q) - H(P)$$

$$= - \sum_{i=1}^{n} P(v_i) \log Q(v_i) + \sum_{i=1}^{n} P(v_i) \log P(v_i)$$

$$= \sum_{i=1}^{n} P(v_i) \log \frac{P(v_i)}{Q(v_i)}$$

\[\text{Note}\]

The KL-divergence is not a distance (metric) as it is not necessarily symmetric

Information theory

Conditional entropy

• Consider two variables V,W with (possibly different) distributions P

• The conditional entropy is the entropy remaining for variable W once V is known:

$$H(W|V) = \sum_{v} P(v) H(W|V = v)$$

$$= - \sum_{v} P(v) \sum_{w} P(w|v) \log P(w|v)$$

Information theory

Mutual information

• Consider two variables V,W with (possibly different) distributions P

• The mutual information (or information gain) is the reduction in entropy for W once V is known:

$$I(W; V) = H(W) - H(W|V)$$

$$= - \sum_{w} p(w) \log p(w) + \sum_{v} P(v) \sum_{w} P(w|v) \log P(w|v)$$