Inference in Bayesian Networks

Andrea Passerini
passerini@disi.unitn.it

Machine Learning
Description

- Assume we have evidence e on the state of a subset of variables E in the model (i.e. Bayesian Network).
- Inference amounts at computing the posterior probability of a subset X of the non-observed variables given the observations:

$$p(X|E = e)$$

Note

- When we need to distinguish between variables and their values, we will indicate random variables with uppercase letters, and their values with lowercase ones.
Efficiency

- We can always compute the posterior probability as the ratio of two joint probabilities:

\[
p(X|E = e) = \frac{p(X, E = e)}{p(E = e)}
\]

- The problem consists of estimating such joint probabilities when dealing with a large number of variables.
- Directly working on the full joint probabilities requires time exponential in the number of variables.
- For instance, if all \(N \) variables are discrete and take one of \(K \) possible values, a joint probability table has \(K^N \) entries.
- We would like to exploit the structure in graphical models to do inference more efficiently.
Inference on a chain (1)

\[p(X) = p(X_1)p(X_2|X_1)p(X_3|X_2) \cdots p(X_N|X_{N-1}) \]

- The marginal probability of an arbitrary \(X_n \) is:
 \[p(X_n) = \sum_{X_1} \sum_{X_2} \cdots \sum_{X_{n-1}} \sum_{X_{n+1}} \cdots \sum_{X_N} p(X) \]

- Only the \(p(X_N|X_{N-1}) \) is involved in the last summation which can be computed first, giving a function of \(X_{N-1} \):
 \[\mu_\beta(X_{N-1}) = \sum_{X_N} p(X_N|X_{N-1}) \]
Inference on a chain (2)

- the marginalization can be iterated as:

\[\mu_\beta(X_{N-2}) = \sum_{X_{N-1}} p(X_{N-1}|X_{N-2}) \mu_\beta(X_{N-1}) \]

down to the desired variable \(X_n \), giving:

\[\mu_\beta(X_n) = \sum_{X_{n+1}} p(X_{n+1}|X_n) \mu_\beta(X_{n+1}) \]
The same procedure can be applied starting from the other end of the chain, giving:

$$\mu_\alpha(X_2) = \sum_{X_1} p(X_1)p(X_2|X_1)$$

up to $$\mu_\alpha(X_n)$$

The marginal probability is now computed as the product of the contributions coming from both ends:

$$p(X_n) = \mu_\alpha(X_n)\mu_\beta(X_n)$$
Inference in graphical models

Inference as message passing

- We can think of $\mu_\alpha(X_n)$ as a message passing from X_{n-1} to X_n
 \[
 \mu_\alpha(X_n) = \sum_{X_{n-1}} p(X_n | X_{n-1}) \mu_\alpha(X_{n-1})
 \]

- We can think of $\mu_\beta(X_n)$ as a message passing from X_{n+1} to X_n
 \[
 \mu_\beta(X_n) = \sum_{X_{n+1}} p(X_{n+1} | X_n) \mu_\beta(X_{n+1})
 \]

- Each outgoing message is obtained multiplying the incoming message by the “local” probability, and summing over the node values.
Full message passing

Suppose we want to know marginal probabilities for a number of different variables X_i:

1. We send a message from $\mu_\alpha(X_1)$ up to $\mu_\alpha(X_N)$
2. We send a message from $\mu_\beta(X_N)$ down to $\mu_\beta(X_1)$

If all nodes store messages, we can compute any marginal probability as

$$p(X_i) = \mu_\alpha(X_i)\mu_\beta(X_i)$$

for any i having sent just a double number of messages wrt a single marginal computation.
Adding evidence

- If some nodes X_e are observed, we simply use their observed values instead of summing over all possible values when computing their messages.

Example

\[
p(X) = p(X_1)p(X_2|X_1)p(X_3|X_2)p(X_4|X_3)
\]

- The marginal probability of X_2 and observations $X_1 = x_{e_1}$ and $X_3 = x_{e_3}$ is:

\[
p(X_2, X_1 = x_{e_1}, X_3 = x_{e_3}) = p(X_1 = x_{e_1})p(X_2|X_1 = x_{e_1}) \cdot p(X_3 = x_{e_3}|X_2) \cdot \sum_{X_4} p(X_4|X_3 = x_{e_3})
\]
Inference in Bayesian Networks

Computing conditional probability given evidence

When adding evidence, the message passing procedure computes the joint probability of the variable \textit{and} the evidence, and it has to be normalized to obtain the conditional probability \textit{given} the evidence:

\[
p(X_n | X_e = x_e) = \frac{p(X_n, X_e = x_e)}{\sum_{X_n} p(X_n, X_e = x_e)}
\]
Efficient inference can be computed for the broaded family of tree-structured models:

- **undirected trees** (a) undirected graphs with a single path for each pair of nodes
- **directed trees** (b) directed graphs with a single node (the root) with no parents, and all other nodes with a single parent
- **directed polytrees** (c) directed graphs with multiple parents for node and multiple roots, but still a single (undirected) path between each pair of nodes
Efficient inference algorithms can be better explained using an alternative graphical representation called *factor graph*. A *factor graph* is a graphical representation of a graphical model highlighting its factorization (i.e. conditional probabilities).

- The factor graph has one node for each node in the original graph.
- The factor graph has one additional node (of a different type) for each factor.
- A factor node has undirected links to each of the node variables in the factor.
Factor graphs: examples

\[p(x_3|x_1,x_2)p(x_1)p(x_2) \]

\[f(x_1,x_2,x_3) = p(x_3|x_1,x_2)p(x_1)p(x_2) \]

\[f_{c}(x_1,x_2,x_3) = p(x_3|x_1,x_2) \]

\[f_{a}(x_1) = p(x_1) \]

\[f_{b}(x_2) = p(x_2) \]
The sum-product algorithm

- The *sum-product* algorithm is an efficient algorithm for exact inference on *tree-structured* graphs.
- It is a message passing algorithm as its simpler version for chains.
- We will present it on factor graphs, assuming a tree-structured graph giving rise to a factor graph which is a tree.
- The algorithm will be applicable to undirected models (i.e. Markov Networks) as well as directed ones (i.e. Bayesian Networks).
Computing marginals

- We want to compute the marginal probability of X:

$$p(X) = \sum_{X \setminus X} p(X)$$

- Generalizing the message passing scheme seen for chains, this can be computed as the product of messages coming from all neighbouring factors f_s:

$$p(X) = \prod_{f_s \in \text{ne}(X)} \mu_{f_s \rightarrow X}(X)$$
Inference in Bayesian Networks

Factor messages

- Each factor message is the product of messages coming from nodes other than X, times the factor, summed over all possible values of the factor variables other than X (X_1, \ldots, X_M):

\[
\mu_{f_s \rightarrow X}(X) = \sum_{X_1} \cdots \sum_{X_M} f_s(X, X_1, \ldots, X_M) \prod_{X_m \in \text{ne}(f_s) \setminus X} \mu_{X_m \rightarrow f_s}(X_m)
\]
Inference in Bayesian Networks

Node messages

Each message from node X_m to factor f_s is the product of the factor messages to X_m coming from factors other than f_s:

$$
\mu_{X_m \rightarrow f_s}(X_m) = \prod_{f_l \in \text{ne}(X_m) \setminus f_s} \mu_{f_l \rightarrow X_m}(X_m)
$$
Inference

Initialization

- Message passing start from leaves, either factors or nodes
- Messages from leaf factors are initialized to the factor itself (there will be no X_m different from the destination on which to sum over)

$$\mu_{f \rightarrow x}(x) = f(x)$$

- Messages from leaf nodes are initialized to 1

$$\mu_{x \rightarrow f}(x) = 1$$
Message passing scheme

- The node X whose marginal has to be computed is designed as root.
- Messages are sent from all leaves to their neighbours.
- Each internal node sends its message towards the root as soon as it received messages from all other neighbours.
- Once the root has collected all messages, the marginal can be computed as the product of them.
In order to be able to compute marginals for any node, messages need to pass in all directions:

1. Choose an arbitrary node as root
2. Collect messages for the root starting from leaves
3. Send messages from the root down to the leaves

All messages passed in all directions using only twice the number of computations used for a single marginal.
Consider the joint distribution as product of factors

\[p(\mathbf{X}) = f_a(X_1, X_2) f_b(X_2, X_3) f_c(X_2, X_4) \]
Inference example

Choose X_3 as root
Inference in Bayesian Networks

Send initial messages from leaves

\[\mu_{X_1 \rightarrow f_a}(X_1) = 1 \]
\[\mu_{X_4 \rightarrow f_c}(X_4) = 1 \]
Inference example

Send messages from factor nodes to X_2

$$\mu_{f_a \rightarrow X_2}(X_2) = \sum_{X_1} f_a(X_1, X_2)$$

$$\mu_{f_c \rightarrow X_2}(X_2) = \sum_{X_4} f_c(X_2, X_4)$$
Send message from X_2 to factor node f_b

$$
\mu_{X_2 \rightarrow f_b}(X_2) = \mu_{f_a \rightarrow X_2}(X_2) \mu_{f_c \rightarrow X_2}(X_2)
$$
Inference example

Send message from f_b to X_3

$$\mu_{f_b \rightarrow X_3}(X_3) = \sum_{X_2} f_b(X_2, X_3) \mu_{X_2 \rightarrow f_b}(X_2)$$
Inference example

Send message from root X_3

$$\mu_{X_3 \rightarrow f_b}(X_3) = 1$$
Send message from f_b to X_2

$$\mu_{f_b \rightarrow X_2}(X_2) = \sum_{X_3} f_b(X_2, X_3)$$
Inference example

Send messages from X_2 to factor nodes

\[
\begin{align*}
\mu_{X_2 \rightarrow f_a}(X_2) &= \mu_{f_b \rightarrow X_2}(X_2) \mu_{f_c \rightarrow X_2}(X_2) \\
\mu_{X_2 \rightarrow f_c}(X_2) &= \mu_{f_b \rightarrow X_2}(X_2) \mu_{f_a \rightarrow X_2}(X_2)
\end{align*}
\]
Inference example

Send messages from factor nodes to leaves

\[
\mu_{f_a \rightarrow X_1}(X_1) = \sum_{X_2} f_a(X_1, X_2) \mu_{X_2 \rightarrow f_a}(X_2)
\]

\[
\mu_{f_c \rightarrow X_4}(X_4) = \sum_{X_2} f_c(X_2, X_4) \mu_{X_2 \rightarrow f_c}(X_2)
\]

Inference in Bayesian Networks
Inference example

Compute for instance the marginal for X_2

$$p(X_2) = \mu_{f_a \rightarrow X_2}(X_2) \mu_{f_b \rightarrow X_2}(X_2) \mu_{f_c \rightarrow X_2}(X_2)$$

$$= \left[\sum_{X_1} f_a(X_1, X_2) \right] \left[\sum_{X_3} f_b(X_2, X_3) \right] \left[\sum_{X_4} f_c(X_2, X_4) \right]$$

$$= \sum_{X_1} \sum_{X_3} \sum_{X_4} f_a(X_1, X_2) f_b(X_2, X_3) f_c(X_2, X_4)$$

$$= \sum_{X_1} \sum_{X_3} \sum_{X_4} p(X)$$
Adding evidence

- If some nodes X_e are observed, we simply use their observed values instead of summing over all possible values when computing their messages.
- After normalization, this gives the conditional probability given the evidence.
Inference example

Bayesian network

- Take a Bayesian network
- Build a factor graph representing it
- Compute the marginal for a variable (e.g. B)
Compute the marginal for B

- Leaf factor nodes send messages:

 $\mu_{f_A \rightarrow A} = P(A)$
 $\mu_{f_D \rightarrow D} = P(D)$
Compute the marginal for B

- A and D send messages:

$$
\mu_{A \rightarrow f_{A,B,C}}(A) = \mu_{f_{A \rightarrow A}} = P(A)
$$

$$
\mu_{D \rightarrow f_{C,D}}(D) = \mu_{f_{D \rightarrow D}} = P(D)
$$
Compute the marginal for B

- $f_{C,D}$ sends message:

$$\mu_{f_{C,D}\rightarrow C}(C) = \sum_{D} P(C|D)\mu_{f_{D}\rightarrow D} = \sum_{D} P(C|D)P(D)$$
Compute the marginal for B

- C sends message:

$$\mu_{C\rightarrow f_{A,B,C}}(C) = \mu_{f_{C,D\rightarrow C}}(C) = \sum_{D} P(C|D)P(D)$$
Inference example

Inference in Bayesian Networks

Compute the marginal for B

- $f_{A,B,C}$ sends message:

$$\mu_{f_{A,B,C} \rightarrow B}(B) = \sum_A \sum_C P(B|A, C) \mu_{C \rightarrow f_{A,B,C}}(C) \mu_{A \rightarrow f_{A,B,C}}(A)$$

$$= \sum_A \sum_C P(B|A, C) P(A) \sum_D P(C|D) P(D)$$
Inference in Bayesian Networks

Compute the marginal for B

The desired marginal is obtained:

$$P(B) = \mu_f_{A,B,C \rightarrow B}(B) = \sum_A \sum_C P(B | A, C) P(A) \sum_D P(C | D) P(D)$$

$$= \sum_A \sum_C \sum_D P(B | A, C) P(A) P(C | D) P(D)$$

$$= \sum_A \sum_C \sum_D P(A, B, C, D)$$
Inference

Finding the most probable configuration

- Given a joint probability distribution $p(X)$
- We wish to find the configuration for variables X having the highest probability:

$$X^{\text{max}} = \arg\max_X p(X)$$

for which the probability is:

$$p(X^{\text{max}}) = \max_X p(X)$$

Note

- We want the configuration which is *jointly* maximal for all variables
- We cannot simply compute $p(X_i)$ for each i (using the sum-product algorithm) and maximize it
The max-product algorithm

\[p(X^{\text{max}}) = \max_X p(X) = \max_{X_1} \cdots \max_{X_M} p(X) \]

- As for the sum-product algorithm, we can exploit the distribution factorization to efficiently compute the maximum.
- It suffices to replace sum with max in the sum-product algorithm.

Linear chain

\[
\begin{align*}
\max_X p(X) &= \max_{X_1} \cdots \max_{X_N} [p(X_1)p(X_2|X_1) \cdots p(X_N|X_{N-1})] \\
&= \max_{X_1} \left[p(X_1)p(X_2|X_1) \left[\cdots \max_{X_N} p(X_N|X_{N-1}) \right] \right]
\end{align*}
\]
As for the sum-product algorithm, the max-product can be seen as message passing over the graph.

The algorithm is thus easily applied to tree-structured graphs via their factor trees:

$$
\mu_{f \rightarrow X}(X) = \max_{X_1, \ldots, X_M} \left[f(X, X_1, \ldots, X_M) \prod_{X_m \in \text{ne}(f) \setminus X} \mu_{X_m \rightarrow f}(X_m) \right]
$$

$$
\mu_{X \rightarrow f}(X) = \prod_{f_i \in \text{ne}(X) \setminus f} \mu_{f_i \rightarrow X}(X)
$$
Inference in Bayesian Networks

Recovring maximal configuration

- Messages are passed from leaves to an arbitrarily chosen root X_r
- The probability of maximal configuration is readily obtained as:

$$p(X_{\text{max}}) = \max_{X_r} \left[\prod_{f_i \in \text{ne}(X_r)} \mu_{f_i \rightarrow X_r}(X_r) \right]$$

- The maximal configuration for the root is obtained as:

$$X_{r \text{max}} = \arg\max_{X_r} \left[\prod_{f_i \in \text{ne}(X_r)} \mu_{f_i \rightarrow X_r}(X_r) \right]$$

- We need to recover maximal configuration for the other variables.
Recovring maximal configuration

- When sending a message towards x, each factor node should store the configuration of the other variables which gave the maximum:

$$
\phi_{f \rightarrow X}(X) = \operatorname{argmax}_{X_1, \ldots, X_M} \left[f(X, X_1, \ldots, X_M) \prod_{X_m \in \text{ne}(f) \setminus X} \mu_{X_m \rightarrow f}(X_m) \right]
$$

- When the maximal configuration for the root node X_r has been obtained, it can be used to retrieve the maximal configuration for the variables in neighbouring factors from:

$$
X_{1}^{\text{max}}, \ldots, X_{M}^{\text{max}} = \phi_{f \rightarrow X_r}(X_r^{\text{max}})
$$

- The procedure can be repeated back-tracking to the leaves, retrieving maximal values for all variables.
Example for linear chain

\[X^\text{max}_N = \arg\max_{X_N} \mu_{f_{N-1,N}} x_N(X_N) \]

\[X^\text{max}_{N-1} = \phi_{f_{N-1,N}} x_N(X^\text{max}_N) \]

\[X^\text{max}_{N-2} = \phi_{f_{N-2,N-1}} x_{N-1}(X^\text{max}_{N-1}) \]

\[\vdots \]

\[X^\text{max}_1 = \phi_{f_{1,2}} x_2(X^\text{max}_2) \]
Recovning maximal configuration

Trellis for linear chain

- A *trellis* or *lattice* diagram shows the K possible states of each variable X_n one per row.
- For each state k of a variable X_n, $\phi_{f_{n-1,n}}(X_n)$ defines a unique (maximal) previous state, linked by an edge in the diagram.
- Once the maximal state for the last variable X_N is chosen, the maximal states for other variables are recovering following the edges backward.
Inference

Underflow issues

- The max-product algorithm relies on products (no summation)
- Products of many small probabilities can lead to underflow problems
- This can be addressed computing the logarithm of the probability instead
- The logarithm is monotonic, thus the proper maximal configuration is recovered:

\[
\log \left(\max_x p(x) \right) = \max_x \log p(x)
\]

- The effect is replacing products with sums (of logs) in the max-product algorithm, giving the *max-sum* one
Exact inference on general graphs

- The sum-product and max-product algorithms can be applied to tree-structured graphs.
- Many applications require graphs with (undirected) loops.
- An extension of these algorithms to generic graphs can be achieved with the *junction tree algorithm*.
- The algorithm does not work on factor graphs, but on *junction trees*, tree-structured graphs with nodes containing clusters of variables of the original graph.
- A message passing scheme analogous to the sum-product and max-product algorithms is run on the junction tree.

Problem

- The complexity of the algorithm is exponential on the maximal number of variables in a cluster, making it intractable for large complex graphs.
Inference

Approximate inference

- In cases in which exact inference is intractable, we resort to *approximate* inference techniques.
- A number of techniques for approximate inference exist:
 - **loopy belief propagation**: message passing on the original graph even if it contains loops.
 - **variational methods**: deterministic approximations, assuming the posterior probability (given the evidence) factorizes in a particular way.
 - **sampling methods**: approximate posterior is obtained by sampling from the network.
Inference

Loopy belief propagation

- Apply sum-product algorithm even if it is not guaranteed to provide an exact solution
- We assume all nodes are in condition of sending messages (i.e. they already received a constant 1 message from all neighbours)
- A *message passing schedule* is chosen in order to decide which nodes start sending messages (e.g. *flooding*, all nodes send messages in all directions at each time step)
- Information flows many times around the graph (because of the loops), each message on a link replaces the previous one and is only based on the most recent messages received from the other neighbours
- The algorithm can eventually converge (no more changes in messages passing through any link) depending on the specific model over which it is applied

Inference in Bayesian Networks