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Abstract. Cysteines may form covalent bonds, known as disulfide bridges, that have an important role in stabilizing
the native conformation of proteins. Several methods have been proposed for predicting the bonding state of cysteines,
either using local context or using global protein descriptors. In this paper we introduce an SVM based predictor
that operates in two stages. The first stage is a multi-class classifier that operates at the protein level, using either
standard Gaussian or spectrum kernels. The second stage is a binary classifier that refines the prediction by exploiting
local context enriched with evolutionary information in the form of multiple alignment profiles. At both stages, we
enriched profile encoding with information about cysteine conservation. The prediction accuracy of the system is
85% measured by 5-fold cross validation, on a set of 716 proteins from the September 2001 PDB Select dataset.
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1. Introduction

The prediction of protein three-dimensional structure
from sequence is one of the most important and un-
solved problem in computational molecular biology.
Current sequencing technologies allow us to know en-
tire genomes for an increasing number of organisms.
The central dogma of molecular biology (DNA makes
RNA makes proteins) implies that from genomes we
also know protein sequences, but the biological func-
tion carried out by proteins cannot be understood from
their sequence alone. Unfortunately, the experimental
determination of structures is costly, very time con-
suming and, perhaps more importantly, often impos-
sible or impractical. The sequence (or primary struc-
ture) of a protein can be seen as a string on a twenty
letters alphabet, where each letter correspond to one
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amino acid. An ideal prediction tool would take as input
such a string and produce as its output the list of all the
atoms coordinates. This ab-initio prediction problem
is very challenging and is complicated by translational
and rotational invariance. Therefore, it makes sense to
solve intermediate steps by predicting invariant struc-
tural features, such as secondary structure or pairwise
distances between amino acids. These features can ei-
ther be used to help solving the structure or be useful
per se to characterize the biological behavior of the
protein. In this paper we focus on one specific predic-
tion problem in this scenario, namely the prediction of
the bonding state of cysteines, one of the twenty amino
acids that constitute proteins.

The oxidized form of cysteines plays a fundamental
role in the stabilization process of the native confor-
mation of proteins. The covalent bonds formed by cys-
teines, known as disulfide bridges, may connect very
distant portion of the sequence. The pattern formed
by disulfide bridges can help understanding structural
properties of the protein and to identify which fam-
ily the protein belongs to, giving important insights
about its biological function. Moreover, the location
of these bonds is a very informative constraint on the
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conformational space and the associated information
represents a significant step towards folding. Prediction
of disulfide bridges from sequence is thus one of the
important (and difficult) tasks in structural genomics.

Recent works related to the prediction of disulfide
bridges suggest methodologies based on two steps.
First, the disulfide-bonding state of each cysteine is
predicted (a binary classification problem) [1–3]. Sub-
sequently, once candidate cystines are known, other
algorithms can be used to predict the actual location
of disulfide bridges [4]. In this paper we are interested
in the first step. Currently available predictors are all
based on neural network approaches.

The program CYSPRED developed by Fariselli
et al. [1] (accessible at http://gpcr.biocomp.
unibo.it/predictors/cyspred/), uses a neural
network with no hidden units, fed by a window of 2k+1
residues, centered around the target cysteine. Each ele-
ment of the window is a vector of 20 components (one
for each amino acid) obtained from multiple alignment
profiles. This method achieved 79% accuracy (correct
assignment of the bonding state) measured by 20-fold
cross validation and using a non-redundant set of 640
high quality proteins from PDB Select [5] of October
1997. Accuracy was boosted to 81% using a jury of six
networks.

The program CYSREDOX, later developed by
Fiser and Simon [2] (accessible at http://pipe.
rockefeller.edu/cysredox/cysredox.html)
achieves state-of-the-art performance by exploiting
the observation that cysteines and half cystines1 rarely
co-occur in the same protein. The important criterion
in [2] is that if a larger fraction of cysteines are
classified as belonging to one oxidation state, then
all the remaining cysteines are predicted in the same
state. The accuracy of this method is as high as 82%,
measured by a jack-knife procedure (leave-one-out
applied at the level of proteins) on a set of 81 protein
alignments.

More recently, Mucchielli-Giorgi et al. [3] have pro-
posed a predictor that exploits both local context and
global protein descriptors (normalized statistics based
on amino acid frequencies, protein size, and number
of cysteines). One interesting finding in [3] is that pre-
diction of covalent state based on global descriptors is
more accurate (77.7%) than prediction based on local
descriptors alone (67.3%). This is not surprising in the
light of the results presented in [2] because when using
global descriptors all the cysteines in a given protein
are deemed to be assigned to the same state. Thus a

good method for classifying proteins in two classes is
also a good method for predicting the bonding state
of each cysteine. The effect of local context however
is not negligible: results in [3] show that 79.3% accu-
racy can be achieved by using an input vector joining
global and local descriptors (results in this case are
measured by 5-fold cross-validation on a set of 559
proteins from Culled PDB). Although results are not
directly comparable because different datasets are used
the performance levels attained in [1] and [2] suggest
that multiple alignment profiles are more discrimina-
tive than frequency-based descriptors when prediction
is based on a local window only.

Starting from the above observations, in this paper
we propose a novel approach for exploiting the key
fact that cysteines and half cystines rarely co-occur.
Classification is achieved in two stages. The first clas-
sifier predicts the type of protein based on the whole se-
quence. Classes in this case are “all”, “none”, or “mix”,
depending whether all, none, or some of the cysteines in
the protein are involved in disulfide bridges. The second
binary classifier is then trained to selectively predict the
state of cysteines for proteins assigned to class “mix”,
using as input a local window with multiple alignment
profiles together with the protein global descriptor. The
overall model is implemented as a probabilistic com-
bination of support vector machines, as detailed in the
remainder of the paper.

Furthermore, we study two extensions for improving
the three-state classifier in the above architecture. First,
we use a kernel machine based on the spectrum kernel
[6] that exploits the whole protein sequence as input.
Second, we introduce evolutionary information in the
form of cysteine conservation in multiple alignments.
These modifications allow to improve prediction accu-
racy to 85%.

2. Two-Stage Classification of Cysteines

Let Yi,t be a binary random variable associated with the
bonding state of cysteine at position t in protein i . By
W k

t we denote the context of cysteine t (a window of
size 2k + 1 centered around position t) enriched with
evolutionary information in the form of multiple align-
ment profiles. Moreover, let Di denote a global set of
attributes (descriptors) for protein i . We are interested
in building a model for P(Yi,t = 1 | Di , W k

t ).
For each protein, let Ci be a three-state variable

that represents the propensity of the protein to form
disulfide bridges. The possible states for Ci are “all”,
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“none”, and “mix”, depending whether all, none, or
some of the cysteines in the protein are involved in
disulfide bridges. After introducing Ci , the model can
be decomposed as follows:

P
(
Yi,t , Di , W k

t

)
=

∑
Ci

P
(
Yi,t | Di , W k

t , Ci
)
P

(
Ci | Di , W k

t

)
. (1)

We can simplify the above model by introducing some
conditional independence assumptions. First, we as-
sume that the type of protein Ci depends only on its
descriptor: P(Ci | Di , W k

t ) = P(Ci | Di ). Second, we
simplify Eq. (1) by remembering the semantics of Ci :

P
(
Yi,t = 1 | Di , W k

t , Ci = all
) = 1

(2)
P

(
Yi,t = 1 | Di , W k

t , Ci = none
) = 0

(this can be seen as a particular form of context-
specific independence [7]). As a result, the model in
Eq. (1) can be implemented by a cascade of two clas-
sifiers. Intuitively, we start with a multi-class classi-
fier for computing P(Ci | Di ). If this classifier predicts
one of the classes “all” or “none”, then all the cys-
teines of the protein should be classified as disulfide-
bonded or nondisulfide-bonded, respectively. If instead
the protein is in class “mix”, we refine the predic-
tion using a second (binary) classifier for computing
P(Yi,t | Di , W k

t , Ci = mix). Thus the prediction is ob-

Figure 1. The two-stage system. The protein classifier on the left
uses a global descriptor based on amino acid frequencies. The local
context classifier is fed by profiles derived from multiple alignments
together with protein global descriptor.

tained as follows (see also Fig. 1):

P
(
Yi,t = 1 | Di , W k

t

)
= P

(
Yi,t = 1 | Di , W k

t , Ci = mix
)

×P(Ci = mix | Di ) + P(Ci = all | Di ) (3)

By comparison, note that the method in [2] cannot
assign different bonding states to cysteine residues in
the same sequence.

3. Implementation Using Probabilistic SVM

Kernel machines, and in particular support vector ma-
chines (SVM), are motivated by Vapnik’s principle of
structural risk minimization in statistical learning the-
ory [8]. In the simplest case, the SVM training algo-
rithm starts from a vector-based representation of data
points and searches a separating hyperplane that has
maximum distance from the dataset, a quantity that
is know as the margin. More in general, when exam-
ples are not linearly separable vectors, the algorithm
maps them into a high dimensional space, called fea-
ture space where they are almost linearly separable.
This is typically achieved via a kernel function that
computes the dot product of the images of two exam-
ples in the feature space. The popularity of SVM is due
to the existence of theoretical results guaranteeing that
the hypothesis obtained from training data minimizes
a bound on the error associated with (future) test data.

The decision function associated with an SVM is
based on the sign of the distance from the separating
hyperplane:

f (x) =
N∑

i=1

yiαi K (x1, xi ) (4)

where x is the input vector, {x1, . . . , xN } is the set of
support vectors, K (·, ·) is the kernel function, and yi

is the class of the i-th support vector (+1 or −1 for
positive and negative examples, respectively).

3.1. Probabilistic Outputs in SVM

In their standard formulation SVMs output hard de-
cisions rather than conditional probabilities. However,
margins can be converted into conditional probabilities
in different ways both in the case of binary classifica-
tion [9, 10] and in the case of multi-class classification
[11]. The method used in this paper extends the algo-
rithm presented in [10], where margins in Eq. (4) are
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mapped into conditional probabilities using a logistic
function, parameterized by an offset B and a slope A:

P(Ci = 1 | x) = 1

1 + exp(−A f (x) − B)
(5)

In [10], parameters A and B are adjusted accord-
ing to the maximum likelihood principle, assuming a
Bernoulli model for the class variable. This is extended
here to the multi-class case by assuming a multinomial
model and replacing the logistic function by a softmax
function [12]. More precisely, assuming Q classes, we
train Q binary classifiers, according to the one-against-
all output coding strategy. In this way, for each point x,
we obtain a vector [ f1(x), . . . , fQ(x)] of margins, that
can be transformed into a vector of probabilities using
the softmax function as follows:

gq (x) = P(C = q | x) = eAq fq (x)+Bq∑Q
r=1 eAr fr (x)+Br

(6)

The softmax parameters Aq , Bq are determined as
follows. First, we introduce a new dataset {( f1(xi ), . . . ,
fQ(xi ), zi ), i = 1, . . . , m} of examples whose input
portion is a vector of Q margins and output portion is a
vector z of indicator variables encoding (in one hot) one
of Q classes. As suggested in [10] for the two classes
case, this dataset should be obtained either using a hold-
out strategy, or a k-fold cross validation procedure.2

Second we derive the (log) likelihood function under a
multinomial model, and search the parameters Aq and
Bq that maximize

� =
∑

i

Q∑
q=1

zq,i log gq (xi ) (7)

where zq,i = 1 if the i-th training example belongs to
class q and zq,i = 0 otherwise. Optimization can be
carried out by simple gradient descent.

3.2. A Fully-Observed Mixture of SVM Experts

While the above method yields multiclass conditional
probabilities it does not yet implement the model spec-
ified by Eq. (3). We now discuss the following general
model, that can be seen as a variant of the mixture-of-
experts architecture [13]:

P(Y = 1 | x) =
Q∑

q=1

P(C = q | x)P(Y = 1 | C = q, x)

(8)

In the above equation, P(C = q | x) is the probability
that q is the expert for data point x, and P(Y = 1 | C =
q, x) is the probability that x is a positive instance,
according to the q-th expert. Collobert et al. [14] have
recently proposed a different SVM embodiment of the
mixture-of-experts architecture, the main focus in their
case being on the computational efficiency gained by
problem decomposition. Our present proposal for cys-
teines is actually a simplified case since the discrete
variable C associated with the gating network is not
hidden.3 Under this assumption there is no credit as-
signment problem and a simplified training procedure
for the model in Eq. (8) can be derived as follows.

Let f ′
q (x) denote the margin associated with the q-th

expert. We may obtain estimates of P(Y = 1 | C =
q, x) using a logistic function as follows:

pq (x) = P(Y = 1 | C = q, x)

= 1

1 + exp(A′
q f ′

q (x) + B ′
q )

. (9)

Plugging Eqs. (6) and (9) into Eq. (8), we obtain the
overall output probability as a function of 4Q parame-
ters: Aq , Bq , A′

q , and B ′
q . These parameters can be esti-

mated by maximizing the following likelihood function

� =
m∑

i=1

1 − yi

2
log

(
Q∑

q=1

gq (xi )pq (xi )

)
(10)

The margins to be used for maximum likelihood esti-
mation are collected by partitioning the training set into
k subsets. On each iteration all the 2Q SVMs are trained
on k − 1 subsets and the margins computed on the
held-out subset. Repeating k times we obtain as many
margins vectors ( f1(x), . . . , fQ(x), f ′

1(x), . . . , f ′
Q(x))

as training examples. These vectors are used to fit the
parameters Aq , Bq , A′

q , and B ′
q on Eq. (10). Finally, the

2Q machines are re-trained on the whole training set.

3.3. Spectrum Kernel

The ultimate goal of predicting the bonding state of
cysteines is the location of disulfide bonds, a struc-
tural feature which depends on the properties of pos-
sibly very distant portions of the sequence. Therefore,
it might be useful to adopt computational approaches
which can exploit the whole sequence as input. Stan-
dard kernels assume a vectorial representation of the
input data and require a prior processing step where a
fixed set of features is extracted from each sequence.



Predicting the Disulfide Bonding State 291

On the other hand, convolution kernels [15] allow to
process structured data directly. The spectrum kernel
[6] is a convolution kernel specialized for string com-
parison problems. Given all the strings of length k in a
certain alphabet A, the k-spectrum of a sequence s is
the vector �k(s) whose components count the occur-
rences of each substring of s. The k-spectrum kernel of
s and s ′ is then defined as the dot product

K (s, s ′) = �k(s)��k(s ′)

and can be computed efficiently using suffix trees, a
data structure that has been employed for solving sev-
eral problems related to string matching [16].

A suffix tree for a given string s of length m is a tree
with exactly m leaves, where each path from the root to
a leaf is a suffix of s. Ukkonen’s algorithm constructs
suffix trees in time O(m) [17]. In our case, a suffix tree
can be used to identify all the substrings of length k
contained in the input sequence by following all the
possible paths of length k that start from the root of
the tree. Moreover, the occurrences of each substring
of s can be obtained by counting the number of leaves
in the subtree rooted at the end of the corresponding
path. Since the number of leaves equals the length of
the string, we have a linear-time method to calculate
the k-spectrum of a string.

When computing the kernel, further modifications
are needed to avoid explicit calculation of dot products.
A generalized suffix tree is a suffix tree constructed us-
ing more than one string [16]. Given a set of strings,
there exists a variant of Ukkonen’s algorithm that can
build the corresponding generalized suffix tree in time
linear in the sum of the length of all the strings. A
generalized suffix tree is eventually used to compute
the k-spectrum kernel at once, just traversing the tree
depth-first and counting the occurrences of every sub-
string of length k.

Interestingly, descriptors based on amino acid fre-
quencies as defined in [3], basically correspond to the
use of a spectrum with k = 1. Augmenting the feature
space by incorporating short subsequences increases
the expressive power of the model and may improve
prediction accuracy, if k is carefully chosen and enough
training sequences are avilable. A more general form
of the spectrum kernel can also be constructed sum-
ming the values of some k-spectrum kernels for certain
values of k. No modifications of the presented algo-
rithm are needed, given that all the k-spectrum kernel
with different k can be calculated at once with a single
traversal of the tree.

4. Data Preparation

All the experiments were carried out using a significant
fraction of the current representative set of non homol-
ogous protein data bank chains (PDB Select [5]). We
extracted the chains in the file 2001, Sep. 25 listing
1641 chains with percentage of homology identity less
than 25%. From this set we retained only high qual-
ity proteins on which the DSSP program [18] does not
crash, determined only by X-ray diffraction, without
any physical chain breaks and resolution threshold less
than 2.5 Å. The DSSP program was also used to iden-
tify disulfide bonds between cysteines. Proteins with
inter-chain bonds were not included in the final dataset
containing 716 proteins for a total of 4859 cysteines,
1820 of which in disulfide-bonded state and 3039 in
nondisulfide-bonded state. In this dataset, 187 proteins
are of type “all”, 478 are of type “none”, and 51 (i.e.
only 7%) of type “mix”. Evolutionary information is
derived from multiple sequence alignments, obtained
in our case from the HSSP database [19].

4.1. Input Encoding

The first stage classifier uses the descriptor Di as an
encoding of global characteristics of the protein chain.
We have adopted two different kinds of descriptor rep-
resentation. The first one is a real vector with 24 com-
ponents, similar to the one used in [3], which we used
in combination with standard kernel SVMs. The first
20 components are log(N j

i /N j ), where N j
i is the num-

ber of occurrences of amino acid type j in protein i
and N j is the number of occurrences of amino acid
type j in the whole training set. The 21st component
is log(Ni/Navg) where Ni is the length in residues of
sequence i and Navg is the average length of the pro-
teins in the training set. The next two components are
N cys

i /N cys
max and N cys

i /Ni where N cys
i and N cys

max are re-
spectively the number of cysteines in protein i and the
maximum number of observed cysteines in the training
set. The last component is a flag indicating whether the
cysteine count is odd.

The second descriptor representation is the amino
acid sequence itself and it is used in combination with
spectrum kernel SVMs, as described in the previous
section.

The local input window W k
t used by the second stage

classifier is represented as the set of multiple sequence
profile vectors of the residues flanking cysteine at po-
sition t . In the experiments, we used a symmetrical
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window centered at each cysteine varying the window
size parameter k from 8 to 10. Note that although the
central residue is always a cysteine, the corresponding
feature is still taken into account since the profile in
this case indicates the degree of conservation of the
cysteine. For each of the 2k + 1 positions we used a
vector of 22 components, enriching the 20-components
profile with relative entropy and conservation weight.

4.2. Cysteines Conservation

Cysteines tends to be conserved in multiple alignments
when they form disulfide bridges. In the experiments
reported below, we made available this information to
the three state classifier (none-all-mix) in two alter-
native ways. First, we defined an extended descriptor
with H additional components related to the conser-
vation of cysteines. For h = 0, . . . , H − 1, the h-th
extra component is the fraction of cysteines in the se-
quence whose multiple alignment conservation falls in
the bin [h/H, (h + 1)/H ]. This global descriptor is
also fed to the multi-classifier together with the local
window. Second, we defined a special sequential rep-
resentation of the proteins that incorporates evolution-
ary information. In this representation, a protein is a
string in an extended alphabet having 19 + Z symbols,
where occurrences of C (cysteine) are replaced by a
special symbol that indicates the degree of conserva-
tion of the cysteines in the correspondent positions of
multiple alignments. For example if Z = 2, one sym-
bol encodes highly (>50%) conserved cysteines and
another one encodes lowly conserved ones.

5. Results

For each classifier we run a preliminary set of exper-
iments to help the choice of the kernel type. In these

Table 1. Summary of the experimental results.

w17 w19 w21

Method A (%) P (%) R (%) A (%) P (%) R (%) A (%) P (%) R (%)

L 79.3 75.2 67.1 79.4 76.1 66.2 79.8 76.9 66.2

LG 83.3 82.4 70.8 83.0 82.5 69.4 82.8 82.0 69.7

LG + Desc24 84.0 82.6 73.0 83.6 82.1 72.2 83.2 81.6 71.5

LG + Desc29 84.1 85.1 70.3 84.1 85.3 70.0 84.3 85.4 70.4

LG + Spect24 84.8 82.7 75.5 84.9 83.7 74.5 85.1 83.6 75.1

experiments we used roughly 66% of the proteins for
training and the remaining as a validation set. We tried
linear, polynomial, and radial basis function (RBF) ker-
nel types. The RBF kernels yielded the best results for
the multi-class protein classifier, while binary classi-
fication of cysteines was more accurate when using a
polynomial kernel of third degree. The protein classi-
fier was additionally implemented and tested with the
spectrum kernel.

Keeping fixed the type of kernel, we used a 5-fold
cross-validation procedure to assess classification per-
formance. The training procedure has been described
in the implementation section, but on each fold we
used the framework of algorithmic stability recently
proposed in [20] as a tool for tuning kernel hyper-
parameters. In particular, in the case of RBF kernels,
we selected the radii that minimized the generaliza-
tion error bound based on the leave-one-out error. Soft-
max parameters (see Eqs. (6) and (9)) were estimated
by 3-fold cross validation (inside each fold of the
outer 5-fold cross-validation), after kernel parameter
estimation.

5.1. Description of the Experiments

Table 1 reports the results obtained on the 716 proteins
dataset. Each of the three major columns is relative
to a different size k of the local window. Minor
columns report classification accuracy A, precision P ,
and recall R. Accuracy (also denoted as Q2 in other
papers) is the fraction of correctly classified cysteines.
Precision (or sensitivity) is the fraction of cysteines
predicted in the disulfide-bonded state that are actually
bonded. Recall (or specificity) is the fraction of
disulfide-bonded cysteines that are correctly assigned
to their state by the predictor.

Results are reported for five different classifiers. The
first row (L) corresponds to a single classifier based on
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a support vector machine with a 3-rd degree polyno-
mial kernel, that only takes a local window of multiple
alignments profiles as input. The following row (LG)
reports the results for the same classifier with the inclu-
sion of the 24 values protein descriptor (also used in the
first global classifier) as input. In the other three exper-
iments, the local classifier LG is combined with differ-
ent global classifiers using the proposed two-stage ar-
chitecture. LG + Desc24 uses a global SVM classifier
(RBF kernel) taking as input the 24 values protein de-
scriptors. In LG + Desc29 we extended the global de-
scriptor adding 5 extra inputs encoding cysteine conser-
vation, as explained in the previous section. Finally, in
LG + Spect24 we employed the spectrum kernel for the
global classifier, with substrings’ dimensions from 2 to
5, using the extended alphabet with 24 symbols (Z = 5)
to incorporate information about cysteine conservation.

5.2. Discussion

We performed the first two experiments as a base-line
for our two-stages architecture. The results of the sim-
plest local classifier (L) can be easily compared to [1],
where the same kind of input is adopted. In order to
exploit the idea that a cysteine redox state depend glob-
ally on the protein structure, the global descriptor (24
real values) was used as an additional input to the lo-
cal classifier. This classifier, labeled LG, obtains an
accuracy over 83%, comparable to the state-of-the-art
architecture [2]. This classifier is also used in all the
subsequent experiments to learn the local component
P(Yi,t | Di , W k

t , Ci = mix).
The main contribution of this work is the use of a

separated global classifier to estimate the class of a
protein, and the combination of this prediction to the
output of each local classifier, as described in Section 2.
The results of the experiments (LG + Desc24) show an
increase in performance between the single-stage and
the two-stages architecture. This is a demonstration of
the ability of the latter architecture to build a richer
model for the global dependencies of the cysteines re-
dox state. A further improvement (LG + Desc29) is
obtained by adding the evolutionary information given
by the conservation of cysteines (Section 4.2), which
proves to be a valuable information for the solution of
this problem.

Finally, we employed the spectrum kernel for the
global classifier (LG + Spect24). This choice proved to
be successful, attaining the best performances, with an
accuracy near to 85% for a window of 21 residues. The

results demonstrate the capability of the spectrum ker-
nel to effectively process the protein’s primary structure
as a whole to build its own internal representation. This
opposes to the basic polynomial kernel, that needs an
encoding of the global characteristics of the protein in
a small descriptor, therefore loosing important infor-
mations that are written in the amino-acid sequence.
Moreover, the use of the spectrum kernel allows us to
feed the classifier with a representation of the conser-
vation for every cysteine in the protein, and therefore
to discriminate different patterns of conservation.

Generally speaking, when dealing with variable
length structures, the use of a spectrum-based kernel
(such as the kernel for strings used in this work) on a
direct representation of such structures can lead to bet-
ter results than standard classifiers working on features
extracted from the data.

6. Conclusions

We have proposed a novel method for predicting the
bonding state of cysteines, achieving state-of-the-art
performance on the most recent set of non-redundant
sequences from the Protein Data Bank. We have shown
that global features extracted through a spectrum kernel
can improve prediction accuracy compared to global
descriptors based on amino acid frequencies. Further-
more, the encoding of cysteine conservation is valuable
information and improves performance in all cases.

There are several obvious directions for further im-
proving this method. First, we have seen that reliable
detection of proteins that do not contain mixed types
of cysteines is very important for the overall perfor-
mance. In [3] it was shown that higher prediction accu-
racy is obtained by training and testing within groups
of homogeneous proteins. This result suggests that a
mixture-of-experts approach, where the gating network
is in charge of determining the protein group, is also
likely to yield improved performance. Second, it would
be interesting to try the integration of different global
approaches for capturing distant information. For in-
stance, recursive neural networks [21] could be used
to combine predictions over different cysteines in the
same protein.

Acknowledgments

We thank Sauro Menchetti who implemented part of
the SVM code used in the experiments.



294 Ceroni et al.

Notes

1. A cystine is the dimer formed by a pair of disulfide-bonded
cysteines.

2. The latter consists of splitting the data set in k disjoint subsets,
training on k−1 subsets, and using the remaining set for collecting
the samples used to estimate the margin distribution.

3. Actually the architecture in Fig. 1 for cysteines is even simpler
since two of the experts output a constant prediction.
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