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Abstract—We study the problem of multiclass classification
within the framework of error correcting output codes (ECOC)
using margin-based binary classifiers. Specifically, we address
two important open problems in this context: decoding and model
selection. The decoding problem concerns how to map the outputs
of the classifiers into class codewords. In this paper we introduce
a new decoding function that combines the margins through
an estimate of their class conditional probabilities. Concerning
model selection, we present new theoretical results bounding
the leave-one-out (LOO) error of ECOC of kernel machines,
which can be used to tune kernel hyperparameters. We report
experiments using support vector machines as the base binary
classifiers, showing the advantage of the proposed decoding func-
tion over other functions of the margin commonly used in practice.
Moreover, our empirical evaluations on model selection indicate
that the bound leads to good estimates of kernel parameters.

Index Terms—Error correcting output codes (ECOC), machine
learning, statistical learning theory, support vector machines.

I. INTRODUCTION

MANY machine learning algorithms are intrinsically
conceived for binary classification. However, in general,

real world learning problems require that inputs are mapped
into one of several possible categories. The extension of a
binary algorithm to its multiclass counterpart is not always pos-
sible or easy to conceive (examples where this is possible are
decision trees or prototypes methods such as -nearest neigh-
bors). An alternative consists in reducing a multiclass problem
into several binary subproblems. A general reduction scheme
is the information theoretic method based on error correcting
output codes (ECOC), introduced by Dietterich and Bakiri
[16] and more recently extended in [2]. The simplest coding
strategy, sometimes called “one-hot” or “one-versus-all,”
consists in defining as many dichotomies of the instance space
as the number of classes, where each class is considered as
“positive” in one and only one dichotomy. Typically, the binary
classifiers are trained independently but a few recent works
[12], [23] considered also the case where classifiers are trained
simultaneously. We focus on the former approach although
some of our results may be extended to the latter one.

Dichotomies can be learned in different ways. In this paper,
we are interested in the case of margin-based binary classifiers,
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as induced by a fairly large class of algorithms that include sup-
port vector machines (SVMs) [11], [33], but also classic methods
such as the perceptron [30] and its variants [20]. They all learn
a real-valued function of an instance , called the margin
of , and then take the sign of to obtain classification. The
theory developed by Vapnik [33] shows that when belongs to a
reproducing kernel Hilbert space , generalization is related to
the norm of in or, equivalently, to the margin of which can
be defined as the inverse of its norm.1 Therefore, it may be ex-
pected that methods such as SVMs, that attempt to maximize the
margin, will achieve good generalization. This setting is general
enoughtoaccommodatenonlinearseparationandnonvectordata,
provided that a suitable kernel function is used to define the inner
product in , see [14], [18], [31], [33], [34].

When using margin-based classifiers to implement a set of
dichotomies for multiclass problems, the input instance is first
mapped to a real vector of margins formed by the outputs of
the binary classifiers. A target class is then computed from this
vector by means of a decoding function [16]. In this setting,
we focus on two fundamental and complementary aspects of
multiclassification, namely (1) which strategy should be used
to “decode” the real vector of margins to obtain classification,
and (2) how to study the generalization error of ECOC and use
the results to estimate kernel hyperparameters.

Concerning the first aspect, early works assumed that the
output of each binary classifier was a boolean variable, and the
decoding strategy was based on the Hamming distance [16].
However, in the case that the binary learners are margin-based
classifiers, Allwein et al. [2] showed the advantage of using a
loss-based function of the margin. In this paper, we suggest a
different approach which is based on decoding via conditional
probabilities of the outputs of the classifiers. The advantages of-
fered by our approach are twofold. First, the use of conditional
probabilities allows to combine the margins of each classifier
in a principled way. Second, the decoding function is itself a
class conditional probability which can give an estimate of mul-
ticlassification confidence. We report experiments using support
vector machines as the base binary classifiers, showing the ad-
vantage of the proposed decoding function over other functions
of the margin commonly used in practice.

Concerning the second aspect of multiclassification with
margin-based classifiers, we begin by observing that the kernel
function typically depends on hyperparameters that are treated
as constants by optimization approaches like SVMs. However,
since they constitute additional degrees of freedom, their

1In the case of linearly separable data, the margin of f is equal to the minimum
of jf(x)j=kfk on the training set instances, where kfk is the norm of f in the
Hilbert space H.
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choice should be controlled in order to prevent overfitting.
Determining hyperparameters is often distinguished from the
estimation of the parameters that are optimized by a learning
algorithm. The problem is also known as model selection in
statistics and machine learning, where several early criteria
have been proposed (see, e.g., [1], [13], [32]). Model selection
usually consists in determining the value of a very small set of
hyperparameters. In this case, it can be carried out by calling as
a subroutine a learning algorithm that receives hyperparameters
as constant input arguments. Recent methods for tuning several
hyperparameters simultaneously include gradient descent
[5] and sensitivity analysis [10]. The former method consist
in choosing a differentiable model selection criterion and
searching a global optimum in the joint space of parameters and
hyperparameters. The latter works by iteratively minimizing
an estimate of the generalization error of the support vector
machine. The method proposed in this paper is based on a
general bound on the leave-one-out (LOO) error in the case of
ECOC of kernel machines. The bound can be directly used for
estimating the optimal value of a small set of kernel param-
eters. The novelty of this analysis is that it allows multiclass
parameters optimization even though the binary classifiers are
trained independently. We report experiments showing that the
bound leads to good estimates of kernel parameters.

The paper is organized as follows. In Section II we shortly
review the theory of ECOC and the associated loss-based de-
coding methods. In Section III we introduce a new decoding
function based on conditional probabilities and give a theoret-
ical justification of its validity. In Section IV we extend the
bound on the LOO error to the case of multiclassification. Fi-
nally, in Section V we empirically validate the usefulness of the
theoretical results presented in the paper.

II. BACKGROUND ON ECOC

ECOC work in two steps: training and classification. During
the first step, binary classifiers are trained on dichotomies of
the instance space, formed by joining non overlapping subsets of
classes. Assuming classes, let us introduce a “coding matrix”

which specifies a relation between classes
and dichotomies. means that points be-
longing to class are used as positive (negative) examples to train
the thclassifier .When ,pointsinclass arenotusedto
train the th classifier. Thus each class is encoded by the th row
of matrix which we denoted by . During prediction a new
input is classified by computing the vector formed by the out-
puts of the classifiers, and choosing
the class whose corresponding row is closest to . In so doing,
classification can be seen as a decoding operation and the class of
input is computed as

where is the decoding function. In [16], the entries of matrix
were restricted to take only binary values and the was chosen to
be the Hamming distance

(1)

Whenthebinarylearnersaremargin-basedclassifiers, [2]showed
the advantage of using a loss-based function of the margin

where isa loss function. is typically a nondecreasing function
of the margin and, thus, weights the confidence of each classifier
according to the margin. The simplest loss function one can use
is the linear loss for which . Several other
choices are possible, although no formal results exist that suggest
an optimal choice.

It is worthwhile noting that the ECOC framework includes
two multiclass classification approaches often used in practice:
one-versus-all and all-pairs. In the former approach there is one
classifier per class, which separates it from all the others. A new
input is assigned to the class whose associated classifier has
the maximum output. In the ECOC framework one-versus-all is
equivalent to linear decoding with a coding matrix whose
entries are always 1 except diagonal entries which are equal to
1. In the latter approach, also known as pairwise coupling [21]
or round robin classification [22], there are classi-
fiers, each separating a pair of classes. Classification is decided
by majority voting. This scheme is equivalent to Hamming de-
coding with the appropriate coding matrix.

When all binary classifiers are computed by the same
learning algorithm, Allwein et al. [2] proposed to set to be
the same loss function used by that algorithm. For example,
in the case of SVMs, this corresponds to the soft-margin loss
function , where if
and zero otherwise (see Section IV-A). In the next section we
suggest a different approach which is based on decoding via
conditional probabilities of the outputs of the classifiers.

III. DECODING FUNCTIONS BASED ON CONDITIONAL

PROBABILITIES

As aforementioned, a loss function of the margin may have
some advantages over the standard Hamming distance because
it can encode the confidence of each classifier in the ECOC.
This confidence is, however, a relative quantity, i.e., the range
of the values of the margin may vary with the classifier used.
Thus, just using a linear loss function may introduce some bias
in the final classification in the sense that classifiers with a larger
output range will receive a higher weight. Not surprisingly, we
will see in the experiments in Section V that the Hamming de-
coding usually works better than the linear one in the case of
pairwise schemes. A straightforward normalization in some in-
terval, e.g., , can also introduce bias since it does not fully
take into account the margin distribution. A more principled ap-
proach is to estimate the conditional probability of each class

given the input . Given the trained classifiers, we assume
that all the information about that is relevant for determining
the class is contained in the margin vector (or for short),
i.e., . Let us now introduce the
set of all possible codewords , and let be a
random vector of binary variables. A realization of will be a
codeword. For simplicity, we shall use the symbols and
to denote codebits. The probability of given the margin vector
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can thus be rewritten by marginalizing out codewords and de-
composing using the chain rule

The above model can be simplified by assuming the class to
be independent of given the codeword . This assumption
essentially means that has a direct causal impact on , and in
turn has a direct causal impact on . As a result

We choose a simple model for the probability of class given
the codeword by looking at the corresponding row in the
coding matrix. A zero entry in the row is treated as “don’t care,”
i.e., replacing it with a a value of 1 or 1 results in an equally
correct codeword for the class. Thus each class has a number
of valid codes given by all possible substitutions of 1 or 1
in the zero entries of . Invalid codes are those which are
not valid for any class . We then define

if
if with
otherwise (i.e., is not

a valid class code).

Under this model

where

collects the probability mass dispersed on the invalid codes. We
further assume that each individual codebit is conditionally
independent of the others given , and that it is also indepen-
dent of the other outputs given (in other words, we are
assuming that the only cause for is ). Our conditional in-
dependence assumptions can be graphically described by the
Bayesian network depicted in Fig. 1. As a result, we can write
the conditional probability of the class as

(2)

We further note that the probability of a bit corresponding to a
zero value in the coding matrix is independent of the output of
the classifier (it is a “don’t care” bit). Moreover, it should be
equally distributed between the possible realizations .
All valid codes for a given class have then the same
probability

Fig. 1. Bayesian network describing the probabilistic relationships amongst
margins, codewords, and class.

where is the number of zero entries in the row corresponding
to the class. By noting that there are exactly of such valid
codes, we can simplify (2) to

(3)

In this case, the decoding function will be

(4)

The problem boils down to estimating the individual conditional
probabilities in (3), a problem that has been addressed also in
[26], [28]. Our solution consists of fitting the following set of
parametric models

where and are adjustable real parameters that reflect the
slope and the offset of the cumulative distribution of the mar-
gins. and can be estimated independently by maximizing
the following set of Bernoulli log-likelihoods

(5)
The index in (5) runs over the training examples ( , ). It
must be observed that fitting the sigmoid parameters using the
same examples used to train the margin classifiers would un-
avoidably lead to poor estimates since the distribution of
is very different for training and for testing instances (for ex-
ample, in the case of separable SVMs, all the support vectors
contribute a margin that is exactly 1 or 1). To address this,
in our experiments we used a threefold cross-validation proce-
dure to fit and , as suggested in [28].

We remark that an additional advantage of the proposed de-
coding algorithm is that the multiclass classifier outputs a con-
ditional probability rather than a mere class decision.

IV. ECOC OF KERNEL MACHINES

In this section, we study ECOC schemes which use kernel
machines as the underline binary classifier. Our main result is a
bound on the LOO error of the ECOC with a general decoding
function. We first recall the main features of kernel machines
for binary classification.
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A. Background on Kernel Machines

Let be a training set
and a loss function. Kernel machines [14], [18],
[31], [33] are the minimizers of functionals of the form

(6)

where is a positive constant named regularization parameter.
The minimization of functional in (6) is done in a reproducing
kernel Hilbert space (RKHS) defined by a symmetric and
positive definite kernel , and is the
norm of a function belonging to . This norm is
a measure of smoothness, e.g., a Sobolev norm [15]. Thus, the
regularization parameter trades off between small empir-
ical error and smoothness of the solution. A correct choice of
prevents from overfitting. In fact, this is theoretically justified
by means of VC-theory [4], [18], [33]. For more information on
RKHS see [3], [15], [19], [27], [34].

Assuming is convex, the minimizer of functional in (6) is
unique and has the form2

(7)

The coefficients are computed by solving an optimization
problem whose form is determined by the loss function . For
example, in SVMs [11], is the soft-margin loss,

. In this case, the are the solution of a quadratic
programming problem with constraints —see,
e.g., [18]. A peculiar property of an SVM is that, usually, only
few data points have nonzero coefficients . These points are
named support vectors. For more information on SVMs, see,
e.g., [14], [31].

B. Bounds on the LOO Error

We now present our bound on the LOO error of ECOC of
kernel machines.

We define the multiclass margin [2] of point
to be

with

When and is the linear loss, reduces to twice
the definition of margin for binary classification.3 When
is negative, point is misclassified. Thus, the empirical misclas-
sification error can be written as

where is the Heavyside function: if and
zero otherwise.

2We assume that the bias term is incorporated in the kernel K .
3Assuming S = 2 andm = �m = f1;�1g.

The LOO error is defined by

where we have denoted by the margin of example
when the ECOC is trained on the data set . The
LOO error is an interesting quantity to look at when we want to
find the optimum hyperparameters of a learning machine, as it is
an almost unbiased estimator for the test error (see, e.g., [33]).4

Unfortunately, computing the LOO error is time demanding
when is large. This becomes practically impossible in the case
that we need to know the LOO error for several values of the
parameters of the machine used. In the case of binary SVMs,
bounds on the LOO error were studied in [10]—see also [17]
and references therein.

In the following theorem we give a bound on the LOO
error of ECOC of kernel machines. An interesting feature
is that the bound only depends on the solution of the ma-
chines trained on the full data set (so training the machines
once will suffice). Below we denote by the -machine,

, and let .
We first present the result in the case of linear decoding.

Theorem 4.1: Suppose the linear decoding function
is used, where denotes the inner

product. Then, the LOO error of the ECOC of kernel machines
is bounded by

(8)

where we have defined the function

(9)
with .

The proof is postponed to the Appendix. The theorem says
that point is counted as a LOO error when its multiclass
margin is smaller than . This function is always
larger or equal than the positive value

Roughly speaking, this value is controlled by two factors: the
parameters , (where each parameter indicates if
point is a support vector for the th kernel machine) and the
Hamming distance between the correct codeword and the
closest codeword to it .

Theorem 4.1 also enlightens some interesting properties of
the ECOC of kernel machines which we briefly summarized in
the following.

4We remark that using the LOO error to select the model parameters presents
an important problem, namely that the variance of this estimator may be large,
see, e.g. [9]. More generally, a k-fold cross validation estimator may have large
variance when k is small, see [24]. On the contrary there is little bias in the
estimator. So, ideally, k should be selected in order to minimize the sum of
the bias and variance, which is highly time consuming. Fortunately, in many
practical situations, as also our experiments below indicate, using the LOO error
estimator this is not much of a problem.
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• Relation between the regularization parameter and
LOO error

Assume that, for every , with
(see, e.g., [18]). In this case

where . Thus, the smaller is, the
closer the LOO error to the empirical error will be. In
particular, if the LOO would typically not deviate
much from the empirical error.

• Stability of the ECOC schemes
One-versus-all schemes are more stable than other

ECOC schemes, meaning that their multiclass margin
is less affected by removing one point in that case. In
fact, note that in the one-versus-all scheme each pair of
rows has only two different elements, so when one point
is removed, the bound in Theorem 4.1 implies that the
margin will not change of more than . For pairwise
schemes, instead, the worst change is . For
dense codes the situation is even worse: the worst case
is . This observation provides some insights
on why the simple one-versus-all SVMs works well in
practice.

• One-versus-all schemes
For one-versus-all schemes we easily see that

This has a simple interpretation: when is removed from
the training set, its margin is bounded by the margin ob-
tained if the classifier of that point, , was penalized by

while the remaining classifiers , , increased
their margin of .

Finally, we note that the bound in (8) is close the LOO
error when the parameter used to train the kernel machine
is “small,” i.e., when for every .
Improving the bound when this condition does not hold is an
open problem.

Theorem 4.1 can be extended to deal with other decoding
functions provided that they are monotonic nonincreasing. This
is formalized in the next corollary, whose proof is in the Ap-
pendix.

Corollary 4.1: Suppose the loss function is monotonic non
increasing. Then, the LOO error of the ECOC of kernel ma-
chines is bounded by

(10)

Note that the corollary applies to all decoding functions used in
the paper.

V. EXPERIMENTS

The proposed methods are validated on ten data sets from
the UCI repository [6]. Their characteristics are shortly sum-
marized in Table I. Continuous attributes were linearly normal-
ized between zero and one, while categorical attributes where

TABLE I
CHARACTERISTICS OF THE DATA SETS USED

“one-hot” encoded, i.e., if there are categories, the th cate-
gory is represented by a -dimensional binary vector having the

th coordinate equal to 1 and all remaining coordinates equal to
zero.

A. Comparison Between Different Decoding Functions

We trained ECOC using SVMs as the base binary classi-
fier,5 with a fixed value for the regularization parameter given
by the inverse of the training set average of . In our
experiments, we compared our decoding strategy to Hamming
and other common loss-based decoding schemes (linear, and
the soft-margin loss used to train SVMs) for three different
types of ECOC schemes: one-versus-all, all-pairs, and dense
matrices consisting of columns of entries.6 SVMs
were trained on a Gaussian kernel .
In order to avoid the possibility that a fortuitous choice of the
parameter could affect our results we carried out an extensive
series of experiments where we compared the test error of the
four decoding schemes considered for 11 different values of .

Results are summarized in Figs. 2 and 3. For data sets with
less than 2000 instances (Fig. 2) we estimated prediction ac-
curacy by a 20-fold cross-validation procedure. For the larger
data sets (Fig. 3), we used the original split defined in the UCI
repository except in the case of letter, where we used the split
of 15 000–5000.

Our likelihood decoding works better for all ECOC schemes
and for most values of , and is often less sensitive to the choice
of the kernel hyperparameter.

Another interesting observation is that the Hamming distance
works well in the case of pairwise classification, while it per-
forms poorly with one-versus-all classifiers. Both results are not
surprising: the Hamming distance corresponds to the majority
vote, which is known to work well for pairwise classifiers [21]
but does not make much sense for one-versus-all because in this
case ties may occur often.

The behavior of all curves shows that tuning kernel parame-
ters may significantly improve performance. We also note that
a simple encoding scheme such as one-versus-all performs well
with respect to more complex codes. This seems to be due to

5Our experiments were carried out using SVMLight [35].
6Dense matrices were generated using a variant of the BCH algorithm [7]

realized by Dietterich [16].
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Fig. 2. Test error plotted against kernel hyperparameter 
 . Data sets anneal, ecoli, glass, soybean, yeast.

the fact that binary SVM trained with Gaussian kernel provide
complex decision functions, and one should not use a complex
EOOC unless some prior knowledge indicates to do so. Similar
results were observed for text classification [29].

B. Model Selection Experiments

We now show experiments where we use the bound presented
in Section IV-B to select optimal kernel parameters. We focused
on the datasets with more than 2000 instances, and searched for
the best value of the hyperparameter of the Gaussian kernel.
To simplify the problem we searched for a common value for all
binary classifiers among a set of possible values. Plots in Fig. 4
show the test error and our LOO estimate for different values of

for the three ECOC schemes discussed in the previous section.
Notice that the minimum of the LOO estimate is very close to
the minimum of the test error, although we often observed a
slight bias toward smaller values of the variance.

VI. CONCLUSION

We studied ECOC constructed on margin-based binary
classifiers under two complementary perspectives: the use of
conditional probabilities for building a decoding function, and
the use of a theoretically estimated bound on the LOO error for
optimizing kernel parameters. Our experiments show that trans-
formingmarginsintoconditionalprobabilitieshelpsrecalibrating
the outputs of the classifiers, thus improving the overall multi-
class classification accuracy in comparison to other loss-based
decoding schemes. At the same time, kernel parameters can be
effectively adjusted by means of our LOO error bound. This
further improves classification accuracy.

The probabilistic decoding method developed here assumes a
fixedcodingmatrixformappingcodewordstoclasses.Thischoice
alsofixestheconditionalprobabilitydistributionoftheclassgiven
the codeword, although in a more general setting this conditional
probability could be left unspecified and learned from data.
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Fig. 3. Test error plotted against kernel hyperparameter 
 . Data sets letter, optdigits, pendigits, satimage, segment.

The LOOboundpresented in thispapercouldbesmoothed into
adifferentiablefunction,enablingtheapplicationto theoptimiza-
tionofseveralhyperparameterssimultaneously.Aninterestingfu-
turestudy in this sense is touse thederived LOObound to perform
featureselection.Fromatheoreticalviewpoint itwillbealsointer-
esting to study generalization error bounds of the ECOC of kernel
machines. It should be possible to use our result within the frame-
work of stability and generalization introduced in [8].

APPENDIX

We present here the proofs of the results presented in Sec-
tion IV. To this end, we first need the following lemma.

Lemma 1.1: Let be the kernel machine as defined in (7)
obtained by solving (6). Let be the solution of (6) found when
the data point ( , ) is removed from the training set. We have

(11)

Proof: The left-hand side (LHS) of (11) was proved
in [25]. Note that, if is not a support vector, and

, so both inequalities are trivial in this case. Thus
suppose that is a support vector. To prove the right-hand side
(RHS) inequality we observe that , and

. By combining the two bounds and
using the definition of we obtain that

Then, the result follows from the fact that is monotonic.
Proof of Theorem 4.1: Our goal is to bound —

the multiclass margin of point when this is removed from the
training set—in terms of the parameters obtained by training
once the machines on the full training set. We have

where we have defined
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Fig. 4. Empirical comparison between test error (dashed line) and the LOO (solid line) bound of Corollary 4.1. The likelihood decoding function is used in all
the experiments.

By applying Lemma 1.1 simultaneously to each kernel machine
used in the ECOC procedure, Inequality (11) can be rewritten as

where is a parameter in . Using the above equation,
we have

Last inequality follows from the observation that
is always nonnegative. From the same inequality, we have

from which the result follows.
Proof of Corollary 4.1: Following the main argument in

the proof of Theorem 4.1, the multiclass margin of point when
this is removed from the training set is bounded as

where is a shorthand for the minimum with respect to
, for . This minimum may be diffi-

cult to compute. However, is it easy to verify that when the loss
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function is monotonic nonincreasing, the minimum is always
achieved at the right border

This concludes the proof.
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