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Abstract
Events are structured entities with multiple components: the event type, the participants with their
roles, the outcome, the sub-events etc. A fully end-to-end approach for event recognition from raw
data sequence, therefore, should also solve a number of simpler tasks like recognizing the objects
involved in the events and their roles, the outcome of the events as well as the sub-events. Ontological
knowledge about event structure, specified in logic languages, could be very useful to solve the
aforementioned challenges. However, the majority of successful approaches in event recognition
from raw data are based on purely neural approaches (mainly recurrent neural networks), with
limited, if any, support for background knowledge. These approaches typically require large training
sets with detailed annotations at the different levels in which recognition can be decomposed (e.g.,
video annotated with object bounding boxes, object roles, events and sub-events). In this paper,
we propose a neuro-symbolic approach for structured event recognition from raw data that uses
”shallow” annotation on the high-level events and exploits background knowledge to propagate this
supervision to simpler tasks such as object classification. We develop a prototype of the approach
and compare it with a purely neural solution based on recurrent neural networks, showing the higher
capability of solving both the event recognition task and the simpler task of object classification, as
well as the ability to generalize to events with unseen outcomes.
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1 Introduction

Events are structured entities with multiple components and relations with other entities [18].
The most important components of an event are the event type, the participants with their
roles, the sub-events, and the event outcome. Therefore, the approaches for full fledged
event recognition should be able to extract the information about all the components of the
events that happen in a data sequence. To this aim, a system for event detection should
solve a number of different simpler tasks like recognizing the objects involved in the events
and their roles, the outcome of the events as well as the sub-events. In this context, having
background knowledge about the event structure, specified in logic languages, could be very
useful to solve the aforementioned challenges. However, looking at [22], one can see that
the majority of neural approaches (also knows as sub-symbolic) applied in event recognition
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strictly rely on the features learnt by the underlying networks with limited, if any, support
for background knowledge. Furthermore, the training of the underlying networks of these
approaches requires a large amount of training data with a detailed supervision on all the
events’ components (e.g., a video annotated with events, sub-events, object roles and object
bounding boxes). Alternatively, one could think to have data with an annotation limited
to the occurrence of an event (i.e., a ”shallow” annotation) and exploit the background
knowledge to infer information on the event components. For example, if a video clip is
annotated with the event ”John is preparing a cappuccino to Mary”, one can infer from
the background knowledge that the video is showing at least two people, one male and one
female, that John is preparing the cappuccino by mixing milk and coffee into two cups,
etc. All of these inferred facts can be used as supervision to neural networks to solve the
simpler tasks defined above and to recognize the structured event as well. In this case,
neuro-symbolic frameworks e.g., DeepProbLog [13], Logic Tensor Networks [19], LYRICS
[14] that combine low-level neural perceptions with logic reasoning (also know as symbolic)
seem to be suitable approaches to achieve these objectives. In this paper, we propose a
neuro-symbolic approach for structured event recognition from raw data that uses ”shallow”
annotation on the high-level events and exploits background knowledge to propagate this
supervision to simpler tasks such as object classification. We develop a prototype of the
approach and compare it with a purely neural solution based on a recurrent neural network,
showing the higher capability of solving both the event recognition task and the simpler task
of object classification, as well as the ability to generalize to events with unseen outcomes.
The detailed contributions of the paper are the following:
1 a formal definition of the problem of structured event recognition from raw data sequences

with ”shallow” annotations and of a neuro-symbolic solution combining low-level neural-
based predictions with high-level reasoning;

2 a framework for automatically generating simple videos containing events which are fully
annotated;

3 a prototypical neuro-symbolic recognition approach based on DeepProbLog;
4 an experimental evaluation that compares our approach with a purely neural solution,

showing the advantage of explicitly using background knowledge.
The rest of the paper is organized as follows: Sections 2 formally defines the problem of
structured event recognition with ”shallow” annotation; Section 3 presents our proposed
solution; Section 4 briefly reviews the state of the art approaches that have been proposed in
the context of event recognition, and presents some of the most well-known neuro-symbolic
frameworks; Section 5 describes the event generation framework; Section 6 presents the
experimental setting; Section 7 describes the neural LSTM approach and our prototype
approach based on DeepProbLog; Section 8 reports the experimental results; Finally, Section 9
draws some concluding remarks and discusses directions for future work.

2 Problem definition

Let L be a first order language with three sorts, O, E, and T. Terms of sort O denote
objects, terms of sort E denote events, and terms of sort T denote time-points. The language
contains the constants 0, 1, 2, . . . of sort T, used to name time points and the binary relation
<: T×T → {⊤, ⊥}. The language L also contains a set of predicates P of sort Ok → {⊥, ⊤},
which are used to describe the time invariant properties and relations between objects. L
contains also a set of function symbols E of sort Ok → E that are used to describe events that
involve a (possible empty) tuple of objects. We also have a relationship outcome(E,O) that
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is used to describe the fact that the outcome of an event is an object. Finally, L contains
the predicate happens(E,T,T) that is used to describe the fact that a certain event happens
within an interval of time. For example, the formula ∃x.happens(drop(John, x), t1, t2) states
that John drops an object x at some time between t1 and t2. Notice that events can “create”
new objects, for example the result of mixing milk and coffee is a cappuccino. This is
expressed by the formula milk(x) ∧ coffee(y) → outcome(mix(x, y), z) ∧ cappuccino(z). A
narrative is an interpretation I of the language L, where the terms of sort T are interpreted
in the set of natural numbers and < in the usual linear order. The terms of sort O are
interpreted in a domain of objects ∆O and those of E are interpreted in a domain of events
∆E. Since we are interested in finite narratives, i.e., narratives that involve a finite number of
objects and a finite number of events and time points, we can specify a narrative by using the
Herbrand Base. In particular, for every k > 0 we define a k-narrative as a pair N = (C, F)
where:

C is a finite set of new constants for objects of type O;
F is a subset of ground atoms in the language of L extended with the constants in C and
the constants 0, 1, . . . , k of sort T; such that: if happens(e, t1, t2) ∈ F then t1 ≤ t2.

Our main aim is to reconstruct a narrative from a data stream using some neuro-symbolic
method that is capable of combining low-level data processing capabilities with the ability to
leverage background knowledge about the structure of events. More formally, let D = {di}k

i=1
be a data sequence of length k, where each di ∈ X is a low-level representation for sequence
element i (like a real-valued vector, matrix or tensor). Our main objective is to generate a k-
narrative that describes the events that happen in D, when they happens, their participants,
and their outcomes. In other words we want to extract from D:

a set of objects;
the properties and the relations between the objects;
the set of events that happen;
the objects (arguments) that are involved in each event that happens;
the outcomes of the events that happen.

▶ Example 1. Let D be a video showing two people, one moving, leaving a bag and then
moving away, and the other standing. We would like to produce the following narrative:

C = {p1, p2, b1} F =


person(p1), person(p2), bag(b1),

happens(move(p1), 0, 4), happens(drop(p1, b1), 4, 5)
happens(move(p1), 5, 7),


The type of supervision we suppose to have, in order to learn a model that extracts narratives
from data, is partial and consists of a set of n data sequences labelled with some (not
necessarily all the) ground facts about events happening in the sequence:{

D(i), F (i)
p

}n

i=1

where D(i) = {d
(i)
j }k

j=1 is a data sequence and F (i)
p is a set of positive and negative literals,

denoting a subset of the events that happen or don’t happen in D(i). Notice that we do not
need to have a complete labelling for all the events. Furthermore, notice that the supervision
provided via F (i)

p also provide a supervision for the subset of objects (i) that appear in the
data stream D(i), which is the set of constants of type O that appear in the positive literals
of F (i)

p .
Events can be related to each other, and structured events can be defined in terms of

simpler ones.
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▶ Example 2. Let potential_threat represent a structured event corresponding to a potential
threat represented by something happening in a video like the one in the previous example.
The threat could be modelled by the following formula:

happens(potential_threat, t0, t3) ↔
∃x, y, t1, t2.person(x) ∧ bag(y) ∧

happens(move(x), t0, t1) ∧
happens(drop(x, y), t1, t2) ∧
happens(move(x), t2, t3)

(1)

An example of supervision in this context could be a set of videos D(1), D(2), . . . , D(m) of
length k, each of which is annotated with either the single fact happens(potential_threat, 0, k)
or with the single fact ¬happens(potential_threat, 0, k).

3 Proposed solution

Looking at the examples of the previous section, we observe that a structured event can
be expressed in terms of simple events using logical languages. Simple events include the
objects participating in the structured event, their relationships and their individual actions.
Therefore, the correct recognition of the simple events combined with the definition of the
structured event at the logical level will lead to the recognition of the structured event.
Our proposed approach has two aims, respectively learning to recognize the structured event
happening in a data sequence and the simple events that compose it. To achieve these aims,
we provide both background knowledge on the domain, expressed in terms of logical formulas,
and ”shallow” annotations on the structured event, like the one for the potential_threat
example of section 2. In order to solve our problem, we have to complete three tasks:
object detection: in order to build the narrative, we have to find the set of objects C1 that

appear in a data sequence D.
object classification and relation detection: We also have to classify the objects in their

types, e.g., a chair, a person, . . . , and we have to detect relations between objects, e.g. if
the person holds a bag or not.

event recognition: we have to recognize the events that happen in the video.
The traditional approach to solve the problem is to use a pipeline, where the above tasks are
solved sequentially and the result of the solution of the previous task is provided as input to
the next task. However, this requires supervision at all levels, the objects in the data, their
class and the events. We instead have only partial supervision on some events.
In our solution we propose to have a fully end-to-end approach in which both the supervision
on data and the background knowledge are used to train some neural networks for more data
driven tasks such as object detection and classification. We therefore suppose to have the
following components:

A neural network Detnn that takes as input a sequence D and returns a set of objects
C each of which is associated with a set of numeric features f(o). For example, if
D = {di}k

i=1 is a video, then f(o) contains the bounding boxes of object o at each frame
di and the crop of the image on the bounding box for each frame;
for some (not necessarily all) object predicates we have a network Pnn that takes as
input the features of an n-tuple of objects f(o1), f(o2), . . . , f(on) and returns a sequence
in [0, 1]k which represents the level of truth or probability of truth of the predicate at

1 objects and constants are used interchangeably
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each time point 0 ≤ i ≤ k. For example, for the person predicate in the examples in
the previous section we would have a network that given a sequence of cropped images
outputs for each image the probability that it contains a person.

All the outputs of the neural networks defined above can be combined with the background
knowledge which is described in terms of the axioms, such as equation (1). The way in
which this combination is achieved could be based both on probabilistic semantics or on
fuzzy semantics. At this stage we do not want to commit on one or the other. A list of
neuro-symbolic approaches that can be adopted to implement our architecture is provided in
the related work section. In the following we provide a proof-of-concept implementation of
the architecture described above using DeepProbLog [13].

4 Related work

Event recognition from data streams like videos, audio and text is a well-studied problem.
With the advent of deep learning, most sub-symbolic approaches to event recognition have
moved from processing hand-crafted features to automated representation learning from raw
data (see [1] and [22] for a survey). In order to be effective, however, these approaches require
large and deeply annotated datasets, where supervision on the different sub-tasks defining
the event recognition problem is available for training. On the other hand, purely symbolic
approaches to event recognition [4] allow to explicitly define the conditions that lead to the
occurrence of an event, but may fail in the presence of noise. As a consequence, symbolic
approaches that can deal with uncertainty have emerged (see [2]). In [20, 3], the authors
recognize structured events from a combination of low-level events. This recognition was done
considering only uncertainty on low-level events and using ProbLog [17] as a probabilistic
reasoner. Low-level predictions are however assumed to be given and no attempt is made
at predicting low-level events from raw data. A number of approaches [9, 10, 23] combine
symbolic reasoning with pre-trained neural networks used to recognize low-level events. These
approaches require full supervision at the different levels and cannot be applied in the setting
we address in this work.
In this work we aim at combining the advantages of low-level neural processing and high-level
symbolic reasoning to achieve effective event recognition from small datasets and shallow
annotations. Neuro-symbolic integration is an active area of research and multiple frameworks
have been proposed. These frameworks combines low-level neural perception with high level
reasoning in different ways. Many approaches, like LYRICS [14] or Logic Tensor Networks [19]
combine neural predictors with fuzzy logic. NeurASP [24] combines neural networks with
answer set programming, while [6] and [15], use neural networks to define potentials in
probabilistic graphical models. Among existing frameworks, DeepProbLog [13] is particularly
appealing in terms of expressivity. DeepProbLog extends the probabilistic programming
language ProbLog with neural predicates, achieving an elegant and powerful combination of
neural networks, logic and probability. We thus leverage DeepProbLog as the underlying
integration framework for our neuro-symbolic event recognition prototype.

5 Event generation framework

Most of the available datasets for event recognition provide only limited annotations on some
but not all the elements of an events. For example, in the context of event recognition in
video there are dataset like Olympic Sport [16] and UCF101 [21] that provide annotation only
on the event happening in the video. Datasets like CAVIAR [5], MEVA [7], Cooking [11] and

TIME 2021
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(a)

(b)

Figure 1 Example of events generated by the framework: join_add (a) and join_sub (b).

HiEve [12] provide a richer annotation, e.g., objects classes, object locations and distinction
between simple and structured events, but they introduce a level of complexity in the visual
part that requires pre-trained models for processing low level features. Here we are interested
in developing a neuro-symbolic system that is trainable end-to-end, where the learning of
the low-level processing is influenced by the high-level knowledge. Furthermore, the above
mentioned datasets were manually curated, and cannot be extended to consider newly defined
structured events without a tedious process of data collection and manual annotation. We,
instead, would like to be able to quickly generate new data streams containing new events so
as to support a fast prototyping and testing of recognition architectures. For these reasons,
we have implemented a video generator of events involving mnist digits. The generator allows
to generate videos of different length and with a different number of digits that interact with
each other, together to the narrative describing the objects and events in the video. The
generator uses an object predicate digit(x, v) to indicate that v is the value corresponding to
object x. Concerning events, we distinguish between simple events that involve single digits
and structured ones that involve combinations of digits. The simple events we defined are:

appear(x): a digit x appears in the video
disappear(x): a digit x disappears from the video
enter(x): a digit x enters in the video
exit(x): a digit x exits from the video

The difference between appear/disappear and enter/exit is that in the former case the
digit is always fully visible when in the video, while in the latter case the digit is only partially
visible upon entering/exiting. Example of structured events definable in the framework are:

join_add(x, y): two digits, respectively x and y, approach each other, overlap and then the
digit that is the result of the sum of the two digits appears, i.e., outcome(join_add(x, y), z)
with digit(x, vx), digit(y, vy), digit(z, vz) and vz = vx + vy. Note that this event can only
happen if the sum of the two digits is ≤ 9.
join_sub(x, y): two digits, respectively x and y, approach each other, overlap and
then the digit that is the result of the difference between the two digits appears,
i.e., outcome(join_sub(x, y), z) with digit(x, vx), digit(y, vy), digit(z, vz) and vz =
max(vx, vy) − min(vx, vy).
split(x): a digit x splits into two digits whose sum or difference gives the value of x,
i.e., outcome(split(x), (y, z)) with digit(x, vx), digit(y, vy), digit(z, vz) and vx = vy + vz

or vx = max(vy, vz) − min(vy, vz).
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Some examples of structured events produced by the generator are shown in Figure 1.
For simplicity, each object is assumed to participate in at most one simple event and one
structured event for each frame. For each video, a narrative file is also produced that contains
the following information for each digit:

the name: a label
the class: the corresponding mnist class
the position: x and y coordinates inside the frame
the simple event (if any) the digit is involved in
the structured event (if any) the digit is involved in

6 Experimental setting

Our experimental evaluation is aimed at verifying whether a neuro-symbolic solution has
an advantage in recognizing structured events with respect to a fully neural approach. In
addition to the capability of correctly classifying each video into the corresponding structured
event, we aim at evaluating the ability to learn to correctly classify the underlying objects
(the digits) as well as the ability to generalize to unseen outcomes (e.g., the result of a
join_add being a digit for which no explicit supervision was ever received). The scenario
and learning setting we created to this aim are described in the following.

6.1 Scenario
The scenario consists of videos produced with the event generation framework described in
Section 5. Each video consists of 10 frames, each frame showing one or two digits. Digits can
appear anytime within the first half of the video, and only disappear if they join together.
When present, the digits are always completely visible, apart from the frames in which they
overlap with each other (e.g., right before a join). We generated three types of videos:

join_add

join_sub

no_join

The first two refer to videos where the corresponding structured event as discussed in Section 5
takes place. The resulting digit can stay in the same position or move. To avoid ambiguities,
we refrain from generating videos where one of the two operands is a zero. As consequence,
the only way to get a zero is in a join_sub when both digits are equal. The third type
refers to videos where neither of the two structured events takes place. In this case the video
contains two arbitrary digits that wander around with no restrictions, possibly overlapping
with each other.

6.2 Learning setting
Our goal is to test the ability of the different approaches to learn to recognize events with
partial supervision. The idea is to provide supervision in terms of the structured event taking
place (if any) and the outcome of the event (i.e., the result of the addition/subtraction).
Supervision is thus provided in terms of sets like the following:

{happens(join_add(x, y), 1, T ), outcome(join_add(x, y), z), digit(z, 4)}
{happens(join_sub(x, y), 1, T ), outcome(join_sub(x, y), z), digit(z, 2)}
{¬happens(join_add(x, y), 1, T ), ¬happens(join_sub(x, y), 1, T )}

TIME 2021
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Note that this type of feedback provides information on the classification of the underlying
objects, even if only when a join takes place, and only for the digit which is the result of the
join. We thus build the task to additionally test the ability of the methods to generalize to
unseen outcomes, i.e., digits that were never observed as the result of a join during training
(or validation). For the sake of conciseness, in the following we will refer to the combination
of structured event and outcome as the class of a video (with no_join being the class of a
video where no join occurs). To generate the videos we first split the original MNIST dataset
into training, validation and test set. Then, separately for each set, we randomly picked
digits to generate a set of videos for each of the video classes, making sure that each class
had the same number of videos. We generated training and validation videos containing
no_join, join_add with outcome from 2 to 7 and join_sub with outcome from 0 to 7, for a
total of 15 video classes. Test videos contain the same classes as the training and validation
ones plus join_add with outcome 8 and 9 and join_sub with outcome 8, for a total of 18
classes. We generated 1500 videos for training, 150 for validation and 180 for testing, so that
each class always contains 100 videos.

7 Event recognition approaches

In this section, we describe the learning approaches that we used to solve the aforementioned
task. We start presenting the low-level neural networks that we use for object detection and
classification and proceed describing the fully neural and the neuro-symbolic approaches
that build on them. The object detector is pre-trained, while the object classifier is trained
end-to-end both in the fully neural and neuro-symbolic approaches. Training is performed
for 35 epochs, using the Adam optimizer with a learning rate of 0.001 and early stopping on
the validation set. Training for more epochs does not lead to improvements in recognition
quality.

7.1 Object detector and classifier
The object detector is a neural network that extracts (processed) patches from frames. Its
architecture is shown in Figure 2 for the case of a single frame, as the same structure is
repeated for all frames in a video. Its main module is a standard convolutional neural network
that consists of two convolutional layers, each followed by a max-pooling layer, and two
fully-connected layers. ReLU are used as activation in all layers apart from the output layer
where a sigmoid is used. The module takes as input a frame of size 128×128 and gives as
output a vector of length 6:

odet = ⟨v1, v2, x1, x2, y1, y2⟩

where vi ∈ [0, 1] indicates whether the i-th digit is present in the frame and xi, yi ∈ [0, 1]×[0, 1]
are the normalized digit coordinates (digits are ordered according to the distance between
their predicted coordinates and the origin). The two patches corresponding to the coordinates
are extracted from the frame, and their content is multiplied by the value of their visibility
flag. In so doing, the detector outputs “soft” patches, that depending on the value of the
visibility flag range from the patch itself (vi = 1) to a completely black patch (vi = 0).

The digit classifier has the same architecture as the main module of the detector, with the
sigmoid replaced by a softmax in the output layer. The classifier takes as input an image of
size of 28×28 which corresponds to a processed patch extracted by the detector and returns
as output a vector of length 11, where the first 10 element refers to the 0-9 digits and the last
one indicates the absence of a digit. This module is repeated for all patches and all frames
of the input video.
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Figure 2 Mnist digit detector.

7.2 Fully neural approach
The fully neural approach combines the predictions of the digit detector and classifier on
the different frames using an LSTM recurrent neural network [8]. The overall architecture is
shown in Figure 3. For each frame in the input video, the detector extracts a pair of patches
and sends them to the digit classifier. The predictions of the classifier are concatenated
with the visibility and coordinate predictions from the detector and fed to an LSTM cell.
After processing the entire input sequence, the LSTM outputs a prediction in three classes,
join_add, join_sub and no_join. The outcome of the join event is recovered from the
output of the digit classifier on the first patch of the last frame. If the class with the highest
prediction is no_join, the outcome prediction is ignored.

7.3 Neuro-symbolic approach
We developed a neuro-symbolic approach for structured event recognition using the DeepProb-
Log [13] framework. This framework can be seen as a neural extension of the probabilistic
extension of Prolog, ProbLog [17]. Like ProbLog, the knowledge about the domain is encoded
as a set of logical rules (i.e., horn clauses). In addition, DeepProbLog introduces neural
predicates that allow to instantiate facts as outputs of neural predicates processing raw data.
The neural extension is realized by enhancing ProbLog with a primitive that allows to declare
neural predicates:

nn(nid, Xs, Y, ys)

where nn is a reserved functor used to declare a neural predicate, nid is an identifier for
the underlying neural network, Xs denotes a sequence of n input variables, Y is the output
variable, and ys denotes a sequence of m possible values that Y can assume. Training of these
neural predicates is done by providing supervision on the head of the logical rules expressed
as standard logical queries. This means that in our prototype the ”shallow” annotations on
the structured event will be mapped to queries, while simple events will be mapped to neural
predicates.

The DeepProbLog program we defined to address the event recognition task is shown in
Figure 4. It consists of the following predicates:

digit(X, V, T, Vx): a neural predicate that states that the X digit of video V at time T

is Vx

join_add_res(V, Vz): a binary predicate that states that video V is a join_add and the
resulting digit of the join is Vz

join_sub_res(V, Vz): a binary predicate that states that video V is a join_sub and the
resulting digit of the join is Vz

no_join(V ): a unary predicate that states that video V is a no_join video

TIME 2021
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Figure 3 Fully neural approach: LSTM-based architecture.

The neural predicate digit(X, V, T, Vx) is mapped to the combination of digit detector and
classifier shown in Figure 3, with the difference that only the output of the classifier (i.e.,
a probability distribution on the 0-9 digits plus the absence of the digit) is provided. The
predicate join_add_res(V, Vz) basically represents the combination of join_add(X, Y ),
outcome(join_add(X, Y ), Z) and digit(Z, Vz), with the addition of the V variable indicating
the video (omitted for simplicity in the formalization throughout the paper). The predicate
checks whether there are two digits in the first half of the video and only one digit at the
end that is the sum of the two. The join_sub_res predicate is similar to join_add_res

with sum replaced by difference (in absolute value, so that digits do not need to be sorted).
Finally, for a no_join, we know that there are two digits for the whole duration of the video.
Therefore, we define a rule that only fires when both digits are visible in the last frame.
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nn(mnist_net, [I, V, T], Y, [0,1,2,3,4,5,6,7,8,9,-1]) :: digit(I, V, T, Y).

join_add_res(V, Z) :- join_sub_res(V, Z) :-
between(0, 4, T1), between(0, 4, T1),
digit(0, V, T1, X), digit(0, V, T1, X),
X > 0, X < 9, X > 0,
digit(1, V, T1, Y), digit(1, V, T1, Y),
Y > 0, Y < 10 - X, Y > 0,
digit(0, V, 9, Z), digit(0, V, 9, Z),
Z is X + Y, Z > 1, Z is abs(X-Y),
digit(1, V, 9, -1). digit(1, V, 9, -1).

no_join(V) :- digit(1, V, 9, X), X =\= -1.

Figure 4 Neuro-symbolic approach: DeepProbLog program.

8 Results

In this section, we present and compare the results of the neural based LSTM approach
with our proposed neuro-symbolic approach based on DeepProbLog on the tasks defined in
Section 6.

Confusion matrices, where entries (i, j) denote the number of samples of true class i

classified as class j, for the event recognition problem and related sub-problems for the two
approaches are shown in Figure 5. The first row shows the confusion matrices for the event
and outcome recognition (join_add with outcome from 1 to 9, join_sub with outcome from
0 to 8, no_join), while the second row reports the confusion matrices for the underlying task
of digit classification (0-9, and -1 corresponding to no digit). The left column reports results
for the fully neural approach, the right column those for the neuro-symbolic approach.

Looking at the top left confusion matrix, we can observe that the neural approach is able
to recognize the events for which the supervision is provided, even if it sometimes mistakes
a join_add for a join_sub and vice-versa when the outcome is the same. On the other
hand, it completely fails in generalizing to unseen events (join_add with outcome 8 or 9,
join_sub with outcome 8). This fact highlights the difficulty of the neural approach in fully
learning the semantic behind the join operations. The results of the confusion matrix on
digits (bottom left) confirm these findings, as the network fails to classify digits for which no
direct supervision is available (i.e., 8 and 9).

The situation with our neuro-symbolic approach is rather different (right column). Indeed,
DeepProbLog is capable of predicting the unseen outcomes with reasonable accuracy, and the
same holds for the underlying digit classification task. If we compare the confusion matrices
on the digits of the two approaches (bottom row), we can observe that our approach has a
higher accuracy even on digits for which direct supervision is available. These results clearly
indicate the importance of the background knowledge in compensating partial supervision
and allowing to generalize beyond what is observed during training.

9 Conclusion and future work

In this work, we have proposed a neuro-symbolic approach for structured event recognition
from data sequences, where background knowledge about event structure is combined with
deep neural networks used to solve the sub-tasks of event recognition such as object detection

TIME 2021
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Figure 5 Experimental results: confusion matrices for event + outcome recognition (top row)
and digit classification (bottom row). Left: fully neural approach; right: neuro-symbolic approach.

and classification. The proposed architecture can be trained end-to-end with data streams
containing only shallow annotations. We prototyped our architecture using DeepProblog as a
neuro-symbolic integration framework and tested it on a structured event recognition problem
defined on a synthetic dataset automatically generated. The experiments show that the
background knowledge about structured events and their outcomes translates supervision on
the structured event into supervision on lower-level predictive tasks like object classification,
allowing to successfully train the neural components of the architecture. We compare our
architecture with a purely neural solution that uses the same basic components for object
detection and classification. The comparison shows how the use of background knowledge
improves performance for both high-level and low-level prediction tasks. The advantages of
these effects are multiple. The first advantage is the fact that we are able to train a classifier
without a direct supervision on some of the classes (the classes 8 and 9 in our experiment); a
second advantage concerns explanability: while in a fully neural approach it is not possible
to explain the happening of an event in terms of its components (object participants, and
their types), in our approach the reasoning process that infers the happening of a structured
event on the basis of the recognition of some basic facts (detection of an object of a certain
type) can be provided as an explanation. As future work, we plan to test the implementation
of the proposed architecture on different neuro-symbolic frameworks, and to consider more
structured events and also the application of the methodology on real data.
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