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Abstract—Do we tend to perceive ourselves more creative
when surrounded by creative people? Or rather the opposite
holds? Such information is very valuable to understand how to
optimize work processes and boost people’s productivity along
with their happiness and satisfaction. Exploiting real-life data,
collected over a period of six weeks in a research institution
by means of wearable sensors, in this work we provide insights
on human behavior dynamics in the workplace. We explore the
use of graphlets, i.e. small induced subgraphs of a network,
to encode the local structure of the interaction network of
a subject, enriched with affective and personality states of
his/her interaction partners. Our analysis shows that graphlets of
increasing complexity, encoding non-trivial interaction patterns,
are beneficial to affective and personality states recognition per-
formance. We also find that different sensory channels, measuring
proximity/co-location or face-to-face interactions, have different
predictive power for distinct states.

I. INTRODUCTION

Affect and personality permeate people’s daily and working
life and also the interdependent relationships they usually
hold with bosses, colleagues, and subordinates. Several studies
showed the relationships between personality and e.g. job
performance [1] and job satisfaction [2]. At the same time,
an affective revolution has taken place, in which academics
and managers have begun to appreciate how an organizational
approach that integrates employee affect provides a more
complete perspective [3]. Previous studies outlined effects of
affect on performance [4], decision making [5], and prosocial
behavior [6].

Usually, we can think of affect and emotions both as states
or traits. These two levels differ in terms of the extent to which
they are deeply characteristic of the individual, and therefore
the extent to which they are mutable or immutable. At the same
time, traditionally scientific psychology has developed a view
of personality as a higher-level abstraction encompassing traits,
sets of stable dispositions towards action, belief and attitude
formation. The problem with this approach to personality is
that it assumes a direct and stable relationship between being
extravert and acting extravertedly (e.g., speaking loudly, being
talkative, etc.). Extraverts, on the contrary, can often be silent
and reflexive and not talkative at all, while introverts can at
time exhibit extraverted behaviors. While personality studies
have often dismissed these fluctuations of actual behavior as
statistical noise, it has been suggested by Fleeson [7], [8] that

they can give a valuable contribution to personality prediction
and to the understanding of the personality/behavior relation-
ship. The social psychology literature has recently coined the
term personality states to refer to concrete behaviors that can
be described as having a similar content to the corresponding
personality traits. In other words, a personality state describes
a specific behavioral episode wherein a person behaves more
or less introvertly/extravertly, more or less neurotically, etc.

In this paper, we investigate the influence played by spe-
cific situational factors, the face-to-face interactions and the
proximity interactions with alters, over the ego’s expression of
a particular affective/emotional state or a specific personality
state in a work environment. In particular, how the details
and the complexity of the social network structure of the
interacting alters can play a significant role in predicting the
affective and personality states of the ego. To this end, we
represent people’s interactions as graphlets, induced subgraphs
representing specific patterns of interaction, and design classi-
fication experiments with the target of predicting the subjects’
self-reported personality and affective states. We investigate
graphlets centered on the reference node (the ego), embedding
information on the state of the alters and their interactions in
order to recognize the affective/personality state of the ego. We
explore how interaction patterns, encoded as graphlets, gath-
ered from two distinct sensory channels, Bluetooth (BT) and
infrared (IR), affect recognition of personality and affective
states. Several studies in social psychology have revealed links
between positive affect and social activity. Recently, Hatfield
et al. coined the term emotional contagion [9] to describe
the process by which people “catch” emotions from each
other. Positive and negative moods also spread during long
periods [10] and over workplace interactions [11]. Inspired by
the susceptible-infected-susceptible (SIS) disease model, Hill
et al. proposed a mathematical model for the contagion of
long-lasting emotional states in a self-reported social network
[12]. In social and ubiquitous computing, researchers have
explored the associations between mood and social interactions
captured by mobile phones [13]. These studies assume that
for detecting or predicting if an individual is in a positive or
negative affect state it is enough to look at the number of
individuals with whom he or she is in contact, and possibly
at their state. Instead, we investigate how the structure of the
interaction network can play a significant role in predicting
the affective and personality states of the ego. Regarding
personality, researchers have started exploring the wealth of



behavioral data made available by cameras and microphones
in the environment [14], [15], smartphones [16], [17], wearable
sensors [18] in order to automatically classify personality
traits. However, the general approach of all these previous
works is to isolate promising correlates of the targeted traits
for classification or regression. All these works adopted the so-
called person-perspective on personality and target personality
traits prediction or classification and not personality states
prediction or classification.

II. SOCIOMETRIC BADGES CORPUS

For this study we exploited the SocioMetric Badges Corpus
[19], a multimodal corpus designed to capture the psychologi-
cal and situational aspects of the daily lives of employees in an
organizational structure. The data were collected in a research
institute for six weeks on a sample of 54 subjects during their
working hours. Males predominated (90.8%) while the average
age was 36.83 ± 8.61 years. The data were collected using
wearable sensors called Sociometric Badges. These sensors are
equipped with accelerometers, audio, Bluetooth and Infrared
to respectively capture: body movements, prosodic speech
features, co-location with other individuals and face-to-face
interactions [20]. SocioMetric Badges have been used in sev-
eral studies to capture face-to-face communication patterns, re-
lationships among individuals, collective behavior and perfor-
mance outcomes, such as productivity and job satisfaction [21].
An Experience Sampling Methodology (ESM) was employed
to collect information about transient psychological states
(personality and affectivity states). Participants completed a
short Internet-based survey three times a day (at 11:00 AM,
2:00 PM, and 5:00 PM), automatically administered via email.
Users were granted 2.5 hours to fill them. Participants were
asked to confirm their availability during the 30 minutes before
starting the questionnaire; only if confirmed, their responses
would be included in the database. The questions in the surveys
referred to affectivity and personality states experienced over
the 30 minutes prior to the survey. The ten-item personality
inventory TIPI [22] was used to assess personality states. A
7-point scale ranging from 1=Strongly Disagree to 7=Strongly
Agree was used for responses. The scores for each state were
calculated by summing the raw scores of the two correspond-
ing items. Similarly, respondents were asked to report on
a scale from 1 to 5 (1=Very Slightly Or Not At All and
5=Extremely) to what extent they experienced High Positive
Affect (HPA) and/or High Negative Affect (HNA). Table I
reports basic dataset statistics on the target behavioral states1.
In this work, we exploit information from the infrared (IR)

TABLE I. MEAN AND MEDIAN DAILY VALUES FOR PERSONALITY AND
AFFECTIVE STATES IN THE DATASET USED.

state mean median
Extroversion 4.07 4.0

Agreeableness 5.13 5.5
Conscentiousness 5.53 6.0

Emotional Stability 5.54 6.0
Openness/Creativity 4.50 4.5

High Positive Affection 3.12 3.3
High Negative Affection 1.42 1.3

and Bluetooth (BT) sensors.

1These values have been obtained directly from the authors as errata corrige
to the related publication.
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Fig. 1. Graphlet configurations used. Bottom nodes (double circled) represent
the reference subject (the ego), while top nodes represent alters and their binary
state.

III. GRAPHLET-BASED APPROACH

We define a binary classification task for each subject
and each personality and affective state. This is done by
mapping the state of a given subject at a certain deadline from
{1, . . . , 7} to {0, 1} using its median value for the subject as
a threshold. Therefore, negative labels represent cases where
the subject was found below his/her median. One of the main
contributions of this paper lies in the encoding of the subjects’
interactions as graphlets, defined as induced subgraphs of a
larger network, providing a succinct representation of social
structure. In the Bioinformatics and Computational Biology
domains, graphlets have been introduced for the study of large
biological networks, for e.g. network alignment [23]. Recently,
graphlet analysis has been applied to Facebook messaging and
historical crime data [24]. We investigate their effectiveness in
the context of a human interaction network, for the prediction
of behavioral determinants such as personality and affective
states. Starting from the network of interactions between
subjects, we extract for each subject the graphlets representing
his/her local interactions. In this work, we consider all possible
graphlets up to 4 nodes, as shown in Figure 1, where the
double circle represents the reference subject and his/her
interacting partners can have multiple patterns of reciprocal
interaction. Furthermore, the graphlets embed information on
the current (binary) state of the alters (but not of the reference
subject whose state is to be predicted), in order to account for
possible influence and propagation effects. For each deadline,
we extract graphlet-based features from sensory data gathered
over the previous 3 hours. We discretize each 3-hour window
in 15-minutes slices in order to represent the evolution of
the interaction patterns over time, taking into consideration
the neighbours’ states in order to account for situational
influence effects. To do so, we count occurrences of graphlet
configurations and build a histogram; then, we average the
histograms obtained for each slice and obtain a feature vector
representative of the 3-hours window under analysis. Finally,
we use the latter to predict the ego’s state at the deadline under
analysis. In our setup, two kinds of missing data are possible:
i) missing labels (i.e. surveys not filled by the subjects); ii)
missing interactions, in which case the interaction graphs will
be empty. In both cases we exclude the deadline under analysis
from the training and testing stages.



Fig. 2. Performance obtained using infrared sensory data.

IV. EXPERIMENTAL SETUP

To understand the influence of alters on a given subject,
we predict its state based on features derived from the labeled
graphlets.

We build a linear Support Vector Machine (SVM)
model [25] for each agent and each target state, evaluating its
performance in a leave-1-week-out cross-validation procedure.
We employed the LibLinear [26] library with `1 regularization,
which tends to produce sparse models (with few non-zero
weights). The learned models prioritize informative features,
leading to robust handling of noise, and are simpler to interpret.
To avoid any bias in the interpretation of the results, we discard
all agent/target state pairs for which one class (i.e. positive or
negative) covers at least 75% of the instances. This occurs
when subjects exhibit very little variance on the labels (see
Low PA - High NA in Figure 2), and thus many instances
fall on the median value itself. We build models of increasing
complexity by considering graphlet-based features made of
up to one, two and three alters respectively, and evaluate the
performance of each model in order to assess the predictive
power of different levels of interaction. We compare these
models against each other and against a majority classifier (i.e.
a classifier that always predicts the class with more instances
in the training set), which we use as a baseline.

V. EXPERIMENTAL RESULTS

Figure 2 shows the performances obtained using features
extracted from IR sensors (those for BT are similar). Each
row represents a subject in our dataset. Each bar represents a
target state. The left-most columns within each target display
the performance of our baseline (a majority classifier), while
subsequent ones represent those of the SVM models built using
graphlets of increasing complexity. Each pixel represents the
average f1 measure 2 over all folds for a specific subject/target
pair. The values range from low (light green) to high (red).
Blue values represent cases with missing labels or highly
unbalanced classes, which we ignore in the following analysis.
For the sake of readability, we cluster the subjects (rows) by
performance, using k-means with k = 3, and plot them from

2The f1 measure is defined as the harmonic mean of precision and recall.

worst (bottom) to best (top). The plot shows that the graphlets
are very predictive in the middle two clusters, where the
performances tend to transition from bad (green) to good (red).
This trend is not as clear on the high-performance cluster (top).
The latter represents cases with an unbalanced, overly-positive
data component (yet no more than 75% of the total), where
the agents show little state variance and interactions can not
be useful. To better understand the above trends we compute
Win/Loss matrices for each target state and cluster: for each
pair of feature-sets and for all subjects in a cluster we count the
number of times a feature-set outperforms the others. Table II
reports the resulting matrices for all target states and clusters
for IR (results for BT are similar). Intuitively, positive values
below the diagonal imply that the more complex feature-sets
are informative and bring performance benefits; positive values
above the diagonal have the opposite meaning. Analysis of the
matrices shows that using more complex graphlets constantly
improves the performances in the low and middle clusters. The
behavior on the high-performance cluster is less clear, due to
the aforementioned unbalance in the agent states distribution.
We then compare the results of different target states for the
two clusters (low- and middle-) where performances improve.
For each matrix we compute the percentage of cases in which
higher degree graphlets outperform (underperform) lower-
degree ones, using the normalized sum of all elements above
(below) the diagonal. Table III lists the difference between the
two values, i.e., the relative percentage of cases for which
more complex graphlets are beneficial. The results confirm
that graphlet-based features are predictive of personality and
affective states: all values are positive and well above the mean
of a random classifier (i.e. 0). Finally, we sort such values
for IR and BT, and compute the Spearman rank correlation
between the two lists. The correlation coefficient is found to be
−0.4 (p-value= 0.28), and indicates that the two channels can
be effectively exploited for different target states, and support
the intuition that the two channels capture different behavioral
manifestations: BT captures proximity in a broad-cast manner
(i.e. many-to-one), while IR is restricted to face-to-face (one-
to-one) interactions.

TABLE III. PERFORMANCE IMPROVEMENT FACTORS, IN ASCENDING
ORDER. VALUE RANGE IS [−1, 1].

IR BT
Target Improvement Target Improvement

High PA 0.51 Creativity 0.44
Low NA 0.55 Conscientiousness 0.55

Extraversion 0.58 Emotional Stability 0.62
Emotional Stability 0.59 High PA 0.63

Creativity 0.6 Agreeableness 0.67
Agreeableness 0.63 Low PA 0.67

Low PA 0.69 Extraversion 0.69
High NA 0.70 Low NA 0.71

Conscientiousness 0.76 High NA 0.81

VI. CONCLUSION

In this paper we investigate new perspectives on affect
and personality states recognition, studying in particular the
influence on the ego’s state of face-to-face and proximity
interactions with alters. To this end, we propose a graphlet
representation of the ego-network, computed using two distinct
sensory channels (Bluetooth and infrared), to predict the ego’s
state. The advantage of graphlets over other representations
is that they capture not only the number of interactions, but
also their structure at different levels of complexity. Our results
demonstrate that the graphlet-based representation consistently



TABLE II. WIN/LOSS MATRICES FOR THE 3 PERFORMANCE CLUSTERS FOR THE DIFFERENT STATES PREDICTED USING IR SENSORS.

State Low-perf. cluster Mid-perf. cluster High-perf. cluster State Low-perf. cluster Mid-perf. cluster High-perf. cluster

Agreeableness

0 0 0 0 0 1 1 1 0 6 7 8

High PA

0 1 2 2 0 5 3 4 0 10 10 9
1 0 0 0 13 0 4 3 7 0 6 8 5 0 2 2 15 0 4 5 1 0 5 6
3 3 0 2 14 10 0 6 6 5 0 6 7 6 0 3 17 14 0 4 1 4 0 2
3 3 0 0 14 10 5 0 5 3 5 0 7 6 2 0 16 13 6 0 2 3 4 0

Conscientiousness

0 0 0 0 0 0 0 0 0 8 9 10

High NA

0 0 0 1 0 1 0 0 0 2 0 0
1 0 0 1 14 0 2 1 9 0 6 7 9 0 2 2 10 0 3 2 0 0 0 0
1 1 0 1 15 12 0 6 9 8 0 5 9 6 0 3 12 8 0 3 1 2 0 0
2 1 1 0 15 13 4 0 8 6 5 0 8 7 3 0 12 8 4 0 1 2 0 0

Creativity

0 0 0 0 0 1 1 1 0 13 11 11

Low PA

0 0 0 0 0 0 0 0 0 4 3 3
4 0 2 2 15 0 6 8 3 0 8 6 3 0 2 1 11 0 5 4 3 0 2 3
5 3 0 0 15 9 0 3 6 7 0 5 3 2 0 0 13 7 0 2 4 4 0 2
7 5 6 0 15 7 5 0 6 8 4 0 4 3 2 0 13 8 7 0 4 3 1 0

Emotional Stability

0 0 0 0 0 2 2 2 0 3 4 3

Low NA

0 0 0 0 0 0 0 0 0 11 7 9
7 0 2 2 16 0 6 6 3 0 4 3 6 0 2 3 11 0 7 6 3 0 4 5
9 5 0 1 16 11 0 6 2 3 0 3 8 4 0 2 12 4 0 4 7 8 0 5
9 6 4 0 16 11 4 0 3 5 2 0 9 5 4 0 12 5 2 0 5 7 4 0

Extraversion

0 2 1 1 0 0 1 0 0 8 9 8
7 0 0 2 20 0 9 9 4 0 5 7
9 11 0 5 19 9 0 5 4 6 0 3
10 10 3 0 20 9 5 0 5 4 5 0

contributes to recognition improvements over a baseline. Fur-
thermore the amount of improvement tends to increase with
graphlet complexity. These results show the feasibility of the
proposed approach, and hopefully encourage further research.
We also find that distinct sensory channels play different roles
for distinct target states: e.g. complex graphlets derived from
IR have a large impact for Conscentiousness, while those
derived from BT do not. The opposite trend is observed
for Low NA. These findings support the intuition that the
two channels capture different concrete behaviors: BT reflects
proximity in a broadcast manner (i.e. many-to-one), IR is
restricted to face-to-face (one-to-one) interactions.
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