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We present a machine learning method to discriminate
between cysteines involved in ligand binding and cysteines
forming disulfide bridges. Our method uses a window of
multiple alignment profiles to represent each instance and
support vector machines with a polynomial kernel as the
learning algorithm. We also report results obtained with
two new kernel functions based on similarity matrices.
Experimental results indicate that binding type can be pre-
dicted at significantly higher accuracy than using PROSITE
patterns.
Keywords: disulfide bridges/metal binding sites/prediction
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Introduction

Non-free cysteines that are not involved in the formation of
disulfide bridges usually bind prosthetic groups that include a
metal ion, which play an important role in the function of a
protein. The discrimination between the presence of a disulfide
bridge (DB) or a metal binding site (MBS) in correspondence
to a bound cysteine is often a necessary step during the NMR
structural determination process of metalloproteins, and its
automation may significantly help towards speeding up the
overall process. Several proteins are known where both situa-
tions are in principle plausible and it is not always possible to
assign a precise function to each cysteine. For example, the
mitochondrial copper metallochaperone Cox17 contains six
cysteines but it is not precisely known which ones are actually
involved in metal binding (Heaton et al., 2001). Another exam-
ple is the inner mitochondrial membrane protein sco1p that
contains a CxxxC motif, where experimental evidence could
lead us to believe it is involved in copper transport, but whose
fold similarity to a thioredoxin fold could conversely suggest
catalytic activity (Chinenov, 2000; Balatri et al., 2003).

In addition to the above motivations, the discrimination
between DBs and MBSs may help towards a more accurate
prediction of the disulfide bonding state of cysteines (Fiser and
Simon, 2000). In this task, global descriptors (Mucchielli-
Giorgi et al., 2002) and global postprocessing (Martelli
et al., 2002) can help to predict the overall tendency of a
chain to form or not to form bridges. However, current pre-
diction methods typically fail to identify the type of binding in
which each single bound cysteine is involved.

In some well known cases, the presence of a binding site for
a prosthetic group can be detected by inspecting the consensus
pattern that matches the portion of the protein sequence

containing the target cysteine. For example, the 4Fe-4S ferre-
doxin group is associated with the pattern C-x(2)-C-x(2)-C-
x(3)-C-[PEG] (Otaka and Ooi, 1987). Using annotated chains
from SWISSPROT and PDB we show that a set rule based on
PROSITE (Falquet et al., 2002) patterns can be actually used to
separate MBSs from DBs. Many of these rules are highly
specific but there are well known examples of false positives.
For example, the C-fCPWHF}-fCPWR}-C-H-fCFYW} con-
sensus pattern is often correctly associated with a cytochrome c
family heme binding site (Mathews, 1985), but the precision of
such a pattern is <40%. In addition, there are cases of cysteines
involved in an MBS and having no associated pattern.

In this paper we formulate the prediction task as a binary
classification problem: given a non-free cysteine and informa-
tion about flanking residues, predict whether the cysteine can
bind to a prosthetic group containing a metal ion (positive
class) or is it always bound to another cysteine forming a
DB (negative class).

First, we suggest a nontrivial baseline predictor based on
PROSITE pattern hits and the induction of decision trees using
the program C4.5 (Quinlan, 1993). Secondly, we introduce a
classifier fed by multiple alignment profiles and based on sup-
port vector machines (SVM) (Cortes and Vapnik, 1995). We
show that the latter classifier is capable of discovering the large
majority of the relevant PROSITE patterns, but is also sensitive
to signal in the profile sequence that cannot be detected by
regular expressions and therefore outperforms the baseline
predictor.

Materials and methods

Data preparation
The data for cysteines involved in DB formation were extracted
from PDB (Berman et al., 2000), We excluded chains if: (i) the
protein was shorter than 30 residues; (ii) it had less than two
cysteines; (iii) it had cysteines marked as unresolved residues
in the PDB file; (iv) the data for metal binding sites were
extracted from SWISS-PROT version 41.23 (Boeckmann
et al., 2003), since PDB does not contain enough examples
of metal ligands. In this case we included all entries containing
at least one cysteine involved in metal binding, regardless of
the annotation confidence. In this way, examples of bindings
with iron–sulfur clusters (2FE2S, 3FE4S, 4FE4S), copper,
heme groups, iron, manganese, mercury, nickel and zinc
were obtained.

Intra-set redundancy due to sequence similarity was avoided
by running the UniqueProt program (Mika and Rost, 2003)
with the hssp distance set to zero. Inter-set redundancy how-
ever was kept in order to handle proteins with both DBs and
metal bindings. It must be remarked that while inter-set redun-
dancy can help the learning algorithm by providing additional
data for training, it cannot favorably bias accuracy estimation
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since redundant cases should be assigned to opposite classes.
The number of non-homologous sequences remaining in the
data sets are shown in Table I, together with the number of
cysteines involved in bridges or metal bindings. Free cysteines
were ignored.

PROSITE patterns as a baseline
In this section we establish a procedure to compute a baseline
accuracy for the prediction task studied in this paper. In gen-
eral, the base accuracy of a binary classifier is the frequency of
the most common class. For the data set described above the
base accuracy is 84.4%. In total absence of prior knowledge
a predictor that performs better than the base accuracy is
generally considered as successful. However, (i) it must be
remarked that, especially for highly unbalanced data sets, pre-
cision/recall rates are also needed in order to have a correct
view of the classifier performance; (ii) for the task studied in
this paper several well known consensus patterns exist that are
associated with DBs and with metal binding sites. These pat-
terns partially encode expert knowledge and it seems reason-
able, when possible, to make use of them as a rudimentary
prediction tool.

Thus, in order to compare our prediction method with
respect to a more interesting baseline than the mere base accu-
racy, we extracted features that consist of PROSITE (Falquet
et al., 2002) pattern hits. A PROSITE pattern is an annotated
regular expression that describes a relatively short portion of a
protein sequence that has a biological meaning. We run the
program ScanProsite (Gattiker et al., 2002) on the data set
described above searching for patterns listed in the release
18.18 (December 2003) of PROSITE. In this way we found
199 patterns whose matches with the sequences in our data set
contain the position of at least one bound cysteine. Approxi-
mately 56% of the cysteines bound to a metal ion and�41% of
the cysteines forming DBs matched at least one PROSITE
pattern. Many of the patterns associated with DBs have perfect
(100%) specificity but each one only covers a very small set of
cases. Overall, the fraction of disulfide-bond cysteines matched
by a perfectly specific pattern is �26%. Patterns associated
with MBSs have a significantly higher coverage, although their
specificity is perfect only �18% of the time and sometimes is
lower. We remark that in our context a metal binding pattern
is perfectly specific if every match is actually a MBS, regard-
less of the metal involved in the bond. Thus, examples of
perfectly specific patterns associated with MBSs include
PS00198 (4Fe-4S ferredoxins iron-sulfur binding region),
PS00190 (cytochrome c family heme-binding site), and
PS00463 (Fungal Zn(2)-Cys(6) binuclear cluster domain).
To further complicate the scenario, 12% of the bound cysteines
match more than one pattern. For these reasons, a prediction

rule based on pattern matches is difficult to craft by hand and
we used the program C4.5 to create rules automatically from
data. C4.5 induces a decision trees from labeled examples by
recursively partitioning the instance space, using a greedy
heuristic driven by information theoretic considerations
(Quinlan, 1986). Rules are then obtained by visiting the tree
from the root to a leaf. When using C4.5, each bound cysteine
was simply represented by the bag of its matching patterns.

Support vector machines algorithm
Support vector machines (SVM) have been introduced in
Cortes and Vapnik (1995) and give a well-posed formulation
to the supervised learning problem so that a unique solution can
be obtained once certain entities have been fixed. Here we
briefly sketch the main ideas and notation of the general algo-
rithm to allow proper replication of our experiments. Details
can be found in several textbooks including Cristianini and
Shawe-Taylor (2000) and Sch€oolkopf and Smola (2002).

Training data are a set of pairs Dm = xi, yið Þf gmi=1 where xi is
the input (in our case a real vector of features describing the
context around a target cysteine) and yi is the output class, either
+1 (indicating ametal-ion binding) or�1 (indicating aDB). The
algorithm learns from the data a classification function f that can
be used to make predictions about new instances. This function
can be written as:

f xð Þ =
Xm

i¼1

yiai k x, xið Þ + b0 ð1Þ

where a1, . . . , am, b0 are parameters adjusted by the learning
procedure and K is the kernel, a positive semidefinite sym-
metric function that measures the similarity between two
input vectors and that can be thought of as a generalized
dot product. The solution is a minimizer of the following
functional:

H fð Þ =
Xm

i¼1

C

m
j1�yi f xið Þjþ +

1

2
k f k2k ð2Þ

where jaj+ = a if a > 0 and zero otherwise, and k fk2K is the norm
of the classification function f induced by the kernel K. The
above functional is the sum of two terms: the leftmost one
penalizes solutions that do not classify correctly (and with
large margin) training data, while the rightmost one is a regu-
larizer that penalizes too complex solutions and allows us to
avoidoverfitting. ThequantityC expresses the relativeweight of
the two terms and thus controls a trade-off between the memor-
izationof training examples andgeneralization tonew instances.

The SVM algorithm is capable of handling extremely
numerous and sparse features, thus allowing us to exploit a
wide local context surrounding the cysteine under investiga-
tion. In particular, we provided information in the form of
a symmetric window of 2k + 1 residues, centered around the
target cysteine, with k varying from 1 to 25. In order to include
evolutionary information, we coded each element of the win-
dow by its multiple alignment profile computed with psiblast
(Altschul et al., 1997).

Preliminary model selection experiments were conducted in
order to choose the appropriate kernel, together with its hyper-
parameters. In subsequent experiments we employed third
degree polynomial kernels, with offset equal to one, fixed
regularization parameter given by the inverse of the average

Table I. Non homologous sequences obtained by running UniqueProt
(Mika and Rost, 2003) with the hssp distance set to zero

No. of sequences No. of cysteines

Disulfide bridges 529 2860
Metal bindings 202 758

Sequences containing DBs were obtained from resolved proteins in the
PDB (Berman et al., 2000), while those with metal bindings were recovered
from SWISSPROT version 41.23 (Boeckmann et al., 2003) by keyword
matching.

A.Passerini and P.Frasconi

368



of K(x, x) with respect to the training set, and distinct penalties
(Joachims, 1998) for errors on positive or negative examples,
in order to rebalance the different proportion of examples in the
two classes (see Table I). Similarity between examples xi and xj
is therefore computed as:

K xi, xj
� �

= xTi xj + 1
� �3 ð3Þ

In order to include information about similarity between dif-
ferent residues, we also implemented a new kernel in which the
dot product between xi and xj is mediated by a substitution
matrix M:

K xi, xj
� �

= xTi Mxj + 1
� �3 ð4Þ

In order for Equation (4) to be a valid kernel, matrixM has to be
symmetric positive definite (Sch€oolkopf and Smola, 2002). We
tried the McLachlan amino acid similarity matrix (McLachlan,
1972), which already satisfies such a condition, and the
Blosum62 (Henikoff and Henikoff, 1992) substitution matrix,
that turned out to be positive definite after normalizing each
element as (Mrc �min) = (max �min) where max and min are
over the entire matrix. A similar approach (Guermeur et al.,
2004) was recently applied to secondary structure prediction.

Results and discussion

Test performances were calculated by 3-fold cross validation:
proteins were divided in three groups, maintaining in each
group approximately the same distribution of DBs and different
kinds of metal binding sites.

The confusion matrix for PROSITE induced rules is shown
in Table II. It must be observed that the accuracy in Table II
is an optimistic upper bound of the true predictive power of
this method with respect to future sequences. This is because
PROSITE patterns have been designed to minimize the number
of false hits and missed hits by actually inspecting the available
sequence databases.

Results for the polynomial kernel are reported in Figure 1.
Train and test accuracies are plotted for growing size of the
context window, with error bars for 95% confidence intervals,
together to the fraction of support vectors over the training
examples in the learned models, which is a rough indicator
of the complexity of the learned models. The most evident
improvement in test accuracy is obtained for a window of
size k = 3, and corresponds to the global minimum in the
model complexity curve with �56% of training examples
as support vectors. Detailed results for such a window are
reported in Table III, showing they are obtained for an approx-
imate breakeven point in the precision recall curve. A deeper
analysis of individual predictions showed that the vast majority
of predictions were driven by the presence of a well conserved
CXXC pattern, taken as the indicator of metal binding. This
explains the high rate of false positives compared to the total
number of positive examples, most of them being cysteines
containing the pattern but involved in DBs, while most of the
false negatives are metal bindings missing it. The learned pat-
tern is actually very common for most bindings involving iron–
sulfur, iron–nickel and heme groups, and these kinds of metal
binding are actually predicted with the highest recall.

The best accuracy is obtained for a window of size k = 17,
corresponding to �87% of examples as support vectors.

Detailed results are reported in Tables IV and V, showing a
strong reduction of false positives at the cost of a slight increase
in the number of metal bindings predicted as DBs. Sequence
logos (Schneider and Stephens, 1990) for cysteine contexts in
the case of metal bindings (Figure 2, top) show a well con-
servedCXXCXXC pattern, which is common in 4FE4S clusters,

Table II. DB versus metal binding prediction by decision rules learned
by c4.5 from patterns extracted from PROSITE

Precision (%) Recall (%) Bridge Metal

Bridge 84 99 2845 15 True
Metal 93 27 556 202
Accuracy 84.2 Predicted

Precision and recall for both classes, confusion matrix and overall accuracy.

Table III. DB versus metal binding prediction by third degree polynomial
kernel SVMs

Precision (%) Recall (%) Bridge Metal

Bridge 91 90 2588 272 True
Metal 65 67 247 511
Accuracy 86 Predicted

Window of three residue profiles on both sides of the target cysteine. Precision
and recall for both classes, confusion matrix and overall accuracy.

Fig. 1. DB versus metal binding prediction by SVMs with a third degree
polynomial kernel. Test and train accuracies with 95% confidence intervals
are plotted, together to the fraction of support vectors over the number of
training examples, for growing sizes of the window of 2k+ 1 residue profiles
around the target cysteine, with k going from 1 to 25. Results are averaged over a
3-fold cross validation procedure.

Table IV. DB versus metal binding prediction by third degree polynomial
kernel SVMs

Precision (%) Recall (%) Bridge Metal

Bridge 91 97 2788 72 True
Metal 87 61 292 466
Accuracy 90 Predicted

Windowof17 residueprofilesonboth sidesof the target cysteine.Precisionand
recall for both classes, confusion matrix and overall accuracy.
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and the CXXCH pattern typical of heme groups, but also the
presence of CG patterns in positions as distant as nine residues
from the target cysteine. DB contexts are much more uniform
(see Figure 2, bottom), but show a strong tendency for polar

aminos, especially glycine, cysteine and serine all along the
window. The model seems capable of exploiting very distant
information, and it discovers almost all rules induced by
PROSITE patterns (see Table II), as only 13 of 202 metal
bindings are lost, while it also corrects eight of 15 false
metal bindings. Moreover, the SVM is capable of discovering
MBSs where no pattern is available. In order to get some
insight into the reasons for these predictions, we collected
all the MBSs that do not contain any pattern, and divided
them into examples actually predicted as MBSs by the SVM
(true positives) and examples wrongly predicted as DB (false
negatives). Figure 3 (top and bottom) represents the sequence
logos for true positives and false negatives, respectively, where
the logos are computed using the average of the PSI-BLAST
profiles for all the examples. Part of the correct predictions
could be explained by the ability of the SVM to actually
recover continuous-valued patterns in the profiles. We conjec-
ture that in some other cases the predictor could
have discovered potential consensus patterns that are still
not known.

Reported results are quite robust with respect to model
regularization, controlled by the cost parameter ‘C’ in SVMs.
Figure 4 shows a test accuracy maximization obtained by

Table V. DB versus metal binding prediction by third degree polynomial
kernel SVMs

Ligand No. of examples Recall (%)

Cysteine 2860 97.5
Metal 758 61.4
4FE4S 250 71.6
Zinc 156 38.5
Heme 139 87.8
2FE2S 91 58.2
Copper 50 38.0
Iron 26 42.3
3FE4S 25 48.0
Nickel 13 76.9
Mercury 7 00.0
Manganese 1 00.0

Window of 17 residue profiles on both sides of the target cysteine. Recall and
number of examples for cysteine (DB) ormetal ligand, and details for different
kinds of metal binding.

Fig. 2. Sequence logos (Schneider andStephens, 1990) in the context of cysteines involved inmetal binding (top) andDBs (bottom), respectively,with awindowof 17
residues on each side of the cysteine bond.Hydrophobic residues are shown in black, positively charged residues are blue and negatively charged residues are red,while
uncharged polar residues are green.
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varying the regularization parameter: accuracies remain mostly
within the confidence interval from the maximum. Table VI
shows test accuracies for different rejection rates, when predic-
tions are to be made only if they are over a certain confidence. A
rejection of 15% of both positive and negative test examples
results in�94% test accuracy, and predictions onDBs tend to be
much more confident than those on metal bindings, having a
higher threshold for equal rejection rate. Furthermore, metal
bindings are rejected more frequently with respect to their
total number in the test set. A finer analysis shows that rejected
metal bindings are mostly those for which the model has low
recall (see Table V), such as 3FE4S, iron, mercury and zinc,
while 4FE4S, heme and nickel are seldom rejected. Figure 5
(left and right) shows precision/recall curves for DBs and metal
bindings, respectively, at different rejection rates. The former
tends towards the optimal curve at growing rejection rates,
while the latter has a complementary behavior with respect
to the breakeven point: at higher precisions growing rejection
rates result in better performance, while at lower precisions
performance for growing rejection rates is affected by the
greater quantity of metal bindings rejected with respect to DBs.

Figure 6a shows results for the growing size of the context
window, for a third degree polynomial kernel with McLachlan
similarity matrix (Equation 4). While train and test accuracies

are similar to those obtained without the similarity matrix
(Figure 1), the corresponding models have less support vectors,
with reductions up to 11% of the training set. This behavior is
even more evident for the Blosum62 substitution matrix
(Figure 6b) where a slight decrease in test accuracy, still within
the confidence interval, corresponds to a reduction up to 30%
of the training set. Note that the fraction of support vectors
over training examples is a loose upper bound on the leave
one out error (Vapnik, 1995), which is an almost unbiased
estimate of the true generalization error of the learning
algorithm (see, for example, Elisseeff and Pontil, 2003).
These kernels are able to better exploit information on residue
similarity, thus obtaining similar performances with simpler
models. Moreover, the precision/recall rate of the kernel with
the Blosum62 matrix is much more balanced with respect to the
other two, meaning that it suffers less from the unbalancing in
the training set.

Conclusions

We have proposed learning algorithms for predicting the type
of binding in which non-free cysteines are involved. The
experimental results indicate that learning from multiple align-
ment profiles data outperforms even non-trivial approaches

Fig. 3. Sequence logos (Schneider and Stephens, 1990) in the 17 aminos context of cysteines that do not match any PROSITE pattern, and are either truly predicted as
MBSs (top) or mistakenly predicted as DB (bottom) by an SVMwith a third degree polynomial kernel. Hydrophobic residues are shown in black, positively charged
residues are blue and negatively charged residues are red, while uncharged polar residues are green.
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Table VI. DB versus metal binding prediction by third degree polynomial kernel SVMs

Threshold Bridge Metal Rejected (%)

Rejection (%) Bridge Metal Acc Pre Rec Pre Rec Bridge Metal

00 0 0 89.9 90.5 97.5 86.6 61.5 0.0 0.0
05 0.20845 0.0470436 91.8 92.7 97.6 86.9 67.4 02.8 12.9
10 0.340927 0.113824 93.0 93.8 97.9 88.5 71.5 07.1 20.8
15 0.436391 0.159688 94.0 94.8 98.1 89.3 75.2 11.4 28.2
20 0.506477 0.225416 94.4 95.2 98.2 90.3 76.6 16.5 33.0
25 0.56122 0.267722 95.2 95.9 98.4 91.1 79.5 21.3 38.8
30 0.609002 0.337221 95.7 96.1 98.8 93.4 80.8 26.6 42.3

Window of 17 residue profiles on both sides of the target cysteine. Performances for different rejection rates, where rejection percentage is computed
separately for examples predicted as bridge or metal, in order to consider the unbalanced distribution of examples between the two classes (i.e. 5% rejection
rate indicates that 5%of examples predicted as bridges are to be rejected, aswell as 5%of examples predicted asmetal). Reported results include rejection thresholds,
accuracies (Acc), precision (Pre) and recall (Rec), and percentage of rejected examples belonging to each of the two classes.

Fig. 4. DB versus metal binding prediction by third degree polynomial kernel SVMs. Window of 17 residue profiles on both sides of the target cysteine. Test
accuracieswith 95% confidence intervals are plotted versus the ‘C’ regularization parameter of SVMs.Default regularization is computed as the inverse of the average
of K(x, x) with respect to the training set.

Fig. 5. DB versus metal binding prediction by third degree polynomial kernel SVMs. Window of 17 residue profiles on both sides of the target cysteine. Precision/
recall curves over the test set for different rejection rates for the DB (left) and metal binding (right) prediction.
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based on pattern matching, suggesting that relevant informa-
tion is contained not only in the residues flanking the cysteine
but also in their conservation. In some cases the learning algo-
rithm could be actually exploiting in a probabilistic way pat-
terns that are not yet listed in PROSITE, although detecting
them with few data points is difficult. In addition, we found that
using residue similarity matrices effectively reduces the com-
plexity of the model measured by the number of support vec-
tors, which is also an indication of the expected generalization
error. We expect that similar kernel functions could be also
useful for other predictive tasks both in one dimension (e.g.
solvent accessibility) and two dimensions (e.g. contact maps),
especially if task-dependent similarity matrices could be
devised.
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(b)(a)

Fig. 6. DB versus metal binding prediction by SVMs with third degree polynomial kernel with McLachlan (a) or Blosum62 (b) similarity matrix. Test and train
accuracies with 95% confidence intervals are plotted, together to the fraction of support vectors over the number of training examples, for growing sizes of the window
of 2k+ 1 residue profiles around the target cysteine, with k going from 1 to 25. Results are averaged over a 3-fold cross validation procedure.
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